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Time-resolved x-ray scattering (TRXS) measures internuclear separations in a molecule following laser-
induced photoexcitation. The molecular dynamics induced by the excitation laser may lie on one or several
bound or dissociative electronic states. Time-resolved x-ray scattering from these states can be difficult to isolate
because they generally overlap in the angle-resolved x-ray scattering pattern I (x, y, τ ), where τ is the pump-probe
delay and (x, y) are the physical pixel positions. Here we show how standard transform methods can isolate the
dynamics from individual states. We form the temporal Fourier transform Ĩ (x, y, ω) = ∫ +∞

−∞ dτ e−iωτ I (x, y, τ ).
This frequency-resolved x-ray scattering (FRXS) signal segregates the bound states according to their vibrational
frequencies ωi and also displays dissociative states along straight lines ω = vQ, where the slope v is the rate of
increase of the internuclear distance and Q is the momentum transfer between the incident and scattered x-ray
photon. We derive this relation and use FRXS to extract state-specific dynamics from experimental TRXS from
molecular iodine following a 520-nm pump. Dynamics observed include one- and two-photon dissociation of
the 1�u and 1�g

+ excited states and vibrational wave packets on the B 3�0u
+ state.
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I. INTRODUCTION

The ability to observe time-resolved motion of electrons
and nuclei in molecules is one of the principal goals of
femtochemistry [1]. Time-resolved x-ray scattering (TRXS)
and time-resolved electron scattering have enabled the ob-
servation of nuclear motion in molecules [2–6] and has the
potential to track electronic motion [7]. In this scheme, an
x-ray probe pulse scatters off an ensemble of optically pho-
toexcited molecules, and this process is repeated for a series of
delays between the optical excitation and the x-ray probe. One
advantage of x-ray scattering is that the x rays scatter from
all of the electrons in the molecular system under study and
thus embed spatial information about the electronic charge
distribution of a molecule. This has enabled the probing of
parallel and perpendicular transitions in N-methylmorpholine
[8], the direct observation of bound and dissociative motion in
molecular iodine [3,4], the resolving of various molecular tra-
jectories in 1,3-cyclohexadiene [2], and vibrational coherence
following electronic relaxation [9].

Time-resolved x-ray scattering, however, is not a direct
probe of nuclear position. Since scattering takes place in
momentum, or rather reciprocal space, it is necessary to either
fit the data to a model [2,5] or invert the data from reciprocal
space to real space to recover the nuclear dynamics [3,4].
The inverse problem to obtain the nuclear dynamics, i.e., the
pair-distribution function, is difficult because the observed
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momentum transfer �Q = �k0 − �ks between the incoming and

outgoing x-ray photon is limited to a few Å
−1

in an x-ray free-
electron laser (FEL) [10]. For example, the scattered x rays in
a typical experiment at the LINAC Coherent Light Source are

restricted between Qmin = 0.1 − 1 Å
−1

and Qmax = 2π/λ ≈
4.5 Å

−1
[11]. This restricts the spatial resolution to �R =

2π/(Qmax − Qmin) > 1.4 Å. There is however no comparable
technical restriction on the pump-probe delay τ , which may
range over a long time τR with fine steps �τ . A temporal
Fourier transform of the scattering pattern I (x, y, τ ) forms the
frequency-resolved x-ray scattering (FRXS) signal Ĩ (x, y, ω),
where the maximum observable beat frequency is given by
2π/�τ and the frequency resolution is 2π/τR. The temporal
Fourier transform thus generates a high-resolution representa-
tion of TRXS.

Temporal Fourier transform methods have been developed
for Fourier transform inelastic x-ray scattering to characterize
phonon modes in crystals to arbitrary frequency resolution
[12]. Temporal transform methods for TRXS from gases have
been used to isolate diatomic vibrations [13].

Here the expression for FRXS of a dissociating diatomic
molecule is derived, and the frequency spectrum is shown
to isolate dissociative motion along lines in reciprocal space
and reciprocal time, Q and ω, despite dissociation not being
periodic in real space, i.e., dissociations follow a trajectory
like R(τ ) = R0 + vτ , see Ref. [14]. The analytical results are
then confirmed through comparison to measured experimental
data, where two dissociative states are observed: one parallel
to the pump laser’s polarization and one perpendicular.
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FIG. 1. Difference image on the x-ray detector (CSPAD) for a
delay of 120 fs after pumping with 520-nm light.

II. EXPERIMENT

The experimental apparatus to study the time-resolved x-
ray scattering of molecular iodine following photoexcitation
by 520-nm light has been described elsewhere [3,11,13] and
a short description and schematic is provided in Ref. [13]. An
attempted real-space reconstruction of the data was published
previously [3]. In contrast, the analysis in this paper using
FRXS highlights an approach to isolate and characterize
dissociations measured using TRXS.

The specifics of the experiment are as follows. A 50-fs,
20-μJ, vertically polarized pulse of 520-nm light is focused
into a gas cell containing around 50 Torr of molecular iodine
at 100 ◦C. Following the optical pump, a 50-fs, 2-mJ, hori-
zontally polarized x-ray probe arrives at the scattering cell
with variable delay. The resulting scattering is measured in the
forward direction by the Cornell-SLAC Pixel Array Detector
(CSPAD) [10]. Scattering is measured at each pump-probe
delay, resulting in the difference image shown in Fig. 1.

At 520 nm, one photon will excite molecular iodine to
the bound B 3�0u

+ state or the dissociative 1�u state. Two
photons can access higher dissociative states, including the
1�g

+ state. The excitation begins near the equilibrium po-
sition of the ground (X 1�g

+) state at R0 = 2.666 Å. The
corresponding potential energy curves are shown in Fig. 2
from Ref. [15]. In the bound B state, 520 ± 5-nm light excites
highly anharmonic vibrations with periods between T = 520
and 650 fs and angular frequencies between ω = 9.6 and
11.9 THz. In the dissociative 1�u state, the internuclear
separation increases at a rate of v = 16 Å/ps, and in the dis-
sociative 1�g

+ state, v = 20 Å/ps. The beat frequencies and
periods were derived from [16] assuming a pump wavelength
of 520 nm, and velocities can be derived from the potential
energy curves from [15]. The initial position R0, the above
frequency ω, and velocities v are observed using FRXS, which
will now be described.

III. THEORY

As discussed in previous papers [13,17,18], time-resolved
x-ray scattering may be expressed as a product of three factors

dI

d	
= dσTh

d	
I0〈F ( �Q, τ )〉, (1)

FIG. 2. Following photoexcitation by 520-nm light, a single
photon may excite high in the bound B state (ω = 9.6–11.9 THz)
or the dissociative 1�u state (v = 16 Å/ps). Two photons excite
the dissociative 1�g

+ state which shares the same symmetry as the
ground X state (v = 20 Å/ps). These states are identified in the
frequency-resolved scattering in Figs. 3(e) and 4(b). The potential
energy curves are from Ref. [15].

where dI
d	

is the number of photons scattered into a solid
angle 	, dσTh

d	
is the Thomson scattering cross section, I0 is

the incident x-ray intensity, and 〈F ( �Q, τ )〉 is a time- and
angle-dependent polarization-corrected scattering probability
given by

〈F ( �Q, τ )〉 = 2| fA(Q)|2[1 + S( �Q, τ )] (2)

for a homonuclear diatomic molecule. In Eq. (2), fA(Q) is
the atomic form factor and S( �Q, τ ) is the molecular scatter-
ing factor, which encodes the internuclear separations. This
expression is correct in the limit where the independent-
atom approximation holds, i.e., heavy atoms and insufficient
time resolution to observe coherent effects between electronic
states [18–21]. Within this approximation S( �Q, τ ) may be
considered for each electronic state independently and may
be expressed as

S( �Q, τ ) =
∫

d �R ρ( �R, τ ) cos( �Q · �R), (3)

where ρ( �R, τ ) is the internuclear probability density on some
electronic state [17,22].

Turning to FRXS, consider a perfectly aligned classical di-
atomic molecule, which dissociates along a trajectory �R(τ ) =
(R0 + vτ )êz for τ > 0. For this special case, the molecular
scattering factor from Eq. (3) evaluates to

S(Qz, τ ) = cos QzRz(τ ). (4)

Now FRXS is defined as

S̃( �Q, ω) =
∫ +∞

−∞
dτ e−iωτ S( �Q, τ ). (5)

Therefore, for the above special case in Eq. (4), the FRXS
signal is

S̃(Qz, ω) = 1
2 [eiωR0/vδ(ω − vQz )

+ e−iωR0/vδ(ω + vQz )]. (6)
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FIG. 3. (a) Theoretical time-resolved x-ray scattering following photoabsorption of two 520-nm photons onto the dissociative 1�g
+ state,

using v = 20 Å/ps and R0 = 2.666 Å. (b) Power spectrum under similar conditions generated using Eq. (9). (c) Real part of the frequency
spectrum of (b). White lines run parallel to ω = vQ and the circles identify the nodes at ωR0

v
= nπ

2 , where n = 3 and 5. Note that a phase
shift was applied to Eq. (8) such that (c) reproduces (f). (d) Experimental time-resolved x-ray scattering following photoabsorption of 520-nm
light. This is the component of the data projected onto the second-order Legendre polynomial P2(cos θ ). (e) Power spectrum of (d). The
v = 19.9 ± 0.2 Å/ps dissociation is observed and the bound B state motion peaks at ω = 11.6 ± 1.1 THz. (f) Real component of the frequency
spectrum.

This equation has two important properties: (i) The maxima
of the FRXS lie along ω = vQ and (ii) the phase evolves
like φ = ωR0/v. The rate of increase of internuclear sepa-
ration in a dissociation may then be obtained by fitting the
positions of the maxima to a line, and the initial position of
the dissociation may be obtained by fitting the phase along
those maxima to another line, as will be demonstrated in
Sec. IV.

Before turning to the experimental analysis, the physical
alignment of a diatomic will now be considered. Following
excitation by a polarized laser pulse, the angular distribu-
tions will go as cos2n θ for parallel transitions or sin2n θ for
perpendicular transitions, where n indicates the number of
photons absorbed and θ is the angle with respect to the laser
polarization axis. These distributions may be expressed as a
linear combination of Legendre polynomials Pl (cos θ ) such
that the molecular scattering factor from Eq. (3) may be
rewritten as

S( �Q, τ ) =
∑

l

Pl (cos θ )Sl (Q, τ ), (7)

where

Sl (Q, τ ) =
∫

dR R2ρl (R, τ ) jl (QR), (8)

with ρl (R, τ ) the projection of the nuclear probability function
onto a given Legendre polynomial and jl (QR) the spherical
Bessel functions. Now the FRXS may be considered for a
given Legendre order S̃l (Q, ω) = ∫ +∞

−∞ dτ e−iωτ Sl (Q, τ ). As
shown in Appendix A, the FRXS for a dissociating diatomic
is approximately given by

S̃l (Q, ω) ≈ eiωR0/v

2iQv
[E1( − i(QR0 − ωR0/v))

− E1(i(QR0 + ωR0/v))] (9)

for each Legendre order, where E1(z) = ∫ ∞
z dt e−t/t is an

exponential integral. To show that Eq. (9) shares the same
important features as the first derivation in Eq. (6), the result
is shown in Figs. 3(b) and 3(c), which demonstrate that (i)
the maxima of the FRXS lie along ω = vQ and (ii) the phase
evolves like φ = ωR0/v.
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FIG. 4. (a) Experimental time-resolved x-ray scattering following photoabsorption of 520-nm light. This is the isotropic component of the
data found by projecting the CSPAD image at each time delay onto the zeroth-order Legendre polynomial P0(cos θ ). (b) Power spectrum of
(a). There are two dissociations evident in the data: v = 19.9 ± 0.2 Å/ps and v = 16.4 ± 0.2 Å/ps. There is also the bound B state motion
peaked at ω = 11.6 ± 1.1 THz.

IV. DISCUSSION

To validate the theory derived above, a comparison to the
experimental data is now made. For each pump-probe delay of
the TRXS as shown in Fig. 1, the Thomson cross section and
atomic form factors are divided out, I (x, y, τ ) → S(x, y, τ ),
and the pixel coordinates (x, y) are mapped onto the scattering
coordinates (Q, θ ) using the method described in Appendix B,
S(x, y, τ ) → S(Q, θ, τ ). Following the coordinate mapping,
S(Q, θ, τ ) is projected onto the zeroth through tenth Legendre
polynomials to obtain Sl (Q, τ ). Figures 3(d) and 4(a) show
S0(Q, τ ) and S2(Q, τ ), respectively.

These Legendre projections are then used to generate the
FRXS, S̃0(Q, ω) and S̃2(Q, ω), through a discrete Fourier
transform (DFT). The power spectrum following the DFT is
shown in Figs. 3(e) and 4(b). The power spectrum allows for
the identification of the bound state and two dissociations.
The bound state is peaked at ω = 11.6 ± 1.1 THz, the first
dissociation has a final velocity of 16.4 ± 0.2 Å/ps, and the
second dissociation has a final velocity of 19.9 ± 0.2 Å/ps.
These results align with the inferred values for the 1�u and
B 1�g

+ states, respectively, as derived from Ref. [15]. For in-
formation on why the bound state appears at its beat frequency
in the power spectrum, see [13] for details on characterizing
bound-state motion using FRXS.

The dissociations can also be observed in the original im-
ages on the detector following the temporal Fourier transform
Ĩ (x, y, ω). The dissociations present themselves as outward
moving crescents on the detector image in reciprocal space
and reciprocal time. The slower dissociation appears first
on the detector perpendicular to the pump polarization as ω

is increased, whereas the perpendicular alignment has been
seen elsewhere [23,24]. The faster dissociation then appears
moving parallel to the pump polarization. This effect is shown
in Figs. 5(a) and 5(b) as well as the GIF included in the
Supplemental Material [25].

The faster dissociation as seen in the second-order Legen-
dre projection in Fig. 3(e) will be used to demonstrate that
FRXS can characterize the dissociation velocity and initial
position. To obtain the dissociation velocity, the position of
the maximum at each momentum transfer Q is extracted
from the power spectrum in Fig. 3(e). The positions of the
maxima (Q, ω) are then used to fit the line ω = vQ as shown
in Fig. 6(a). This method obtains a velocity of v = 19.9 ±
0.2 Å/ps as compared to the predicted 20 Å/ps from the
dissociative 1�g

+ state. Now using the measured velocity, the
phase along the line ω = vQ is extracted to find the initial
position R0. The phase as a function of the angular frequency
is fit to φ = ωR0/v + φ0 to obtain the initial position as shown
in Fig. 6(b). [For reference, the real part of the frequency
spectrum is shown in Fig. 3(f).] This method obtains an initial
position of R0 = 2.3 ± 0.4 Å as compared to the known value
of 2.666 Å.

V. CONCLUSION

An analysis method for leveraging FRXS to characterize
dissociative motion has been derived and applied to exper-
imental data. The obtained values for initial position and
dissociation velocities align with the expectations for the 1�u

and 1�g
+ states of molecular iodine. The different aspect of

this approach is that an interpretable and compact represen-
tation of the experimental measurement may be obtained in
reciprocal space and reciprocal time without the difficulty
of inverting the measurement to the traditional space and
time representation. Thus, FRXS presents an alternative to
traditional analyses of TRXS. The traditional approach is
limited by the range of momentum transfer Q that is ac-
cessible at FELs. Frequency-resolved x-ray scattering does
not suffer this limitation, and in fact FRXS leverages the
strengths of FELs, namely, fine time resolution and fast
data accumulation. This enables a long range of pump-probe
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FIG. 5. Power spectrum Ĩ (x, y, ω) of the time binned detector
images I (x, y, τ ). (a) Power spectrum at ω = 20.9 THz across all
pixels. Parallel to the laser field (y axis), we observe the two-photon
20-Å/ps dissociation beginning to emerge from the beam block.
Perpendicular to the laser field (x axis) we observe the one-photon
16-Å/ps dissociation. (b) At ω = 27.9 THz, the two-photon disso-
ciation has moved outward on the detector as the frequency was
increased, and the one-photon dissociation is no longer visible. In
the Supplemental Material [25], a GIF is included showing the two
dissociations propagating outward as frequency is increased.

delays to be measured in an experiment, thereby improving
the frequency resolution of an experiment while maintaining
sufficient temporal resolution to measure high beat frequen-
cies. These advantages have been leveraged to obtain compact
representations of dissociations along lines in reciprocal space
and reciprocal time, demonstrating an alternative to tradi-
tional analyses of time-resolved x-ray scattering for gas-phase
photochemistry.
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FIG. 6. (a) Position of the maxima at each momentum transfer Q
along the dissociation line in Fig. 3(e) shown in red. The fit to ω =
vQ is shown in black, which finds v = 19.9 ± 0.2 Å/ps, enabling
the identification of dissociation along the 1�g

+ state. Error bars are
the bin size in Q from Fig. 3(e) and error bars in ω are determined
by the scan range. (b) Phase along the dissociation line in Fig. 3(f)
shown in red. The fit to φ = ωR0/v + φ0 is shown in black, which
recovers the initial position before dissociation as R0 = 2.3 ± 0.4 Å.
Error bars are the standard deviation of the phase.

APPENDIX A: FRXS OF AN ALIGNED DISTRIBUTION

To reproduce the exact structure of the FRXS given by
a dissociation, the alignment of the molecule needs to be
considered. For example, an isotropic distribution will project
onto the zeroth-order Legendre and have a molecular scatter-
ing distribution given by S0(Q, τ ) = ∫

dR R2ρ(R, τ ) j0(QR),
where j0(QR) is the zeroth-order spherical Bessel function.
A cos2 θ distribution will project onto both the zeroth- and
second-order Legendre polynomials and have a molecular
scattering distribution with both the S0(Q, τ ) component as
well as S2(Q, τ ) = ∫

dR R2ρ(R, τ ) j2(QR), where j2(QR) is
the second-order spherical Bessel function.

For simplicity, consider an aligned distribution of
molecules with R2ρ(R, τ ) = δ(R − R(τ )), and then
Sl (Q, τ ) = jl (QR(τ )) for τ > 0. The frequency-resolved
scattering is accordingly

S̃l (Q, ω) =
∫ ∞

0
dτ e−iωτ jl (QR(τ )). (A1)

Each even spherical Bessel function contains a sin x/x term,
which by observation makes the largest contribution to this
integral. Focusing the derivation to this term, the approximate
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êx

êy

êz

FIG. 7. For a linearly polarized pump pulse, the momentum
transfer �Q is decomposed into its projection onto the êy axis and
the êx-êz plane. The large circle depicts the Ewald sphere, which
represents all possible �Q for an elastic scattering experiment.

solution can be found by taking

S̃2l ≈
∫ ∞

0
dτ e−iωτ sin QR(τ )

QR(τ )
. (A2)

Dissociation is the focus here, so R(τ ) = R0 + vτ . Then
taking u = QR(τ ) and expanding sine as a difference of
exponentials, the integral becomes

S̃2l (Q, ω) = eiωR0/v

2iQv

[∫ ∞

QR0

eiu(1−ω/Qv)

u

−
∫ ∞

QR0

e−iu(1+ω/Qv)

u

]
. (A3)

This may be identified as the difference of exponential in-
tegrals after taking two additional u substitutions with a =
u(1 − ω/Qv) and b = u(1 + ω/Qv) such that

S̃2l (Q, ω) = eiωR0/v

2iQv

[∫ ∞

QR0−ωR0/v

da
eia

a

−
∫ ∞

QR0+ωR0/v

db
e−ib

b

]

= eiωR0/v

2iQv
[E1( − i(QR0 − ωR0/v))

− E1(i(QR0 + ωR0/v))], (A4)

where E1(z) = ∫ ∞
z dt e−t/t is an exponential integral. Equa-

tion (4) shares the same features described in the simplified
derivation in the text for perfectly aligned diatomics: (i) The
maxima of the FRXS lie along ω = Qv and (ii) the phase
evolves like φ = ωR0/v.

APPENDIX B: COORDINATE MAPPING

For a diatomic excited along a polarized laser pulse, the
relevant angular decomposition (θ, φ) is shown in Ref. [13].
Mapping from the detector image I (x, y) set a distance L away
from the scattering center onto the molecular frame I (Q, θ ),
as sketched in Fig. 7, is a simple geometry problem. First,
the momentum transfer must be decomposed in the directions

parallel to the field, êy, and perpendicular to the field, the êx-êz

plane. The parallel decomposition is given by Qy = k0y√
R2+L2 ,

where R =
√

x2 + y2 is the distance from the center of the
detector, and the perpendicular decomposition is given by

Q⊥ = k0

√
x2+L2

R2+L2 + 1 − 2L√
R2+L2 . With that decomposition in

hand, (Q, θ ) is determined by Q2 = Q2
y + Q2

⊥ and tan θ =
Q⊥/Qy.

APPENDIX C: ERROR PROPAGATION AND DATA
ANALYSIS

For each shot the pump-probe delay τ ′
i is measured and

then binned into some time bin τ j ± �τ . This allows for the
generation of the mean scattered intensity at each time delay

I (x, y, τ j ) = 1

Nj

∑
i

I (x, y, τ ′
i ), (C1)

where (x, y) indicate each pixel on the CSPAD detector. From
these images, the unpumped signal is subtracted to find the
difference scattering �I (x, y, τ j ) = I (x, y, τ j ) − Iu(x, y).

The difference images are then divided by the Thompson
cross section dσ

d	
[26], iodine’s atomic form factor | fI (Q)|2

[22], and the correction factor for attenuation in the scattering
cell [11]. This results in the difference molecular scattering
factor �S(x, y, τ j ) up to an overall factor of the x-ray intensity.
Now the variation at each pixel position is generated by

σ 2(x, y, τ j ) = Var[�S(x, y, τ j )]

= 1

Nj

∑
i

|�S(x, y, τ ′
i ) − �S(x, y, τ j )|2. (C2)

The variation is then propagated through the analysis as
follows.

For the projection of �S(x, y, τ ′
i ) onto Legendre polyno-

mials, the coordinates are first mapped from (x, y) onto (Q, θ )
as described in Appendix B. Then mapping �S(Q, θ, τ ) onto
the Legendre coefficients �Sl (Q, τ ) is achieved through a χ2

minimization. The χ2 model is defined by

χ2 =
∑

i

(pi − si )2

σ 2
i

, (C3)

where pi is the fitted function, si is the data, and σ 2
i is

the variance. For a linear model, the fitted function may
be expressed as pi = ∑

j x j f j (Qi ), where x j are the model
coefficients. Then the solution to the χ2 minimization is

xk =
∑

i

Akisi/σ
2
i , (C4)

where A = ( f T σ−2 f )−1 f . The associated error for the solu-
tion xk is then

σk =
√∑

j

(
Ak jσ

−1
j

)2
, (C5)

as shown in [27]. For the Legendre projection of �S(Q, θ, τ )
onto �Sl (Q, τ ), the fitted function is f j (θi ) = Pj (cos θi ),
where j = 0, 2, . . . , 10 are used.
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For the temporal Fourier transform of the Legendre coef-
ficients �Sl (Q, τ ), a discrete Fourier transform is used. As
the Fourier transform is a unitary transform, the standard
deviation for each frequency element is simply the sum in

quadrature of the errors σl (Q, τ j ), where

σl (Q, ω j ) =
√∑

j

σ 2
l (Q, τ j ). (C6)

[1] A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
[2] M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson,

D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M.
Kozina, H. T. Lemke et al., Phys. Rev. Lett. 114, 255501
(2015).

[3] J. M. Glownia, A. Natan, J. P. Cryan, R. Hartsock, M. Kozina,
M. P. Minitti, S. Nelson, J. Robinson, T. Sato, T. van Driel et
al., Phys. Rev. Lett. 117, 153003 (2016).

[4] J. Yang, M. Guehr, X. Shen, R. Li, T. Vecchione, R. Coffee, J.
Corbett, A. Fry, N. Hartmann, C. Hast et al., Phys. Rev. Lett.
117, 153002 (2016).

[5] E. Biasin, T. B. van Driel, K. S. Kjær, A. O. Dohn, M.
Christensen, T. Harlang, P. Chabera, Y. Liu, J. Uhlig, M. Pápai
et al., Phys. Rev. Lett. 117, 013002 (2016).

[6] M. Ware, From time-resolved to frequency-resolved x-ray scat-
tering, Ph.D. thesis, Stanford University, 2019.

[7] G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. USA
109, 11636 (2012).

[8] H. Yong, N. Zotev, B. Stankus, J. M. Ruddock, D. Bellshaw, S.
Boutet, T. J. Lane, M. Liang, S. Carbajo, J. S. Robinson et al.,
J. Phys. Chem. Lett. 9, 6556 (2018).

[9] B. Stankus, H. Yong, N. Zotev, J. M. Ruddock, D. Bellshaw,
T. J. Lane, M. Liang, S. Boutet, S. Carbajo, J. S. Robinson
et al., Nat. Chem. 11, 716 (2019).

[10] M. Chollet, R. Alonso-Mori, M. Cammarata, D. Damiani,
J. Defever, J. T. Delor, Y. Feng, J. M. Glownia, J. B.
Langton, S. Nelson et al., J. Synchrotron Radiat. 22, 503
(2015).

[11] J. Budarz, M. Minitti, D. Cofer-Shabica, B. Stankus, A.
Kirrander, J. Hastings, and P. Weber, J. Phys. B 49, 034001
(2016).

[12] M. Trigo, M. Fuchs, J. Chen, M. Jiang, M. Cammarata, S. Fahy,
D. M. Fritz, K. Gaffney, S. Ghimire, A. Higginbotham et al.,
Nat. Phys. 9, 790 (2013).

[13] M. R. Ware, J. M. Glownia, A. Natan, J. P. Cryan, and P. H.
Bucksbaum, Philos. Trans. R. Soc. A 377, 20170477 (2019).

[14] A. Debnarova, S. Techert, and S. Schmatz, J. Chem. Phys. 133,
124309 (2010).

[15] R. S. Mulliken, J. Chem. Phys. 55, 288 (1971).
[16] J. Wei and J. Tellinghuisen, J. Mol. Spectrosc. 50, 317 (1974).
[17] J. Cao and K. R. Wilson, J. Phys. Chem. A 102, 9523 (1998).
[18] S. P. Hau-Riege, Nonrelativistic Quantum X-Ray Physics

(Wiley, New York, 2015).
[19] M. Kowalewski, K. Bennett, and S. Mukamel, Struct. Dynam.

4, 054101 (2017).
[20] K. Bennett, M. Kowalewski, and S. Mukamel, Phys. Rev. Lett.

119, 069301 (2017).
[21] G. Dixit and R. Santra, Phys. Rev. A 96, 053413 (2017).
[22] J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray

Physics (Wiley, New York, 2011).
[23] J. J. Larsen, I. Wendt-Larsen, and H. Stapelfeldt, Phys. Rev.

Lett. 83, 1123 (1999).
[24] R. J. Oldman, R. K. Sander, and K. R. Wilson, J. Chem. Phys.

54, 4127 (1971).
[25] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.100.033413 for a GIF of frequency-
resolved scattering on the time binned CSPAD images.

[26] J. J. Sakurai, Advanced Quantum Mechanics (Pearson Educa-
tion India, Chennai, 1967).

[27] J. R. Taylor, An Introduction to Error Analysis: The Study of
Uncertainties in Physical Measurements (University Science
Books, Sausalito, 1997).

033413-7

https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1021/jp001460h
https://doi.org/10.1103/PhysRevLett.114.255501
https://doi.org/10.1103/PhysRevLett.114.255501
https://doi.org/10.1103/PhysRevLett.114.255501
https://doi.org/10.1103/PhysRevLett.114.255501
https://doi.org/10.1103/PhysRevLett.117.153003
https://doi.org/10.1103/PhysRevLett.117.153003
https://doi.org/10.1103/PhysRevLett.117.153003
https://doi.org/10.1103/PhysRevLett.117.153003
https://doi.org/10.1103/PhysRevLett.117.153002
https://doi.org/10.1103/PhysRevLett.117.153002
https://doi.org/10.1103/PhysRevLett.117.153002
https://doi.org/10.1103/PhysRevLett.117.153002
https://doi.org/10.1103/PhysRevLett.117.013002
https://doi.org/10.1103/PhysRevLett.117.013002
https://doi.org/10.1103/PhysRevLett.117.013002
https://doi.org/10.1103/PhysRevLett.117.013002
https://doi.org/10.1073/pnas.1202226109
https://doi.org/10.1073/pnas.1202226109
https://doi.org/10.1073/pnas.1202226109
https://doi.org/10.1073/pnas.1202226109
https://doi.org/10.1021/acs.jpclett.8b02773
https://doi.org/10.1021/acs.jpclett.8b02773
https://doi.org/10.1021/acs.jpclett.8b02773
https://doi.org/10.1021/acs.jpclett.8b02773
https://doi.org/10.1038/s41557-019-0291-0
https://doi.org/10.1038/s41557-019-0291-0
https://doi.org/10.1038/s41557-019-0291-0
https://doi.org/10.1038/s41557-019-0291-0
https://doi.org/10.1107/S1600577515005135
https://doi.org/10.1107/S1600577515005135
https://doi.org/10.1107/S1600577515005135
https://doi.org/10.1107/S1600577515005135
https://doi.org/10.1088/0953-4075/49/3/034001
https://doi.org/10.1088/0953-4075/49/3/034001
https://doi.org/10.1088/0953-4075/49/3/034001
https://doi.org/10.1088/0953-4075/49/3/034001
https://doi.org/10.1038/nphys2788
https://doi.org/10.1038/nphys2788
https://doi.org/10.1038/nphys2788
https://doi.org/10.1038/nphys2788
https://doi.org/10.1098/rsta.2017.0477
https://doi.org/10.1098/rsta.2017.0477
https://doi.org/10.1098/rsta.2017.0477
https://doi.org/10.1098/rsta.2017.0477
https://doi.org/10.1063/1.3475567
https://doi.org/10.1063/1.3475567
https://doi.org/10.1063/1.3475567
https://doi.org/10.1063/1.3475567
https://doi.org/10.1063/1.1675521
https://doi.org/10.1063/1.1675521
https://doi.org/10.1063/1.1675521
https://doi.org/10.1063/1.1675521
https://doi.org/10.1016/0022-2852(74)90239-2
https://doi.org/10.1016/0022-2852(74)90239-2
https://doi.org/10.1016/0022-2852(74)90239-2
https://doi.org/10.1016/0022-2852(74)90239-2
https://doi.org/10.1021/jp982054p
https://doi.org/10.1021/jp982054p
https://doi.org/10.1021/jp982054p
https://doi.org/10.1021/jp982054p
https://doi.org/10.1063/1.4984241
https://doi.org/10.1063/1.4984241
https://doi.org/10.1063/1.4984241
https://doi.org/10.1063/1.4984241
https://doi.org/10.1103/PhysRevLett.119.069301
https://doi.org/10.1103/PhysRevLett.119.069301
https://doi.org/10.1103/PhysRevLett.119.069301
https://doi.org/10.1103/PhysRevLett.119.069301
https://doi.org/10.1103/PhysRevA.96.053413
https://doi.org/10.1103/PhysRevA.96.053413
https://doi.org/10.1103/PhysRevA.96.053413
https://doi.org/10.1103/PhysRevA.96.053413
https://doi.org/10.1103/PhysRevLett.83.1123
https://doi.org/10.1103/PhysRevLett.83.1123
https://doi.org/10.1103/PhysRevLett.83.1123
https://doi.org/10.1103/PhysRevLett.83.1123
https://doi.org/10.1063/1.1675480
https://doi.org/10.1063/1.1675480
https://doi.org/10.1063/1.1675480
https://doi.org/10.1063/1.1675480
http://link.aps.org/supplemental/10.1103/PhysRevA.100.033413

