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We study the inelastic scattering of two-dimensional massless Dirac fermions by an inhomogeneous time-
dependent driving field. As a physical realization, we consider a monolayer graphene normally illuminated with
a circularly polarized laser of frequency €2 in a given region. The interaction Hamiltonian introduced by the laser,
being periodic in time, can be treated with the Floquet method, which naturally leads to a multichannel scattering
problem. We analyze planar and circular geometries of the interface separating the irradiated and nonirradiated
regions and find that there is an anomalous Goos-Hénchen shift in the inelastic channel. The latter is weakly
dependent on the amplitude of the driving (for small amplitudes) while its sign is determined by the polarization
of the laser field. We related this shift with the appearance of topological edge states between two illuminated

regions of opposite chiralities.
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I. INTRODUCTION

Physical systems subjected to the action of time-dependent
periodic potentials present a variability of interesting phe-
nomena, which have recently captured the attention of the
research community as they might provide new routes for
electronic and optoelectronic devices or lead to the obser-
vation of novel phases of matter, as, for example, Floquet
topological insulators (FTT) [1-4] or time crystals [5-9]. The
former, in particular, are a prominent example where driving
an otherwise ordinary material leads to the generation of
light-induced topological properties [4,10]. Very much as
ordinary topological insulators [11-15], FTT have a bulk gap
in their nonequilibrium band structure (quasienergy spectrum)
while the resulting Floquet-Bloch bands are characterized by
nontrivial topological invariants [2,4,16—18]. In addition, they
host chiral and/or helical states at the sample boundaries
[10,19,20]. Their properties have been extensively discussed
in many different contexts, ranging from condensed matter
systems to artificial optical and sound lattices or even cold
atom systems [21-45]. Yet, the problem of inelastic scatter-
ing of an impinging particle upon an irradiated region with
topological features has received much less attention.

Many analogies exist between the scattering of an electron
beam from electrostatic potentials in two-dimensional (2D)
electron gases and the one of a light beam from an interface
between two media of different refraction index. In condensed
matter physics, they have been recognized and exploited long
ago, as, for instance, in the early beginning of quantum trans-
port in mesoscopic heteroestructures [46—48]. Very recently,
the analogy has been pushed even further, to the realm of
metamaterials [49], with the proposal to construct Veselago
lenses using pn junctions in graphene [50,51] to effectively
built a negative refraction index for electrons. More recently,
Beenakker ef al. [52] have shown that quantum transport on
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a pnp channel in graphene is affected by the presence of a
subtle effect related to the scattering of an electron beam at the
junction interface: the Goos-Hénchen (GH) shift [53]. This is
a very well-known effect in optics [54,55] that appears in the
case of total reflection and corresponds to a lateral shift of the
reflected beam of a magnitude comparable to the wavelength
Ao due to interference effects.

In this work, we analyze the inelastic scattering of Dirac
fermions from an irradiated region by considering both pla-
nar and circular interfaces. As the circularly polarized laser
field of frequency 2 opens a dynamical gap in the Floquet
spectrum of that region at a quasienergy /$2/2 [22], we
take the energy ¢ of the incident particles to be inside such
gap (¢ ~ h2/2) so that only evanescent states penetrate the
irradiated region. Then, we study the cases of an incident
plane wave and a narrow beam and discuss the GH shift.
Because of the topological character of the irradiated region,
one can anticipate that the GH shift might present some
features that are qualitatively different from those observed
without the time-dependent potential [56]. We show that this
is the case and that not only is the GH shift different from
zero at normal incidence but also its sign depends only on
the direction of the laser’s polarization. We interpret this
as a consequence of the presence of a chiral current at the
interface.

The rest of the paper is organized as follows. In Sec. II,
we present a basic description of Dirac fermions and a brief
introduction to the Floquet theory, emphasizing its application
to this case. In Sec. III, we present the planar interface
case, separating the cases of a wave impinging the interface
normally or with a oblique angle. The formation of chiral
currents at the interface is also discussed. In Sec. IV, we
present the anomalous Goos-Hinchen shift that appears with
electrons beams of a finite width. The results for the case of

©2019 American Physical Society


https://orcid.org/0000-0001-5273-5437
https://orcid.org/0000-0002-3044-5778
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.033409&domain=pdf&date_stamp=2019-09-12
https://doi.org/10.1103/PhysRevA.100.033409

A. HUAMAN AND GONZALO USAJ

PHYSICAL REVIEW A 100, 033409 (2019)

a circular irradiated spot are presented in Sec. V. Finally, we
summarize in Sec. VI.

II. LOW-ENERGY MODEL: DRIVEN DIRAC FERMIONS

We consider a generic 2D system where the low-energy
excitations can be described by the following Hamiltonian,

A

H=vro-p, (D

where vr denotes the Fermi velocity and o = (oy, 0,) are
Pauli matrices describing a pseudospin degree of freedom. For
the sake of concreteness, we will take graphene as an example
from hereon. In that case, the present model corresponds to
the low-energy description of the carbon p, orbitals.

We are interested in the case where there is a driving field
described by the vector potential A(¢) = Re{Ae*¥ }—for in-
stance, an electromagnetic field normally hitting the graphene
sheet. We assume a zero scalar potential. The electric field
is then E(t) = —(1/c)3,A(t) so that Ey = |[E| = (2/¢)]Aol.
This is introduced in Eq. (1) through the well-known Peierls
substitution

p—>p+ SA(t), (2)

where —e is the electron charge and c is the speed of light.

We then have a Hamiltonian 7:L(t) that depends on time
explicitly. In such a case, the energy of the system is no longer
a conserved quantity and the usual approach of diagonalizing
the Hamiltonian is no longer useful. Yet, for the special cases
where the Hamiltonian is periodic in time, one can apply
the Floquet theory [57,58] to reduce the calculation to an
eigenvalue problem again. Just as a brief introduction, we
will present here the basic features of this method; a more
extensive discussion can be found in Refs. [59,60].

Floquet theory is a suitable approach for problems in-
volving periodic time-dependent Hamiltonians H.(r) = H(r +
27 /2), which can be written as a Fourier series in time
(@) = Dom T im__here m is an integer index. The solu-
tions of the time-dependent Schrédinger equation i/ 9, |\V) =
F(t)|W) can then be written as |W(r)) = e ¢/" |d(r)), with
|®(¢)) periodic in time with the same period as 7:[(t). The
quantity ¢ is called the quasienergy and |®(7)) satisfies the
so-called Floquet equation,

[H(t) — ik 31| D(1) = e| D)), 3)

where the operator ?:lp @)= ’;‘—l(t) —iho; is the Floquet
Hamiltonian. Since |®(¢)) is periodic in time, we can treat
this time-dependent problem as a time-independent one by
extending the Hilbert space and considering the product space
R ® T of the static (nondriven) space R and the space T
of functions periodic in time with period T = 27 /Q. T can
be spanned by the basis functions ¢”** with m = 0, £1, 42,
..., while R, on the other hand, is described by a set of kets
| x), labeled by the quantum number x . In our particular case,
x refers to the pseudospin degree of freedom (the sublattice
A or B in graphene). Hence, |®()) = }_, , c;me™|x). By
using the Fourier series of ’}:[(t), we can construct an explicit
matrix representation for the Floquet Hamiltonian Hp. In
what follows, we analyze the particular case of Eq. (1).

FIG. 1. Visualization of the Floquet replicas as copies of the
nonirradiated system (graphene monolayer) coupled with each other
by means of absorption and emission of photons in the laser field.

Since we are mainly interested on the effects of a
circularly polarized field, we take the vector potential
to be A(t) = Ag(cos()X + sin(2r)y). Hence, the time-
dependent Hamiltonian from Eq. (1) can be written as

N . eVpA ; .
)= A+ ——(0_ ¥ +0,e7), )
c
with o4 = (0, =%ioy)/2. Expanding the exponentials and pass-

ing to the direct product basis |x, m), we get the following
matrix representation:

A+ hrQ nhQo. 0
Hr = nhQ o, H Qo ...|. (5

0 nhQo, H—hQ

Here, we have defined the dimensionless parameter n =
evpAg/ch to quantify the strength of the laser field. ¢
is then equivalent to a static Hamiltonian formed by copies
(Floquet replicas or channels) of the original system shifted
in energy by multiples of /A2 and coupled between them
to nearest neighbors through the parameter n (see Fig. 1).
The spectra of the uncoupled set of Floquet replicas cross
each other at specific quasienergies, making them degenerate.
The driving field lifts these degeneracies and therefore the
corresponding Floquet spectrum (for n # 0) presents gaps at
specific quasienergies [20]. This is shown in Fig. 2, where
replicas from m = —2 through m = 2 have been considered.

In this work, we will focus on the gap of order nfi<2 that
appears at ¢ ~ h2/2, where the replicas m =0 and m = 1
cross each other. In that case, since we will only consider the
limit n < 1, it is sufficient to restrict the Floquet Hamiltonian
to those replicas (m = 0 and m = 1), which will allows us
to obtain analytical results. Therefore, we are left with the
following reduced Floquet matrix,

h<2 VEP— 0 0

VF D+ h<2 nh<2 0
0 nhQ 0 vrp_ |’
0 0 VF D+ 0

Hp =

with py = p, £ip, = —ih(d, £ i9,), that corresponds to
a counterclockwise circular polarization. Once the wave
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FIG. 2. Spectral density projected onto the m = 0 replica for
irradiated graphene (solid line), and uncoupled Floquet quasienergy
bands (dashed lines). Dynamical gaps appear at quasienergies where
the Floquet replicas become degenerate.

function for this case is obtained, one can get the correspond-
ing one for the clockwise polarization by swapping the spinor
components on each channel and making the substitution
Py = —PDy-

The solutions of the eigenvalue equation [cf. Eq. (3)] with
Hamiltonian (6) depend on the geometry of the problem under
consideration. In the following sections, we will find such
solutions, with asymptotic incoming states on the nonirradi-
ated region, for two cases: (i) When the interface between
irradiated and nonirradiated regions is a straight line and (ii)
when the irradiated region is circular.

III. STRAIGHT INTERFACE

We start by analyzing the simplest situation, which consists
of an infinite sheet of, say, graphene (xy plane), with the
half-plane x > 0 irradiated by a laser field described by the
vector potential A(t) = Ap(cos(2t) X + sin(2¢)y), as shown
in Fig. 3. Within the approximation where only the m = 0
and m = 1 Floquet channels are retained, the problem reduces
to finding a four-component Floquet wave function. Since
we are interested in describing the scattering states and to
simplify the problem, we will look for solutions where the
asymptotic incident states belong only to the m = 0 channel.
Hence, our main goal is to find the probability of scattering
in each channel after the dispersion by the interface created
by the inhomogeneous laser field. To solve the problem, we
then need to resolve the eigenvalue equation with 75 defined
in Eq. (6) in both regions, x > 0 (A9 7 0) and x <0 (A9 = 0),
and then match these solutions at the boundary x = 0.

For clarity, we will discuss separately the cases of normal
and oblique incidence as the former is mathematically simpler
and will give us good insight into the physics involved.

FIG. 3. Geometry of the scattering problem with oblique inci-
dence. The darker region corresponds to the irradiated area. Because
of the conservation k,, the reflected wave in the m =1 channel
follows a path similar to that of the incident wave. In particular,
6y = 6y when u = 0.

A. Normal incidence

In this case, we have that the k, component of the wave
vector is zero, so the problem becomes essentially one di-
mensional. Let us introduce the dimensionless parameter u
through the relation ¢ = #2(1 + w)/2. In the nonirradiated
region (x < 0), there is no coupling between channels (Ag =
0), so that they can be solved independently. Since we con-
sider the incident particle to be in the m = 0 channel, we take
the incident component of the m = 1 channel equal to zero.
Then, the x < 0 solution for the m replica can be obtained
from the following matrix equation:

(th
Ur P+
In our case, these solutions read

11 ) ei(ﬁQfs)x/pr ;

1\ 1 )
q)g(x) — (l>ezsx/hvp +ro <_1>e_ISX/th' (8)

Here, a global normalization factor has been omitted. The
complex quantities ry and r; are the reflection amplitudes in
each channel, the corresponding reflection coefficients being
Ry = |ro)? and R; = |r|%. Here, we stress that the flux direc-
tion of the particles on each channel must be determined by
calculating the current J™ = & 0, ®,,.

In the region x > 0, one needs to solve the complete
Floquet equation ﬁpw =s&y, ¥y = (®7, Og), coupling both
channels. This leads to four independent solutions along with
four integration constants C;,

ko ke
d7(x) = Cy ( 1ko’ >e"k+x + G (ki))e—"w

k_ k_
+C3 < lko)eikx + C4 (k;)eikx

> 1 ik x 1 —ikyx
(DO (.x) = C1H+ ks et +C2H+ ky e "t

K 5

—
1 ik_x 1 —ik_x
+GIH_ | )"+ CI | )™, 9)

k5 G

VFp—

D =c 5. 7
th) m € m ( )

OT(x) =r <
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with ky = Q/2vp, ki = ko(1 & 1), and

_pEVrEAd ) —n?

nl—p)
ky = ko\/l +u£2V-2 + 20+ 92, 1)

The way in which the square roots are taken depends on
the particular values of u and 7, as we will see later. The
continuity of the wave function at x = O results in a system
of four equations from where ry, 7|, and the four coefficients
C; (six unknowns) need to be determined. The number of
equations is clearly not sufficient and one needs to impose
some additional requirements to eliminate two integration
constants. These requirements are fairly obvious and can be
better described by analyzing separately the cases where the
incident particle has a quasienergy that falls inside or outside
the dynamical gap. The former situation can be written in
terms of p as

My (10)

n

ul < —.
V1+n?

1. Inside the dynamical gap

12)

In this case, there are no propagating states in the irradiated
region and so we require that the wave function vanishes
asymptotically as x — oo. This requires the solutions in
Egs. (10) to be complex with k; and k_ complex conjugate
of each other. The only two well-behaved solutions for x —
oo are those with the factors ¢*+* and e **, with k. =
ko(1+ 12 +2iy/n — 120 +12)) " and k_ = k* (the com-
plex square root is taken in the principal branch). In contrast,
the remaining solutions must be discarded since they diverge
in that limit (we take C, = C3 = 0). These solutions give no
total current flowing into the irradiated region (both channels
combined) and therefore the particles are fully backscattered
with a fraction Ry and R, in the corresponding channels. The
conservation of probability gives the condition Ry + R} = 1.

2. Outside the dynamical gap

When the quasienergy of the incident particle lies outside
the dynamical gap, we expect propagation in the irradiated
region and therefore a nonzero probability current for x > O.
If u is not so large (otherwise the two-replica approximation
in not valid), k; and k; are both real and can be taken positive

kizko\/H—qu:Z 12(1+ n2) — n2. (13)

After matching solutions with Eqgs. (8) at x =0, we have
to discard variables in order to have a consistent system of
equations. The physical requirement here is that the total
current in the irradiated region [this is the time-averaged cur-
rent coming from the complete wave function ®(¢) = (P75 +
e @7) e be directed toward the positive £ direction and
with an increasing proportion in channel m = 0 as n vanishes.
This latter condition ensures that as the electromagnetic field
fades away the electron beam, which is coming in the m = 0
channel, is fully transmitted in the same channel. This, of
course, tells us that the reflection coefficients ry and r; also
vanish. As a final remark, this total current must arise in a
continuous way from its zero value inside the gap and increase

|
|
1
1
1
1
|
+
1

L

—n/V1+n? 0
1

FIG. 4. Reflection and transmission coefficients in channels m =
1 and m = 0 as a function of the dimensionless parameter  given by
& = hQ(1+ w)/2. The range |u| < n/4/1 + n? defines the dynam-
ical gap. The lack of symmetry around © = 0 must be noted, more
clearly in Ry.

as we move away the gap (of course keeping w small). This
transmitted current gives rise to a transmittance 7' and the con-
servation of flux probability now leadsto Ry + Ry + T = 1.

The condition of a current toward the £ direction permits us
to reduce the number of unknowns C; (i = 1...4). Using the
equation J, = &7, @, the transmitted current in the irradiated
region can be written as the sum of two terms

JE=u 4+, (14)
where
2 I_ I
IV = keGP (1= = ) = kG P (1= ) |.
1 iy H+ I

2 mn n_
JO = = |k G 1- == —k|C3|2(1—— .
1—[/L H_ H+

15)

These currents have the property that when u > n/4/1 + 12
(above the gap), J'>0 and J® <0, whereas when
w<—n/y/1+ n? (below the gap), J’ <0 and J® > 0. So,
in order to have a positive current (in the % direction), we
have to make C; = C3 = 0 when we are above the gap and
C, = C4 = 0 when we are below it. With these considerations,
we can calculate rg, r; and the relevant C;. The transmittance,
as usual, is calculated as T = |JxT /Jinc|. In Fig. 4, we plot
the reflection coefficients in both channels, Ry and R;, and
the transmittance 7 inside and outside the dynamical gap
(indicated by the limits £n/4/1 + n? in the u axis). Inside
the gap, R; greatly exceeds Rp. That is, particles coming
from channel m = 0 are mostly backscattered through the
channel m = 1. The origin of this is both the conservation
of k, and the pseudospin flip induced by the electromagnetic
field [61]. As we move apart from the gap, Ry and R; no
longer add up to 1 since in that case there are currents flowing
into the irradiated region, so that 7 # O—this transmittance
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is no longer defined for each channel due to the coupling
imposed by the electromagnetic field. It is worth noting that T
increases continuously from zero precisely at the border of the
gap, as expected. Moreover, the nonanalytic behavior of the
reflection coefficients at the gap border resembles that found
for the stationary problem of the scattering of particles from
a potential step when the energy of the incoming particles
overcomes the potential height.

B. Oblique incidence

Let us now consider the case when the incident particle hits
the interface at a given angle 6y (measured counterclockwise
from the horizontal direction, see Fig. 3) and first solve the
uncoupled Floquet equation for channels m = 0 and m = 1.
As before, we will use a spinor plane wave of the form
D, (x,y) = Py &N For a given quasienergy e, the
components k¥ and k(! for each channel satisfy

2
kO + ks = (k)2 (16)
KD k2 = (k) (17)
and by writing k, = k('f sin 6y we get
k9 =k cos 6y, (18)
KD = \/ (ks )2 — (k)% sin® 6. (19)

From the last equation, it is clear that in order to have a
real value of k(! (and so a propagating wave in the m = 1
channel), the incident angle 6y must satisfy
l—pn
sinfy| < ——. 20
| 0| X 1+ M ( )
It can be seen that this requirement is trivially fulfilled for all
values —m /2 < 0y < /2 when u < 0 (below the center of
the gap). However, when i > 0 (above the center of the gap),
there is a critical angle 6, satisfying
1—
sinf, = —* Q1)
1+ p
so that for |6y| < 6, the solution k{1 is real and the reflected
wave in the m = 1 channel a traveling wave, while for |6y| >
6., kI is pure imaginary and then we get an evanescent

J

(ik k) ik i~k ik, k.
ch>(x) — Cl eik+x ( kg ) + Cze—iker( kg ) + C3eikx< kg ) + C4e—ikx< kg )’
1 1 1 1

1
@ (x) = T1,C elk+x<(iky+k+)> + T, Cpe™ ™+ <iky—k+

kg

Here, for simplicity, we will restrict ourselves to the case
where the quasienergy ¢ lies inside the dynamical gap. Then,
we have

k}
k+=k0\/—k—’2+1+u2+2i n* — (1 +n?), (25)
0

solution that must be chosen in such a way that it goes to
zero as x — —oo. This gives a boundary wave in the channel
m = 1 that propagates along the interface. The solutions in the
nonilluminated region can be readily obtained,

oo =n( 7" e
T =n et 22)

if1/2

—ify/2 02
e '™ -7.(0) et -7.(0)

< ik x —ikyx

Dy (x) ( ¢if0/2 )e "o\ p—itos2 )€ )

where for the sake of simplicity we omitted an overall factor
e®Y. Here, ry and r; determine again the reflection coeffi-
cients. The form of &} (x) ensures that there is no incident
wave in the m = 1 channel. Moreover, when 6y = 0, this
solution recovers that in Eqs. (8), as it should. In the above

expressions, we have introduced an extra angle 6; through

the relation k, = k;, sin ¢, which gives sin; = 8 fﬁ;

and defines k() = ky cos ;. Clearly, 0; is always real when
u < 0 (in particular 6, = 6y when pu = 0) and when both
u > 0and |6y < 6. Otherwise, 6, is complex, and to obtain
the appropriate asymptotic behavior we choose the branch

)
sSin 90
cosf; = —i — 1. 23
' Vsinzec @3)

A graphical view to arrive at the same conclusions is depicted
in Fig. 5, where quasienergy surface of the Floquet replicas
at a certain value of ¢ are shown. Figure 5(a) show these
surfaces when u < 0 (equivalently ¢ < /£2/2). In this case,
the inner (outer) circle corresponds to the replica m =0
(m = 1). From its definition, |k,| < kO+ in the whole range of
incident angles (|6p| < 7 /2). This means that for any given
value of k, (the horizontal dotted blue line) one can always
find the corresponding wave vectors of the reflected waves
k.o and k,;, meaning that they are both real, and the solution
is thereby a traveling wave. When u > 0 the situation is
reversed, and the quasienergy surface of channel m = 1 lies
inside the one corresponding to channel m = 0, as shown in
Fig. 5(b). It is apparent that if |k,| < kg, it is still possible to
find real solutions for both k,( and k,, as before. However, if
|ky| > ky [Fig. 5(c)] there is no real solution for k,;. This in
turn implies that for |6y| > 6, we have R; = 0.

On the other hand, the most general solution of the Floquet
equation in the irradiated region can be written as

sin 6y

1 1
) + H_C_ge'k'x (ik)-&-k) + H_C4e*lk_x (iky—k ) _ (24)
kg ks

(

M, — n(l+pw) 26)

pF i =20+ 0%

with k_ = k_’;. As before, we reduce the number of constants
with some physical requirements. Since we have restricted
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(c) ko (1+4)

ko(1+p)

ko(1—p)

<0

>0 >0

FIG. 5. Curves of constant quasienergy for (a) u < 0 (below the center of the gap) and (b) i > O (above the center of the gap). In panel
(a), the value of k,; is always well defined for all possible values of k;, meaning that the reflected wave in the channel m = 1 is a traveling one.
In panel (b), there is a critical angles sinf. = (1 — w)/(1 + p) above which k,; is ill defined. Physically, this means that k,; is complex and

the reflected wave function in channel m = 1 is evanescent.

ourselves to values of w inside the dynamical gap, the physical
solution vanish as x — 400, which implies C; = C; = 0.

In Fig. 6, we see plots of reflectances Ry and R; for the
cases u = 0 and u = £0.12 taking n = 0.23. As we pointed
out before, when 1 > 0 we find that there is a total reflection
on the m = 0 channel for |6y| > 6, ~ 0.37. At normal inci-
dence (6y = 0), we recover the known result that the electrons
are mainly back scattered in channel m = 1 in all three cases.

C. Chiral currents along the interface

Besides the reflection and transmission coefficients, it is
also interesting to investigate the nature of the currents that
appear along the interface between the illuminated and non-
illuminated regions. As we mentioned before, when pn lies
inside the dynamical gap, there is no total transmitted current
in the X direction. Hence, in the irradiated region we can
write the current density as J(x) = Jy(x)y —the translation
symmetry along the y axis implies that the current depends
only on x. Here, Jy(x) can be shown to have the general
form

Jy(x) = e *P*(A + B, cos2ax + By sin2ax), 27)

where «, B are obtained from k. = a +if and A, B., and
B, are constants depending on 6y, 1, and u (and eventually
on the laser’s polarization). Figure 7 shows plots of J,(x)
for different values of the incidence angle 6, and the two
possible circular polarizations of the vector field A(r) for
n =0 (center of the dynamical gap). Clearly, J,(x) is ex-
ponentially localized near the border for x > 0, its global
direction being ultimately determined by the polarization of
the vector field and not by the direction of the incident electron
wave. We then refer to these currents as chiral currents.
The comparison between the two polarizations makes it ev-
ident that J;r(x, 6y) = —Jy’(x, —6p), where the + (—) sign
here refers to the clockwise (counterclockwise) orientation
of the polarization. This contrasts with the undriven case,
where the direction of these currents depends on the incident
angle 6.

It can be shown that even at normal incidence there is a
current along the interface equal to —4|ry| sin ¢y, where ry =
|ro| €0, This is again a consequence of the chirality imposed
by the laser field. This effect can be better appreciated through

the integrated current JyT 0By) = 0+°° Jy(x) dx shown in Fig. 8
for u = 0.

0.6 + ' R , |
04 . Ry - - - ) |

0.8 a

0.4 1/ A\
0.2 | . P ]

0
~1.0 ~0.5 0 0.5 1.0
0o (m/2)

FIG. 6. Reflectances in channels m = 0 and m = 1 as a function
of 6y for three different values of u. (a) When p > 0, there is a
critical angle 6. beyond which the reflectance in channel m = 1
vanishes. This corresponds to the transition of the wave function in
channel m =1 from a traveling wave to an evanescent one. (b) If
n =0, we get the same result as in normal incidence for 6, = 0,
as expected, although when 6, gets closer to +m /2 the opposite
result is obtained. (c) The same as in panel (b) but for u < 0. In
all cases, we used n = 0.23 and thus the limit of the dynamical gap

isn/y/1+n*=~0.22.
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Jy(z) (units of vpkd)

(k) (k)

FIG. 7. J,(x) component of the current density as a function of
the coordinate x (parameter n = 0.23 and u = 0). The line x =0
defines the interface with the irradiated region (x > 0). In every case,
the helicity of the field A(¢) is indicated. We see that the direction of
the current at the interface depends on the helicity of A(#) and not on
the direction of incidence of the electrons.

IV. ANOMALOUS GOOS-HANCHEN SHIFT

When one considers the scattering of a beam with a
finite-size section instead of extended plane waves, interesting
effects might arise. One of them involves the reflected beam
being shifted along the direction of the reflective interface, an
effect known as the Goos-Hénchen shift. This phenomenon
was originally studied for the case of a light beam in the
problem of total internal reflection [53] and it was recently
considered for the case of electrons in graphene [52] without
any driving field. As we show below, because of the presence
of the driving, the Goos-Hénchen shift becomes chiral.

A finite-size electron beam impinging obliquely onto the
interface can be constructed by an appropriate superposition
of plane waves and their corresponding spinors. For the inci-
dent beam in the m = 0 channel, we have

[ _i%
D (x,y) = / dk, f(ky—lzy)e“"y»““‘i‘”x)(e 5 ) (28)
s e

(units of vpk?)

Iy
[\
O

—m/2 0 /2

FIG. 8. Integrated J, current in the irradiated region as a function
of the angle of incidence 6. It is obvious that for normal inci-
dence (6) there is a total current along the interface. The relation
Jf(x, 60) = —J; (x, —6) is more visible here (see text).

Here the function f(k, — k\,) is peaked around its mean value
kv, which when written as k = k sin gives us the incident
angle of the beam 6. Notlce that both k% = k; cos 6y and
0y are functions of k, as we consider an incident beam with a
fixed quasienergy. In the following, we consider a beam with a
Gaussian profile and take f(ky — k) o exp[—(k, — ky)?/20].
After integrating this two-component spinor at x = 0 (the
interface), one finds that each component is peaked in coor-
dinate space around different points—in the case of graphene,
this can be viewed as a consequence of the two-atom basis in
the crystal structure. This integration is not analytical but can
be approximated by expanding 6y (k,) around Ey:

dby
Oo(ky) ~ 6y(ky) + (ky —k)( ) (29)

dk,

With this linear approximation, it is straightforward to verify
that the two components of o) (0, y) are Gaussian functions
centered at points yA —yE = 1 /2 (d6/dky)y, i, - Therefore,
the mean position of the incident beam at the interface, defined
as i = (v4 +y5)/2, is zero. This result, that means that the
incident beam reaches the interface at y = 0, relies on the
choice of phases of our spinor in Eq. (28) but does not alter
in any way the final result of the Goos-Hénchen shift (which
will be measured relative to this point).

A similar treatment can be carried out for the reflected
beams in each channel. In this case, we have to introduce the
reflection coefficients ro(k,) and r((k,) and the angle 0; for
the direction of the reflected beam in channel m = 1:

o
] (x, y) = / dky r1 f(ky —k)’““*"(””( e)
e

2

[e%9) ‘70
) (x, y) = f dk, rof<ky—@)e"“v-“—"i“”( )
00 e
(30)

Writing the reflection coefficients as ry = |rp| € and r| =
|ri| e'¥', we can proceed as before and expand the phases up
to a linear term

- d
01(ky) ~ 1 (ky) + (k, k)( ‘”‘) (31)

dk

Then, using the approximations |[ry(k,)| ~ |r0(Ey)| and
|r1(ky)| = |1y (Ey)l (due to the sharpness of the function f(k, —
IE) and assuming the modules of ry and r; are smooth
enough), we get the mean position of ®{(0, y) and P/ (0, y).

Namely,
—r__<dﬂ)
Y0 ="k, iy

o (d(pl)
N dk,
The GH shift of the reflected beams are defined as the dif-

ferences between their mean position and that of the incident
beam, §), = yi, — 3} and 8] = ¥ — yi,. Rewriting them in terms

(32)
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(units of ky1)

|
'

GH shift

FIG. 9. Goos-Hénchen shift of reflected electrons in every chan-
nel. The helicity of A(¢) is shown in each case. The direction of this
shift in m = 1 channel is independent of the angle of incidence and
depends only on the helicity of the vector field. This is observed
only partially in channel m = 0. There, we find a critical angle
which marks a change of sign in this channel, a result similar to that
obtained in Ref. [52]. The values used were n = 0.23 and u = 0.

of 6y derivatives, we finally get

deo dby
So0=—|—-— — ),
déy ) \dk, ).

d de
5y = — 228} (£2) 33)
déy ) \dk, )

Therefore, the GH shifts depend on the derivative of the
phases ¢y and ¢; with respect to 8y and a geometrical factor
given by d6y/dk, = (kg cos 0p)~" [52]. In general, analytical
expressions for Eqgs. (33) are rather cumbersome and it is
simpler to evaluate them numerically. However, for u = 0 it
is straightforward to show that d¢; /d6, = 1, where the sign
depends only on the helicity of the polarization of the vector
potential. This leads to the following expression for the GH
shift in the m = 1 channel,

(Si‘l: 0(§0) _ {—}—1{001#50 A(t) counterclockwise, 34)
~Tocosh A(t) clockwise,

where we have used that ki = ko for s = 0. An important
feature is that the GH shift does not depend on 1 while its
sign is independent of Gp—it is worth emphasizing, however,
that this independence of 1 was obtained in the two-channel
approximation, and we have to verify whether it remains true
when more Floquet replicas are added (see discussion below).
The angle dependence of both (Sﬁ‘l:o(éo) an 6%20 (6p) is shown
in Fig. 9 for both polarizations.

We notice that Eqs. (34) imply that |6“=°(G)| = [y{ — y&|
and hence the reflected beam in the m = 1 channel is shifted
exactly as to overlap the maximum of the incident beam in one
of the lattices with that of the reflected beam in the opposite
one. Namely, either y[* = y& or y[® = y5. It is important to
point out that when 8y = 0 (normal incidence), there is still
a shift given simply by +k; !, This anomalous GH shifts can
be related to the appearance of chiral topologically protected
interface states as discussed in the next section. An analytical
expression can also been obtained, in the two-channel approx-
imation, for normal incidence (6y = 0) and arbitrary w. In this

3 3 T
n=0.05 i, (b)
~ n=0.10 /
' 1n=0.15 ——
Z ol = |n=020 — :
a = n=0 —
= <
= =
Rl &£
jus
O
p=0
0 !
-1 0 0.5 1
0(] (TF/Q) 9[) (’7T/2)

FIG. 10. (a) GH shift in channel m = 1 in the two-channel
approximation. Different values of n are plotted for u = 0.02 to
show that for nonzero p there is a dependency on 7. The result for
= 0 is drawn in solid black line. (b) Scaled GH shift §,,(6y)/68,1(0)
in the four-channel approximation (m = 2, 1,0, —1) for © = 0 and
different values of n (the plots are symmetrical around 6, = 0 and so
only positive values of 8, are shown).

case, the GH shift in channel m = 1 reduces to

+m A(t) counterclockwise, -
—m A(t) clockwise.
which is also independent of 7.

When p # 0 and 6, # 0, a dependency on 1 does appear
as shown in Fig. 10(a), yet the chiral effect (sign of the GH
shift) is conserved for most of the values of 6.

On the other hand, when more replicas are considered,
there is a small n-dependent correction even when u = 0.
For instance, Fig. 10(b) shows the Goos-Hénchen shift in the
m = 1 channel for © = 0 and different values of n when the
replicas m = 2, 1,0, and —1 are considered—we make this
choice in order to describe correctly the gap at ¢ = h€2/2. We
then find that there is a weak dependence on 7 for the values
considered (n < 0.2). More precisely, for normal incidence
(6o = 0), we find that

520 = L+ +y kg !s ¥y~ -09.  (36)

(Srl(éO - 0) -

Notably, this equation describes the 1 dependence not only
at normal incidence but also near it, as is apparent from
Fig. 10(b).

Because in what follows we will be mostly interested in the
cases i, By ~ 0, we will work in the two-channel approxima-
tion throughout the rest of the paper.

To explicitly show the chiral properties of the shift, we
plot in Fig. 11 the profile along the interface of the prob-
ability density for the incident beam |®}(x = 0, y)|* (solid
black line) and the scattered beam through the m = 1 channel
|® (x =0, y)|?: red (blue) dotted lines for a counterclockwise
(clockwise) polarization of the laser field. An incident beam
with positive [Fig. 11(a)] and negative [Fig. 11(b)] incident
angles is considered. It is clear that §,; (6) has the same sign,
independent of 6y, and that 8 (6p) = —8Y(9), as stated by
Egs. (34).

The behavior of the corresponding shift in the m =0
channel is significantly different. Here, while a similar chiral
effect exist, there is also a critical value of the incident angle

033409-8



ANOMALOUS GOOS-HANCHEN SHIFT IN THE ...

PHYSICAL REVIEW A 100, 033409 (2019)

0.06 — T T T
Incident beam Incident beam ——
(a) e (b)
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FIG. 11. Profiles as a function of y along the interface (x = 0)
of |®i(x,y)|* (solid black line) and |®/(x,y)|* (dashed colored
lines), for the two different circular polarizations. (a) 8y = +m/6
and (b) 6y = —7 /6. In either case, we see that the counterclockwise
(ccw) shift in channel m = 1 (dashed red line) is larger that the
clockwise (cw) one (dotted blue line), as is suggested by Egs. (34),
which means that the GH shift here is chiral.

(whose sign is determined also by the helicity of the laser
field), where the shift goes to zero and changes sign.

Conexion between the GH shift and the presence
of topological egde states

It is interesting to look for a connection between the
anomalous GH shift and the presence of chiral states due to the
nontrivial topological character that the time-dependent field
introduces. In the presence of a single interface, like the one
we have discussed so far, we have shown that an incident plane
wave leads to the appearance of chiral currents at the interface.
In the case of a beam, this leads to the GH shift. Let us now
consider the situation depicted in Fig. 12(a). This corresponds
to two irradiated regions separated by a nonirradiated one of
width a (not to be confused with the lattice constant). The
circular polarization of the laser fields on each region is the
opposite. Hence, as the two regions have opposite topological
numbers, chiral edge states must exist between them as the
nonirradiation region shrinks to zero [62]. To see how this is
related to the anomalous GH shift, we consider an incident
beam in the m = O channel that gets reflected and shifted in
the m = 1 channel at the right interface [see Fig. 12(a)]. This
reflected beam in turn is reflected back at the left interface in
the m = 0 channel but GH shifted in the same direction as the
polarization of the laser field in that interface is the opposite.
The cycle repeats and one finds with this simple argument
that there must be states in the nonirradiated area with a net
velocity along the interface. This is in fact what one obtains
by solving the full set of equations: There are a number of
states inside the nonirradiated area with a net chirality (Chern
number) of 2, as expected [62]. The number of such states
depends on a and only 2 survive in the limit @ — 0. One can
estimate the group velocity v, of such states as 6;(0)/7, where
T = 2h/A is the time the beam spends in the irradiated region
and A = nh<2 is the size of the dynamical gap. This gives

8r1(0) A
Vg = - = Wk@ = ZT)UF, (37)
which is the expected velocity of an edge state crossing the
dynamical gap.
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FIG. 12. Schematic representation showing the connection be-
tween the GH shift and the topological states. (a) Emergence of chiral
states at the interface between two irradiated regions with opposite
polarizations as the nonirradiated zone that separates them shrinks.
(b) In the case of equal polarizations, the GH shift at each interface
cancels out and there are no chiral states.

The situation is completely different when the polarization
in the two regions is the same [Fig. 12(b)] as in that case the
GH shifts on each interface cancel each other, leading to a
zero group velocity. In particular, one can show that there are
subgap states that do not cross the gap and that disappear as
a— 0.

FIG. 13. Schema of the circularly symmetric scattering: Incident
particles in the m = 0 channel (blue lines) are scattered in both the
m = 1 (red lines) and m = 0 (green lines) channels.
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V. SCATTERING BY CIRCULAR OBSTACLES

We now consider the problem of Floquet scattering by a
circular irradiated region of radius R (large in comparison
with the lattice constant a). As we are again interested in
quasienergies in the range of the dynamical gap, we will use
the same approximation as in the previous section and retain
only the replicas in the m =0 and m = 1 channels. For a
better treatment of the problem, we will split it into two parts.
First, we will solve the scattering problem for an incident
wave with circular symmetry [as shown in Fig. 13] and later
treat the case of a plane wave and a beam.

A. Solutions for circularly symmetric incident waves

To find the solution in this case, it is better to switch to
polar coordinates and redefine the py differential operators
that enter the Hamiltonian in terms of those coordinates.
Hence, we have

. 1
py = he” (—ia, + —39>,
r

p— = he —i0, — —d |,
r
2, 1 L.,
p-py = —h°| 07 + ;8, + r—289 . (38)

where the latter equality is defined for later convenience.

1. Outside the irradiated region

Outside the irradiated circular spot, the Floquet replicas are
decoupled and so we have to solve the two independent matrix

equations
Q2 vpp_\ (ua _ . U
vepy  RQ J\ug)  \ug)’
0 _
o ")) = C)
VR D+ 0 wp wp

Notice that only two functions need to be determined as, for
instance, the solutions u4 and wp can be written directly in
terms of ug and wy:

Uy — _UF[)_MB
AT T — e
wp = VP “0)
&

Taking advantage of the circular symmetry of the problem,
we can write ug(r, 0) = €™ f(kor) and wy(r, 6) = e”gg(kor),
where n and / are integer numbers—they are in principle
independent but they will be forced to be equal once the
interior of the irradiated region is considered, so we take n = [
hereon. It is straightforward to check that f(x) and g(x) satisfy

42 1d ?
IO 2w a-wr - lrw =0

d’g(x)  1dg(x) , P _
e et Gle =0, @

where we defined a dimensionless radial coordinate x = kyr.
These are Bessel equations and hence the solutions can be
written as a superposition of Hankel functions of the first
(Hl(l)) and second (Hl(z)) kinds:

ug(r > R, 0) = "’ [AH (kg r) + BiH (kg 1)),
wa(r > R, 0) = " [MiH" (k1) + N\H? (k)]

(42)

with kgE = ko(1 £ ). The remaining solutions u4 and wg are

obtained using Eqs. (40). Writing all of them as a spinor on
each channel, we finally get

o(r > R,0)

L (’.e_ieHz(i)l (kgr)) 4 B e (ie_ieHz(E)l (ko_r)>
=Ae e s
H (kg 1) HP (kyr)

o(r > R,0)

(1) (2)
=M, "’ H ) + N, " Hy ) .
ie Hy ) (ki r) ie ) (ki)

I+1 1+1
(43)

We choose the incoming electrons to be only in the m = 0
channel, which implies that A; = 0. This can be verified by
looking at the radial component of the probability current
J, = &g 70 = 2Re[ei9¢A¢§], with # = (cos @, sinf) and
® = (¢4, ¢p)". Taking into account that for x > 1,

H(l)(x) ~ li ei[JC—(l+%)%]’
! TX
/2 . x
H[(Z)(x) ~ ; e—z[)c—(l-ﬁ-%)g]7 (44)

we see that it is easy to verify that the first (second) spinor
in CD(IZ) is an incoming (outgoing) wave. Similarly, the first
(second) spinor in CD(()” is an outgoing (incoming) wave.

2. Inside the irradiated region

The procedure in this case is basically the same as before,
except that now the two Floquet channels are coupled. Writing
ug(r,0) = €' F (kor) and ws(r, 0) = €' G(kor), we get the
following equations:

AL PR P
dx?  x dx W=z == el

d*’G 1dG ) 12
—— t+t-——+ |0+ =5 |G=2n(1+wF. 45)
dx x dx X

This system of equations can be solved by using the substi-
tutions F(x) = C I;(Ax) and G(x) = D I;(Ax), C and D being
integration constants and /; being the modified Bessel func-
tions of the second kind (which are well behaved at r = 0).
This leads to a secular equation for A:

A2+ (1 — w122 + A+ w)? 1 +47°(1 — u?) = 0. (46)

Inside the dynamical gap, the possible values for A have
the form +(a =+ ib). From these four values, only two give
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FIG. 14. Scattering of plane waves. The incident wave is entirely
in the m = 0 channel. The scattered waves have components in each
channel m =0 and m = 1.

different solutions. Hence, it will suffice to take only the two
conjugate solutions A = A%} with positive real part

k+=\/—l—u2+2i n* — pu*(1+n?), (47)

and the square root for A is taken in the principal branch. The
solutions for up and w, are then

up(r < R,0) = " [d T L (kg r)+d; TI-L (kg )],

wa(r < R,0) = e"[d L)+ d; Lk 1], (48)

with ki = ko, Ma = [A1 + (1 4+ 1)21/2n(1 + ), and d;*
being integration constants. The final solutions in a spinor
form can be written as follows:

4 ie” +
q)il)(r <R.6) = dFTL, T A i1 (eg 1)
Il(K(;rr)

i ,—if _
+edrTI A=l r) ’
Ii(ky 1)

. Li(kfr)
o((r <R, 6) :e'wd;( - )

7 0
— 1liMA'+IZ+1(KJ—r)

. Li(k 1)
veltar (L0 ) @)
- 1+M)"711+1(K() r)

The complete solution of the problem requires to match the
wave functions at r = R and so determine the relation between
the different integration constant. We will not pursue that here
since we will directly use these results as an intermediate step
to solve the more interesting problem of incident plane wave
in the next section.

B. Incident plane waves

We now analyze the scattering of a plane wave. For
that, we will consider an homogeneous flux of electrons in
the m = 0 channel represented by the plane wave @i, .(r) =
€*(1,1)T/+/2, as schematically shown in Fig. 14. To take
advantage of the results presented in the previous section, we
will solve this problem in polar coordinates. To this end, it is
useful to expand @y, in a series of Bessel functions by means

0.25

R ——

i - -

0.15

0.1 +

—20 -10 0 10 20

FIG. 15. Squared module of coefficients \ré”l2 and |r§”|2 in the
scattering of plane waves as a function of the integer parameter / [see
Eqgs. (51)]. We see that both coefficients tend to zero when |/| > kyR.

The calculation was made using u = 0, n = 0.23, and kyR = 10.

of the Jacobi identity

Dipe(r) = \%(i) > ke, (50)
l=—00

where J,(x) are the Bessel functions of the first kind and we
have used the property k = kaL = ko(1 + ). In the outside
region (nonirradiated), the wave functions in the m = 0 and
m = 1 channels are obtained in terms of Hankel functions
by combining the solutions given by Egs. (43) for different
[ values. In the m = 0 channel, an outgoing scattered solution
must be added to the incident one. In contrast, in the m = 1
channel there is only an outgoing wave. Namely,

> o i€ H2 (kg )
O(r>R6)= Y rilel o)
H (kyr)

[=—00

o0 A HV (k)
(DQ(V>R, 9) = q)inc(r)+ Z r(()[)elw(. ,'91 (€8] ’ + ’
ie"Hy y (kgr)

l=—00 +

(D

On the other hand, inside the irradiated region the wave
function is written as a linear combination of the solutions
given by Eqgs. (49). After matching the inside and outside
wave functions along the circle r = R, all the coefficients can
be obtained. In particular, the coefficients r((]l) and ril) are the
ones that determine the angular distribution of the scattered
probability flux on each channel.

Figure 15 shows the obtained values for |r(§l)|2 and |r
as a function of / for © = 0 and koR = 10. Clearly, they both
vanish when || > koR. As usual, this can be interpreted using
a semiclassical picture, where |/|/ko is a measure of the impact
parameter b and hence no scattering is expected for b > R.

(l)|2
1

1. Far-field scattering

In order to calculate the angular scattering distribution
far from the scattering center, we need to describe the wave
function’s behavior for large r. This can be achieved by means
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FIG. 16. Differential cross section in every channel. Clearly,
electrons scattered elastically (m = 0 channel) move mainly forward
(6 = 0), while those that are scattered inelastically (m = 1 channel)
are backscattered (|0| = 7). The inset in logarithmic scale shows that
there are directions where the elastically scattered wave is suppressed
[fo(6) = 0], which might correspond to destructive interference due
to internal reflections. Here, we used n = 0.23, R = IOkO’I, and

n=0.

of the asymptotic relations shown in Eqgs. (44). With these ap-
proximations, the scattered wave functions ®f = ®y — Dy

and &, are
etkor 1 e—ie/z
b, = ffl( )«/_ G902 |

L e oi6/2
oy = \/—fo( )I<ei9/2>' (52)

The quantities fy(8) and f;(6) are functions of the coefficients
(1) and r(l) as follows:

2=i0/2pim/4 X

£1(0) = Z PO gil0+/2)
wky  1=—o0
2¢i0/2 p—im /4 o
fey=5¢ Z 7D gil6=n/2) (53)

7/ TT k+ [=—00
From these, we can obtain the differential cross sections
for every channel, which are defined in the usual way as
do,/d6 = | fn(0)I*.

Figure 16 shows the differential cross sections as a function
of 6 for u = 0. These are peaked at 0 = 0 (7)) form =0 (1)
and symmetrical around 6 = 0. In the m = 0 channel, elec-
trons are mainly transmitted forward while the backscattering
takes place (as before) in the m = 1 channel. The inset shows
the same data in log scale, in order to highlight the zeros
in |fo(9)|*>. These zeros signal the destructive interference
between different r(()l) modes and the incident wave. The
differential cross section | f;(6)|> does not exhibit any zero.

2. Near-field scattering

To analyze the scattering near the irradiated spot, we
calculate all the coefficients that defines the Floquet wave
function inside and outside the irradiated region and evalu-
ate both the probability density and the probability current.

1.8

L 0
20 -10 0 0 2 -20 -0 o0 0 20
zky xky

FIG. 17. Density of probability [(a)] and current density [(b)]
plots for the channel m = 0 (including both the incident wave and
the scattered one). In panel (a), we see a clear depletion (shadow)
in the constant background of the incident plane wave, as expected by
the interference of the incident and (forward) scattered waves. Panels
(c) and (d) are the same in channel m = 1. In panel (b), we see an
accumulation of probability to the left the circular spot, making clear
the presence of backscattering in this channel. In both channels, a
lack of symmetry around 6 = m is evident, due to the presence of a
chiral current inside the irradiated region. The parameters used here
are kpR = 10, u = 0, and n = 0.2, and the dashed circles indicate
the border of the irradiated region.

We only discuss the case i = 0 (center of the dynamical gap)
for the sake of simplicity. As in the previous cases, we expect
both magnitudes to be sensitive to the helicity of the vector
potential field. To this end, we plot in Figs. 17(a) and 17(b) a
color map of the probability density |®(r, #)|* and the vector
field of the probability current, Jo = CDSO'(D(), respectively, for
the m = 0 channel. The corresponding plots for the m = 1
channels are presented in Figs. 17(c) and 17(d). In the m = 0
channel, we plot the complete wave function (incident plus re-
flected) in order to expose the depletion (shadow) to the right
of the spot in the constant background given by the incident
wave. In clear contrast with the far-field limit, where the dif-
ferential cross section is symmetric around 6 = 7, here there
is a clear asymmetry, which we interpret as a manifestation of
the Goos-Hinchen shift discussed previously—a quantitative
discussion is given in the next section. Notice that inside the
irradiated spot there is a clear chiral current in the (clockwise)
—0 direction. The presence of a GH shift is possible here
for a plane wave by virtue of the circular geometry of the
interface.

C. A finite-size beam

To better identify the GH shift, we now consider an inci-
dent beam, that is, a wave front with a finite cross section.
This is done in the same way as for the planar interface by
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FIG. 18. Same as the previous figure but for an incident beam
(finite-size cross section) and koR = 20. The asymmetry around 6 =
7 is apparent as well as the chiral character of the current inside the
irradiated spot.

constructing a superposition of plane waves [cf. Eq. (28)].
Figure 18 shows the results where the asymmetric distribution
around 6 = 7 is apparent. In order to quantify it, we calculate
the average angular shift at r = R. Namely,

[T —0)|01(R, 0)12db

= 4
¥ ST @R, 0)1d6 oY

Figure 19 shows 86 as a function of the inverse of kgR for
both the incident beam (solid red symbols) and the incident
plane wave (open blue symbols). Two profiles of |®(R, 0)|>
are also shown for two different values of kyR. While the
overall trend is similar, the shifts for the two cases present
different features. On the one hand, for the plane wave the
shift is larger and sensitive to the value of n (being smaller
the larger 7 is) and clearly different from the linear behavior
we found in Sec. IV. On the other hand, the shift in the beam
case presents a clear linear behavior for large koR while it is
rather insensitive to the value of n (the different overlapping
types of solid symbols correspond to different values of 7).
This is consistent with an origin of the asymmetry in the
anomalous GH shift found in previous sections: For normal
incidence in a planar geometry, we know that §,; = k7! and
since we can relate it with the angular shift (for small §6) as
8-1 & RO, we get

1

80 ~ —.
koR

(55)

The exact linear dependence with the inverse of kyR is shown
in Fig. 19 with a dashed black line. It must be stressed that this
behavior is expected when the width of the beam is small in
comparison with the diameter of the irradiated spot, roughly
o~ !> R, where o is the width of the Gaussian beam in

0 0.0l 002 003 004 005
(koR)™!

FIG. 19. Angular Goos-Hénchen shift 66 as a function of the
inverse of kgR for the wave backscattered in channel m = 1. Full
(open) symbols correspond to an incident beam (plan wave) for
n = 0.1 (pentagon), 0.2 (diamond), 0.3 (circle), and 0.6 (square). The
dashed line corresponds to 60 = 1/koR (see text). The insets show
| (R, 0)|? for koR = 250 (a) and koR = 20 (b).

momentum coordinates [cf. Eq. (28) and the definition of
f(k, — ky)]. This explains the deviations from this trend for
large values of (koR)™!.

VI. FINAL REMARKS

We have presented a thorough discussion of the inelastic
scattering of Dirac fermions induced by the presence of a
circularly polarized electromagnetic field in a given region.
The analysis was carried out using the Floquet formalism that
allows us to treat the problem as a multichannel scattering. As
we only consider the case where the irradiated region contains
evanescent modes (incident energies inside the dynamical
gap, € ~ h$2/2), the incident wave must be fully reflected.
Because the perturbation is circularly polarized, the reflected
wave must have its pseudospin flipped, so that the reflection
occurs mainly on the m = 1 channel (inelastic scattering).
Furthermore, we retained only two Floquet replicas (m = 0
and m = 1 channels) as the time-dependent field was assumed
to be small (n <« 1)—while this is a significant simplification
for the analytical treatment, it still allows us to obtain some
general results that are valid even when including other repli-
cas, provided n remains small.

We found that this scattering in a region with broken time-
reversal symmetry leads to the appearance of an anomalous
GH shift both for the planar and the circular geometry. The
GH shift in the inelastic channel (m = 1) turns out to be
anomalous, in the sense that its sign does not depend on
the incident angle of the beam but on the helicity of the
circularly polarized field in the irradiated region. In addition,
its value is universal (for ¢ = /i€2/2) as it does not depend
on the intensity 7 of the field (as long as we remain in the
two-channel approximation).
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Quite notably, the presence of such a shift can be re-
lated to existence of topological edge states at the interface
between two irradiated regions with opposite polarizations.
From this perspective, if we consider a finite narrow channel
between the two irradiated regions, as shown in Fig. 12,
the GH shift could be related to transport properties along
the channel. This remains an interesting prospect for future
investigations.
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