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Crystal-momentum-resolved contributions to high-order harmonic generation in solids
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We analytically and numerically investigate the emission of high-order harmonic radiation from model solids
by intense few-cycle midinfrared laser pulses. In single-active-electron approximation, we expand the active
electron’s wave function in a basis of adiabatic Houston states and describe the solid’s electronic band structure
in terms of an adjustable Kronig-Penney model potential. For high-order harmonic generation (HHG) from
MgO crystals, we examine spectra from two-band and converged multiband numerical calculations. We discuss
the characteristics of intra- and interband contributions to the HHG spectrum for computations including initial
crystal momenta either from the � point at the center of the first Brioullin zone (BZ) only or from the entire first
BZ. For sufficiently high intensities of the driving laser field, we find relevant contributions to HHG from the
entire first BZ. Based on numerically calculated spectra, we scrutinize the cutoff harmonic orders as a function
of the laser peak intensity and find good qualitative agreement with our analytical saddle-point-approximation
predictions and published theoretical data.
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I. INTRODUCTION

Exposed to intense laser fields gases and solids emit a
spectrum of radiation that is strongly enhanced at and near fre-
quencies corresponding to multiples of the driving laser fre-
quency. Over the past two decades, this high-order harmonic
generation (HHG) process has been carefully investigated in
atomic gases, and the underlying generation mechanism—the
emission of radiation by laser-electric-field-driven rescattered
electrons—is well understood [1,2]. While solids are being
discussed theoretically for decades in view of their large elec-
tronic density possibly enabling the design of high-intensity
sources of harmonic radiation [3–6], HHG from solids has
remained a matter of debate [7–9]. Experimentally, it was first
carefully scrutinized less than a decade ago by Ghimire et al.
[7]. Understanding the mechanisms of HHG in solids is an
area of emerging research interest and part of the ongoing
diversification of attosecond science from the study of atoms
and molecules to more complex systems, such as nanoparti-
cles [10–12] and solids [13–17]. This extension of attosecond
science holds promise for promoting the development of
novel table-top intense high-frequency radiation sources and
our understanding of the light-induced electron dynamics in
solids, a prerequisite for improved ultrafast electro-optical
switches [18,19].

Compared to HHG in atomic gases, theoretical investi-
gations of solid HHG have indicated striking new effects,
such as multiple plateaus [8,20] in HHG spectra and a lin-
ear dependence of the HHG cutoff frequency on the peak
electric-field strengths of the driving laser [8,21–23]. These
characteristics have been revealed by numerically solving ei-
ther the time-dependent Schrödinger (TDSE) in single-active-
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electron (SAE) approximation [8,23–25] or semiconductor
Bloch equations (SBEs) [9,23,26–31]. SAE-TDSE-based nu-
merical models have employed basis-set expansions of the
active electron’s wave function using either static [32] or
adiabatic [8,33] Bloch states.

SAE solutions of the TDSE can be expressed in terms
of density matrices for convenient comparison with the
SBE approach that introduces a phenomenological dephasing
time to account for relaxation processes [34]. An advantage
of working within the SAE-TDSE framework is that the
computational time for solving a system with n electronic
bands scales linearly with n, while it scales as n(n − 1)/2
in SBE calculations [18]. For n > 20 this leads to approxi-
mately one order of magnitude difference in computation time
(cf. Ref. [8], where 51 bands are included for solving the
TDSE within a static Bloch basis). This is of relevance at
high intensities of the driving laser, where calculations with a
large number of bands are required to reveal the multi-plateau
structure of converged HHG spectra [8]. SAE models have
successfully explained the main features of HHG in atomic
gases [1,2], which has motivated their transfer to describing
HHG in solids [8,20].

In this work we apply a numerical model for solving the
TDSE in SAE approximation employing a basis-set expansion
of the electronic wave function in so-called “Houston states”
that vary adiabatically with the instantaneous driving-laser
electromagnetic field [8,33,35]. The use of an adiabatic basis
is advantageous for gaining physical insight into the under-
lying basic mechanisms for HHG in solids, since it allows
the identification of two distinct processes, intra- and an
interband emission, that operate in different spectral regions.
In calculating HHG spectra from solids, we pay attention
to the crystal momentum of the initial state and scrutinize
contributions from different crystal momenta in the entire first
Brillouin zone (BZ). In particular, we find that HHG spectra
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calculated by only including the initial crystal momentum at
the center of the BZ (the � point) [8] noticeably differ from
calculations that include initial crystal momenta in the entire
BZ [9], as previously pointed out by Floss et al. [31]. It has
been recently proposed that the range of crystal momenta
used in SAE calculations should be used as an adjustable
parameter for getting converged numerical HHG spectra [23].
In the present work we revisit this suggestion and analytically
determine, based on a saddle-point approximation, the range
of initial crystal momenta needed for the computation of HHG
spectra at a given accuracy.

We organized this paper as follows. In Sec. II we de-
scribe our theoretical framework. In particular, in Sec. II A
we solve the TDSE by expanding the active electron’s wave
function in an adiabatic basis (Sec. II A 1), compare our
approach with a density-matrix formulation of solid HHG
(Sec. II A 2), and show how the observables of interest in
this work, intra- and interband yields, are retrieved from our
numerical results (Sec. II A 3). In Sec. II B we discuss solid
HHG for a simplified two-band system distinuishing intra-
(Sec. II B 1) and interband (Sec. II B 2) yields. In Sec. II C we
analyze interband HHG within a saddle-point approximation
(Sec. II C 1), which allows us to estimate the relevant range
of crystal momenta k (Sec. II C 2) that need to be included
when adding HHG contributions from different k in the first
BZ (Sec. II C 3). In Sec. III we present and discuss our
numerical results for HHG in a model MgO crystal. First,
based on simplified two-band calculations, we analyze in
Sec. III A k-resolved spectra for a specific field strength of
the driving-laser pulse (Sec. III A 1), field-strength-dependent
spectra (Sec. III A 2), and cutoff harmonic orders as a function
of the field strength (Sec. III A 3). Next, in Sec. III B, we
analyze field-strength-dependent HHG spectra (Sec. III B 1)
and cutoff harmonic orders (Sec. III B 2) for calculations that
are converged in the number of included electronic bands. In
several appendices, we add details of our theoretical analysis.
We use atomic units (qe = me = h̄ = 1) throughout this work,
unless specified otherwise.

II. THEORY

A. Single-active-electron solution of the TDSE

We solve the TDSE,{
1

2
[ p̂ + A(t )]2 + V (x)

}
|ψ (t )〉 = i

∂

∂t
|ψ (t )〉, (1)

subject to the interaction of the active electron with both, a
one-dimensional infinitely extended solid and an infrared (IR)
external laser field E (t ). We represent the solid by a periodic
potential V (x) = V (x + a), with lattice constant a, and the
laser field by a 10-cycle “flat-top” vector potential:

A(t ) = −
∫ t

0
E (t ′)dt ′

= A0

2T
sin(ω0t )

⎧⎨
⎩

t, 0 � t � 2T
2T, 2T � t � 8T
(10T − t ), 8T � t � 10T

. (2)

p̂ = −i ∂
∂x denotes the momentum operator and A0, ω0,

and T = 2π/ω0 the external vector-potential amplitude,

frequency, and period, respectively. Since in our numerical
simulation (Sec. III) the driving-laser wavelength is three
orders of magnitude larger than a and the classical excur-
sion range of the active electron in the laser field, in solv-
ing Eq. (1) we can safely invoke the dipole approximation,
A(x, t ) ≈ A(t ).

We model V (x) as a Kronig-Penney potential [36,37],
which yields the dispersion relation

cos(ak) = cos(a
√

2εnk ) + V0√
2εnk

sin(a
√

2εnk ) (3)

for the valence (n = v) and conduction bands (n = c). The
potential strength V0 is adjusted to match the electronic band
structure of the solid. While Eq. (3) needs to be solved
numerically, the Kronig-Penney model potential provides
a convenient basis set of twofold-degenerate orthonormal
eigenstates and allows us to calculate transition matrix ele-
ments in a closed analytical form (see Sec. II A 1 below and
Appendix A).

1. Expansion in Houston states

Expanding solutions of Eq. (1),

|ψk (t )〉 = e−iA(t )x
∑

n

Bnk (t )e[−i
∫ t

0 εnκ (t ′ )dt ′]|φnκ (t )〉, (4)

in terms of Houston states |φnκ (t )〉, results in the set of coupled
equations

iḂnk (t ) = −
∑
n′ �=n

Bn′k (t )E (t )Dnn′
κ (t ) exp

[
i
∫ t

0

εnn′

κ (t )dt ′
]
. (5)

In Eq. (5) we define the energy difference between Hous-
ton states [8,33] (also referred to as “band-gap energy”)

εnn′

κ (t ) = εnκ (t ) − εn′κ (t ) and the transition dipole moments
(TDMs)

Dnn′
κ (t ) = i Pnn′

κ (t )


εnn′
κ (t )

(n �= n′),

Dnn
κ (t ) = 0. (6)

The TDMs are given in terms of the momentum-operator
matrix elements [35]

Pnn′
κ (t ) = 1

a

∫ a

0
φ∗

nκ (t )(x)
1

i

∂

∂x
φn′κ (t )(x) dx. (7)

The diagonal elements,

Pnn
κ (t ) = ∂εnκ (t )

∂κ (t )
, (8)

are related to the band energy εnκ (t ) and correspond to the
group velocity of an electron wave packet in band n. Since
the elements Pnn′

κ (t ) are real, the TDMs satisfy Dnn′
κ (t ) = −Dn′n

κ (t )

and (Dnn′
κ (t ) )

∗ = Dn′n
κ (t ) (Appendix A).

Houston states are adiabatic in the field-dressed time-
dependent crystal momentum,

κ (t ) = k + A(t ), (9)

and solve the Schrödinger equation[
p̂2

2
+ V (x)

]
|φnκ (t )〉 = εnκ (t )|φnκ (t )〉. (10)
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FIG. 1. The two lowest dispersion curves according Eq. (3) for
the Kronig-Penney model in the repeated-zone scheme (left) and in
the first BZ zone (right). The vertical black dashed line indicates
a particular k channel. The single-headed blue arrow shows the
adiabatic momentum κ (t ) at time t , the double-headed arrow the
maximum range (2A0) covered by κ (t ) within the first BZ.

They can be viewed as adiabatic Bloch states, with κ (t )
replacing the Bloch-state crystal momentum k. κ (t ) thus
parameterizes the field-driven electronic evolution under the
influence of the IR pulse out of an initial state with crystal
momentum k (Fig. 1). As for ordinary Bloch functions [38],
Houston states with different initial (field-free) crystal mo-
mentum k or different band indices n are not coupled by the
Hamiltonian in Eq. (10), yet evolve differently. Since Houston
states for different initial momenta k explore the electronic
band n distinctively, they will be referred to as “k channels”
in this work.

2. Density-matrix formulation

The electronic evolution described in Eq. (5) can also be
expressed in terms of the density operator,

ρ̂(t ) = |ψk (t )〉〈ψk (t )|,
in the pure state |ψk (t )〉 given by Eq. (4). The matrix elements

ρnn′
k (t ) = Bnk (t )B∗

n′k (t )

= 〈φnκ (t )|ρ̂k|φn′κ (t )〉ei
∫ t

0 
εnn′
κ (t ′ ) dt ′

represent band populations for n = n′. Their time evolution is
obtained by solving

iρ̇nn′
k (t ) = E (t )

∑
n′′

[
Dn′′n

κ (t )e
i
∫ t

0 
εnn′′
κ (t ′ )

dt ′
ρn′′n′

k (t )

− Dn′n′′
κ (t )e

i
∫ t

0 
εn′′n′
κ (t ′ )

dt ′
ρnn′′

k (t )
]
. (11)

3. Intra- and interband yield

The electronic current in each k channel,

Jk (t ) = Jra
k (t ) + Jer

k (t ),

consists of intra- and interband contributions,

Jra
k (t ) = −

∑
n

ρnn
k (t ) Pnn

κ (t ) (12)

and

Jer
k (t ) = −

∑
n′>n

∑
n

ei
∫ t

0 
εnn′
κ (t ′ )

dt ′
ρn′n

k (t )Pnn′
κ (t ) + c.c., (13)

respectively. It defines the spectral HHG yield from a given k
channel,

Yk (ω) =
∣∣∣∣
∫ ∞

−∞
dt e−iωt Jk (t )

∣∣∣∣
2

≡ |Ĵk (ω)|2

= Y ra
k (ω) + Y er

k (ω) + 2Ĵer
k (ω)Ĵ ra

k (ω), (14)

which, in addition to the intra- [Y ra
k (ω)] and interband

[Y er
k (ω)] yields, includes the interference term 2Ĵer

k (ω)Ĵ ra
k (ω).

For the dielectric solid analyzed in this work, the Fermi
energy lies in the band gap between the highest occupied band
(the valence band) and the lowest unoccupied band (the first
conduction band). Since the valence band is fully occupied,
we obtain the total HHG yield as

Y (ω) =
∣∣∣∣
∫ ∞

−∞
dt e−iωt

∫
BZ

dk Jk (t )

∣∣∣∣
2

, (15)

and corresponding expressions for the total intra- [Y ra(ω)] and
interband HHG yields [Y er (ω)], after including current contri-
butions from all k channels, i.e., from all crystal momenta k
in the first BZ.

B. HHG mechanism for a two-band system

In this subsection, we restrict the theory developed in
Sec. II A to two electronic bands: the valence and first conduc-
tion band, even though more than two bands are required and
included in our converged numerical calculations in Sec. III
below. Designating the valence and conduction bands with
superscripts v and c, respectively, the intra- and interband
currents in Eqs. (12) and (13) simplify to

Jra
k (t ) = −ρvv

k (t ) Pvv
κ (t ) − ρcc

k (t ) Pcc
κ (t ), (16)

Jer
k (t ) = −e−iS(k, t )ρcv

k (t )Pvc
κ (t ) + c.c. (17)

As detailed in Appendix C, Eq. (17) can be written as

Jer
k (t ) = d

dt

[
ρcv

k (t )Dvc
κ (t )e

−iS(k, t )
] − 
Jer

k (t ) + c.c.

= J̄er
k (t ) + c.c., (18)

where we define


Jer
k (t ) = ρcv

k (t )Ḋvc
κ (t )e

−iS(k, t ), (19)

J̄er
k (t ) = d

dt

[
ρcv

k (t )Dvc
κ (t )e

−iS(k, t )
] − 
Jer

k (t ), (20)

and the action

S(k, t ) =
∫ t

0

εcv

κ (t ′ )dt ′.

Applying Eq. (11) to the two-band system, we obtain

iρ̇cv
k (t ) = eiS(k, t )
ρvc

k (t )E (t )Dvc
κ (t ), (21)

with the population difference


ρvc
k (t ) = [

ρvv
k (t ) − ρcc

k (t )
]
, (22)

and

iρ̇cc
k (t ) = E (t )Dvc

κ (t )e
−iS(k, t )ρcv (t ) − c.c. (23)
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Both, the SBE model for HHG in Refs. [9,23,29] and the
expansion of TSDE solutions in a Houston basis, use an adi-
abatic basis. Note that the SBE model in Refs. [9,23,29] adds
the damping term ρcv

k (t )/T2 to Eq. (21), with an adjustable
damping time T2 for the interband coupling [34]. In addition,
it does not include the term 
Jer

k (t ) in Eq. (18). Therefore,
the SBE model [9] and our SAE-TSDE cannot be expected to
yield identical HHG spectra, not even for T2 → ∞.

1. Intraband yield

For a two-band system, norm preservation demands
ρvv

k (t ) = 1 − ρcc
k (t ), such that the intraband current in

Eq. (12) simplifies to

Jra
k (t ) = −Pvv

κ (t ) + ρcc
k (t ) 
Pvc

κ (t ), (24)

resulting in the intraband yield

Y ra
k (ω) =

∣∣∣∣
∫ ∞

−∞
dt e−iωt

[
Pvv

κ (t ) − ρcc
k (t ) 
Pvc

κ (t )

]∣∣∣∣
2

, (25)

where


Pvc
κ (t ) = Pvv

κ (t ) − Pcc
κ (t ). (26)

At low laser intensities, the conduction-band population is
very small (ρcc

k (t ) � 1), and, for every k channel, the by
far dominant contribution to the intraband HHG spectrum
is generated by the term Pvv

κ (t ) in the intraband current. With
increasing driving-field intensities, the second term (∼ρcc

k )
gains significance.

Upon integration over the first BZ, the first term in
Eq. (24) vanishes, due to symmetry, since Pvv

k is an odd
function of k (Fig. 1). The integrated current is therefore given
by

Jra(t ) =
∫

BZ
dk ρcc

k (t )
Pvc
κ (t ), (27)

leading to the intraband HHG yield for the two-band system

Y ra(ω) =
∣∣∣∣
∫ ∞

−∞
dt e−iωt

∫
BZ

dk ρcc
k (t )
Pvc

κ (t )

∣∣∣∣
2

. (28)

At low intensities, even though each k channel defines a
significant intraband current, due to the symmetry-related can-
cellation of contributions from crystal momenta +k and −k,
the integrated intraband HHG yield is comparatively small.

2. Interband yield

Calculation of the HHG yield for a specific k chan-
nel, according to Eq. (14), requires the Fourier-transformed
current

ˆ̄Jer
k (ω) = iω

∫ ∞

−∞
dt e−iωtρcv

k (t )Dvc
κ (t )e

−iS(k, t )

−
∫ ∞

−∞
dt e−iωt
Jer

k (t ). (29)

Replacing ρcv
k (t ), obtained by integrating Eq. (21), in Eq. (18),

the interband current and HHG yield for the two-band system

become

ˆ̄Jer
k (ω) = ω

∫ ∞

−∞
dt e−iωt Dvc

κ (t ) e−iS(k, t )

×
∫ t

0
dt ′ eiS(k, t ′ )
ρvc

k (t ′)E (t ′)Dvc
κ (t ′ )

+
∫ ∞

−∞
dt e−iωt
Jer

k (t ) (30)

and

Y er
k (ω) = ∣∣Ĵer

k (ω)
∣∣2 = ∣∣ ˆ̄Jer

k (ω) + ˆ̄Jer
k (−ω)∗

∣∣2, (31)

respectively.

C. Approximate evaluation of the interband yield

While the numerical HHG spectra discussed in Sec. III
below are calculated based on the theory outlined in Secs. II A
and II B, we apply in this subsection additional approxima-
tions to the interband current to derive analytical expressions
that reveal additional physical properties of the interband
HHG process in solids. We restrict this analysis to vector-
potential amplitudes A0 < π/a, for which the range of κ (t )
is limited by the width, 2π/a, of one BZ (Fig. 1).

1. Saddle-point approximation

Setting the TDM in Eq. (30) equal to its value at the band
center (k = 0) [9,21], Dvc

κ (t ) ≈ Dvc
0 , remembering that accord-

ing to Eq. (6) (Dvc
0 )2 = −|Dvc

0 |2, and applying the frozen
valence-band approximation |
ρvc

k (t )| ≈ 1 [39], Eq. (30)
simplifies to

ˆ̄Jer
k (ω) ≈ − ω

∣∣Dvc
0

∣∣2 ∫ ∞

−∞
dt

∫ t

0
dt ′ eiσω (k, t, t ′ )E (t ′), (32)

where

σω(k, t, t ′) = −ωt −
∫ t

t ′

εcv

κ (t ′′ )dt ′′. (33)

Since eiσω (k, t, t ′ ) rapidly oscillates as a function of t and t ′,
the integrals in Eq. (32) are dominated by contributions at
times t = te and t ′ = ts when the phase σω(k, t, t ′) is station-
ary, i.e.,

∂σω(k, te, ts)

∂t
= ∂σω(k, te, ts)

∂t ′ = 0.

At these times we find


εcv
κ (te ) = ω, (34)


εcv
κ (ts ) = 0. (35)

Evaluating Eq. (32) in saddle-point approximation [9,40,41]
now results in

ˆ̄Jer
k (ω) ≈ −ω

∣∣Dvc
0

∣∣2 ∑
te

∑
ts

(2π i)E (ts)eiσω (k, te, ts )

|det[Hess σω(k, te, ts)]|1/2
, (36)

with the Hessian matrix

[Hess σω(k, te, ts)]i j =
(

∂2σω(k, te, ts)

∂ti∂t j

)
ti,t j= te, ts

.
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Equation (34) implies that for each k channel the cutoff
frequency for interband HHG becomes

ωc(k, A0) =
{


εcv
|k|+A0

, |k| + A0 < π/a,


εcv
π/a, |k| + A0 � π/a.

(37)

We use this expression in Sec. III A 1 below to analyze crystal-
momentum-resolved spectra for crystal momenta in the entire
BZ. In Secs. III A 3 and III B 2 it will help us to scrutinize the
crystal-momentum-resolved dependence of the HHG cutoff
frequency on the field-strength of the driving laser pulses.

Equation (35) cannot be fulfilled in our Kronig-Penney
model for real-valued times and energies because the bandgap
is nonzero across the entire BZ. We designate the maximal
cutoff energy as 
εcv

max. Complying with Eq. (35) requests
allowing for complex-valued times, energies, and crystal
momenta k. Designating the complex crystal momentum as
K , we analytically continue Eq. (35) and the transcendental
Eq. (3) into the complex K-plane. Even though complex roots
Ks = K (ts) of Eq. (35) can only be obtained numerically,
we get further insight into the interband HHG process by
Taylor-expanding about K = 0,


εcv
K = 
εcv

0 + d
εcv
0

dK
K + 1

2

d 2
εcv
0

dK2
K2 + O(K3).

While the expansion coefficients are in general complex, we

show in Appendix B that d
εcv
0

dK = 0 and �[ d2
εcv
0

dK2 ] = 0, such
that


εcv
K = 
εcv

0 + K2

2m∗
0

+ O(K3), (38)

where � stands for “imaginary part of.” We evaluate the real-
valued reduced effective mass,

m∗
k = m∗

vkm∗
ck

m∗
vk − m∗

ck

,

at the band center,

m∗
0 = m∗

k

∣∣
k=0,

in terms of the valence- and conduction-band effective masses

1

m∗
nk

= ∂2εnk

∂k2
, n = v, c. (39)

Note that the derivatives in Eq. (39) are taken along the real
axis and εnk = �[εnK ], where � stands for “real part of.”
Since the first term and the coefficient of the quadratic term
in Eq. (38) are real, the roots Ks are purely imaginary and
correspond to interband transitions at the � point (k = 0).

In Appendix D we show that, for a continuous-wave driv-
ing field of the form A0 sin(ω0t ) and for ω0

√
2
εcv

0 m∗
0 < E0,

the interband HHG yield is given by

Y er
k (ω) ≈ exp

[
−

√
2 
εcv

0

E0

∣∣Dvc
0

∣∣√1 − (k/A0)2

]

× 2
(
πω

∣∣Dvc
0

∣∣)2

(
E0

∣∣Dvc
0

∣∣√1 − (k/A0)2

√
2
εcv

0

)

×
∣∣∣∣∣
∑

te

e−iωte
[
ei{�[S(k, ts )]+S(k, te )+ π

2 } + c.c.
]

∣∣E (te)
Pvc
κ (te )

∣∣1/2

∣∣∣∣∣
2

. (40)

As expected, the interband HHG yield increases with decreas-
ing band gap 
εcv

0 and increasing TDM |Dvc
0 |.

2. Relevant k-range for the interband HHG

The repeated-zone scheme in Fig. 1 shows that, for k > A0

or k < −A0, 0 < |κ (t )| < 2π/a. Hence, |κ (t )| does not reach
the limits 0 and 2π/a, Eq. (35) cannot be satisfied, and con-
tributions to HHG are restricted to the interval k ∈ (−A0, A0)
within the first BZ. For the symmetrical dispersion relation of
the Kronig-Penney model (Fig. 1), the interband HHG yield
in Eq. (40) is the largest at the � point.

With the upper limit for the integrated interband yield

Y er (ω) =
∣∣∣∣
∫

BZ
dk Ĵer

k (ω)

∣∣∣∣
2

�
(∫

BZ
dk

∣∣Ĵer
k (ω)

∣∣)2

and since [1 − (k/A0)2]1/2 � 1 in Eq. (40), we find the contri-
bution of each k channel to the interband yield to be limited
by

∣∣Ĵer
k (ω)

∣∣ = √
Y er

k (ω) ∝ exp

[
− 
εcv

0√
2E0

∣∣Dvc
0

∣∣√1 − (k/A0)2

]
.

We can now estimate the range kmax(A0) of initial-state
crystal momenta k ∈ (− kmax(A0 )

2 , kmax(A0 )
2 ) that yield relative

contributions larger than 10−N times the maximal yield
Y er

0 (ω),

Y er
k (ω) � 10−NY er

0 (ω),

as

kmax(A0) ≈ 2E0

ω0

×

√√√√√√1 −

⎡
⎢⎣ 
εcv

0√
2E0

∣∣Dvc
0

∣∣(N
2 ln 10 +

√
2 
εcv

0
E0|Dvc

0 |
)
⎤
⎥⎦

2

.

(41)

This expression allows us to quantify the loss of preci-
sion in the calculated interband yield that is induced by
restricting the range of crystal momenta to the subinterval
[−kmax(A0), kmax(A0)] of the first BZ.

3. Integrated interband yield

In this subsection we examine the net contribution to
the interband current from all k channels in the first BZ to
obtain the observable integrated interband yield Y er (ω). For
numerical applications, the numerical effort can possibly be
reduced by limiting the integration range to kmax(A0), as de-
termined in the previous subsection. Whether this is possible
depends on the specific laser parameters and solid electronic
structure.
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Equation (29) leads to the interband current, integrated over
the whole BZ,

ˆ̄Jer (t ) =
∫

BZ
dk

[
ω

∫ ∞

−∞
dt e−iωtρcv

k (t )Dvc
κ (t )e

−iS(k, t )

−
∫ ∞

−∞
dt e−iωt
Jer

k (t )

]
. (42)

For constant TDMs and a frozen valence-band population, we
arrive at the saddle-point conditions

∂σω(kr, ts, te)

∂k
= ∂σω(kr, ts, te)

∂t
= ∂σω(kr, ts, te)

∂t ′ = 0,

with σω(k, t ′, t ) defined in Eq. (33). These conditions imply


εcv
κr (ts ) = 0, (43)∫ te

ts


Pvc
κr (t )dt = 0, (44)


εcv
κr (te ) = ω, (45)

where κr (t ) = kr + A(t ), and allow us to determine the roots
kr , ts, and te numerically.

Equations (43) and (45) are equivalent to Eqs. (35)
and (34). Condition Eq. (44) arises due to the integration over
the BZ. It expresses the requirement of the excited photo-
electron wave packet, moving with group velocity Pcc

kr+A(t ),
and the residual hole wave packet, propagating with group
velocity Pvv

kr+A(t ), to recombine at time te after their birth at
time ts, while emitting a photon with energy 
εcv

κr (te ). We
show in Appendix F that, since �[ts] ∝ ω0

√
2
εcv

0 m∗
0 and the

matrix elements Pnn
k are odd functions of k, Eq. (44) can be

approximated as ∫ te

t0


Pvc
κr (t )dt ≈ 0. (46)

We employ this expression in Sec. III A 3 below for deriving
the field-strength dependence of the HHG cutoff frequency
of the BZ-integrated spectra. Even though within the Kronig-
Penney model the band-gap energy 
εcv

k grows continuously
from the center to the edge of the first BZ, the k channel at
k = kc

r with the largest frequency,

ωc
BZ (A0) = εkc

r +A(te ), (47)

lies in the range kr ∈ (−A0, A0), as seen in Sec. II C 2, and
needs to be determined numerically (see Sec. III B 1 for a spe-
cific numerical example). In Appendix E we use the saddle-
point method to derive an approximate analytical expression
for the BZ-integrated interband yield.

III. NUMERICAL RESULTS

For our numerical applications of the theoretical model
described in Sec. II, we adopt the laser wavelength (3250 nm)
and pulse duration (10 optical cycles) of the experiment by
Ghimire et al. [7] and the temporal pulse profile given by
Eq. (2). We model the electronic structure of MgO based
on the Kronig-Penney model potential [Eq. (A1)] with an
interlayer spacing of a = 8 a.u. [42] and adjust the poten-
tial strength to V0 = 22.345 eV to reproduce the bandgap

FIG. 2. Bandgap energies in the first BZ between the valence
and lowest conduction band of MgO obtained within the Kronig-
Penny model with interlayer spacing of 8 a.u. and potential strength
22.345 eV (black solid line) and adapted from the OLCAO-LDA
DFT calculation of Ref. [42] along the �-X direction (dashed red
line).

energy between the valence and conduction band at the
� point, 4.19 eV, obtained by Xu and Ching [42] from
a full-dimensionality orthogonalized-linear-combination-of-
atomic-orbitals (OLCAO) calculation within the framework
of density-functional theory (DFT) in local density approxi-
mation (LDA). These values of the Kronig-Penney potential
parameters result in a local bandgap at the BZ edge (at
k = ±π/a) of 13.6 eV, in very good agreement with the local
bandgap at the X point of 13 eV computed by Xu and Ching
(Fig. 2).

In this section, we perform a systematic numerical study
of the contributions to the HHG spectrum from different k
channels within the entire first BZ. We first discuss results
obtained by restricting the external-field-driven electron dy-
namics to the valence and conduction band in Sec. III A,
before presenting converged HHG spectra obtained by in-
cluding up to 13 electronic bands of MgO in Sec. III B.
For all calculations we employed a fourth-order Runge-Kutta
algorithm to numerically solve Eq. (5) at 400 equally spaced
k points in the first BZ.

A. HHG spectra in two-band approximation

To understand the basic mechanisms of intra- and interband
HHG in solids, we complement our theoretical analysis of
HHG by a two-band system in Sec. II B above, with the
numerical solution of Eq. (5), restricted to the lowest (highest)
conduction (valence) band of MgO. While this approach can
only provide acceptable results at moderate intensities of the
driving field (A0 < π/a), it fails at higher field strengths, for
which the inclusion of more bands is mandatory (Sec. III B).

1. Lattice-momentum-resolved contributions to HHG

To reveal the characteristics of HHG spectra, including
all k channels in the first BZ, we performed a calculation
at a field strength of 0.13 V/Å. Figures 3(a)–3(c) display
two-band HHG spectra as a function of the lattice momentum
k. While, according to Eq. (14), the total yield is not equal
to the sum of the intra- and interband yield, it is instructive
to examine intra- and interband spectra separately. The com-
parison of Figs. 3(a) and 3(b) shows that intraband harmonics
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FIG. 3. HHG in MgO driven by a 10-cycle 3250-nm pulse with
a peak electric-field strength inside the sample of 0.13 V/Å (corre-
sponding to a peak intensity of 2.24×1011 W/cm2). Thin vertical
lines mark odd harmonics. The vertical black dashed line indicates
the harmonic order (
εcv

0 /ω0 = 11) corresponding to the minimum
band-gap energy 
εcv

0 at k = 0. (a) Intraband HHG spectrum. (b) In-
terband HHG spectrum. The horizontal dashed black lines indicate
±kmax(A0)/2 for N = 5 as given by Eq. (41). The V-shaped black line
shows the maximal band-gap energy ωc(k, A0) as given by Eq. (37).
(c) Total HHG spectrum. The yields in (a–c) are given as functions
of the lattice momentum k over the entire first BZ and on the same
logarithmic scale. (d) Total HHG yield, integrated over the first BZ.
Above harmonic order 29, the yield drops exponentially, determining
the cutoff energy indicated by the vertical blue dashed line.

dominate HHG at harmonic photon energies below the band
gap, 
εcv

0 ≈ 11ω0, while above this threshold mainly inter-
band harmonics contribute to the total HHG yield in Fig. 3(c).
The observation that the band gap establishes a threshold
between intra- and interband HHG is consistent with energy
conservation, requiring electronic probability density to cross
the local band gap, 
εcv

κ (t ), before contributing to the interband
current and thus to the interband HHG.

In view of Eq. (24) and the semiclassical interpretation
of Pvv

κ (t ) as the photoelectron group velocity in the valence
band, at low electric-field strengths, we expect the intraband
yield [Eq. (25)] to be dominated by the Fourier transform
of Pvv

κ (t ) (Fig. 4). Indeed, below the interband-gap threshold
(11th harmonic), the yields in Figs. 3(a) and 4 very closely
resemble each other and are identical with respect to their
zeros along the k axis for every given harmonic order: both
spectra exhibit even and odd harmonics that vary over the first
BZ. At the � point and edge of the first BZ both spectra only
include odd harmonics.

FIG. 4. Time Fourier transformation of the valence-band group
velocity Pvv

κ (t ) for a 10-cycle 3250-nm laser pulse of 0.13 V/Å peak
field strength.

Below the interband-gap threshold, the interband spectrum
in Fig. 3(b) bears some similarity with the intraband yield in
Fig. 3(a), but has significantly lower yields and a different
distribution of yield nodes along the k axis, at all harmonic
orders. Above the interband-gap threshold, the interband yield
has a rich k-dependent structure of even and odd harmonics.
According to Eq. (37), the spectral range of interband high-
order harmonics above the interband-gap threshold (at the
11th harmonic) is limited by ωc(k, A0). This k-dependent
upper limit is indicated in Fig. 3(b) by the V-shaped solid
black line. According to Eq. (41), contributions to the inter-
band yield from k channels that are N orders of magnitude
smaller than the maximal yield at the � point lie in the range
±kmax(A0)/2. The V-shaped solid black line shows their onset
for N = 5.

We note that our numerical yields in Fig. 3, including
contributions to HHG for k channels within the entire first
BZ, are incompatible with the assumption in previous studies
[8,43] that only a small part of the first BZ near the �

point contributes to HHG in solids. Even though for the one-
dimensional model solid investigated here computing time is
not an issue, the limit imposed by Eq. (41), and its numer-
ical validation in Fig. 3, in addition to providing physical
insight into the HHG process, is relevant for reducing the
computational effort in multiband HHG calculations based on
a three-dimensional representation of the solid.

While the k-channel-resolved HHG spectrum in Fig. 3(c)
includes even and odd high-order harmonics and depends
in a rather complex way on the harmonic photon energy
and lattice momentum k, including contributions to HHG
from the entire first BZ according to Eq. (15), results in the
comparatively simple total HHG spectrum shown in Fig. 3(d).
As expected due to the inversion symmetry about the � point
of the Kronig-Penney band structure (Fig. 1), the total HHG
spectrum in Fig. 3(d) is strongly dominated by odd harmonics.

2. Field-strength dependence of HHG spectra

Figure 5 shows the total HHG yield (including intra- and
interband HHG) for the k = 0 channel, i.e., only including
the � point at the center of the first BZ, for peak electric-
field strengths 0.05 V/Å < E0 < 0.3 V/Å. This field-strength
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FIG. 5. HHG in MgO driven by a 10-cycle 3250 nm pulse as
a function of peak laser-electric-field strength. Contributions to the
HHG yield from the k = 0 channel (� point) only. (a) Intraband,
(b) interband, and (c) total spectra. Thin vertical lines mark odd
harmonics. The vertical black dashed lines correspond to the minimal
and maximal local band-gap energies 
εcv

0 and 
εcv
max in the first BZ.

The white line in (b, c) indicates the cutoff harmonic order.

corresponds to the range of laser-peak-intensities inside
the solid 3.3×1010 W/cm2 < I0 < 1.19×1012 W/cm2. We
chose the upper limit of this interval to slightly exceed
the field strength (π/a)ω−1

0 ≈ 0.283 V/Å. At this field
strength, the vector-potential amplitude is A0 = π/a, such
that the field-dressed time-dependent crystal momentum
κ (t ) = k + A(t ) = A(t ) defined in Eq. (9) explores the entire
first BZ (Fig. 1) within one optical cycle in the plateau of
the laser pulse and, thus, the entire range of local band gaps.
We selected the lower limit of the field strength in view of
the approximations made in Sec. II B, which are based on
a series expansion in the parameter γ = ω0

√
2
εcv

0 m∗
0/E0.

Requesting γ < 1, implies for MgO E0 > 0.1 V/Å, slightly
above the lower limit of the assumed range of field strengths.

The comparison of the intra- and interband yields in
Figs. 5(a) and 5(b) shows that the intraband emission domi-
nates the total yield in Fig. 5(c) below and interband emission
above the band-gap threshold near the 11th harmonic, for the
entire considered range of electric-field strengths. The HHG
cutoff is thus determined by interband emission and displayed
as superimposed white lines in Figs. 5(b) and 5(c). We analyze
the HHG cutoff behavior in more detail in Sec. III A 3 below.
Over the range of displayed electric-field strengths the intra-
and interband spectra are dominated by odd harmonics, with
slim traces of even harmonics. Small even and noninteger
HHG yields were also noticed in an SBE-based calculation by
Li et al. [23] and explained in terms of the combined effect of
the external-field and time dependence of the TDM Dvc

κ (t ). We
speculate that this effect may be enhanced due to our inclusion

FIG. 6. As described in the caption of Fig. 5 but integrated over
initial k channels from the entire first BZ.

of the term defined by Eq. (19) in Eq. (18). This term is absent
in the SBE model.

Relaxing the k = 0-channel (�-point) emission restriction,
Fig. 6 shows yields obtained after integrating k over the first
BZ. As for the �-point-only yield in Fig. 5, the comparison
of the intra-, interband, and total yields in Figs. 6(a), 6(b),
and 6(c), respectively, reveals for the entire shown laser-peak-
intensity range that below the lowest band-gap threshold, near
the 11th harmonic, the yields are dominated by intraband
emission, while above this threshold practically only inter-
band emission occurs. Even though the spectra include traces
of even and non-integer harmonics (as they do for �-point-
only emission), the contrast between odd and even harmonic
yields is larger than for �-point-only emission.

As discussed in the preceding Sec. III A 1, intraband emis-
sion at the � point is directly related to the valence-band
group velocity. It yields intense odd and even harmonics, as
seen in Figs. 3 and 4. However, as given by Eq. (27), upon
integration over the first BZ the valence-band term in Eq. (25)
cancels (by symmetry), and high-yield emission requires the
laser-electric field to be strong enough to effectively promote
electrons to the conduction band. This explains the low yield
at low intensities in Figs. 6(b) and 6(c), as compared to the
corresponding �-point-only yields in Fig. 5. The experimental
investigation of HHG below the lowest band-gap threshold
and for low to moderate peak intensities might thus resolve
the range kmax(A0) of carriers involved in HHG for a spe-
cific substrate. However, it remains to be explored to what
extent experimental focal-volume effects, i.e., averaging of
the laser intensity profile, prevent the accurate determination
of kmax(A0).

3. Field-strength dependence of the HHG cutoff

In this subsection we analyze the field-strength depen-
dence of the HHG cutoff frequency obtained including both,
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FIG. 7. Dependence of HHG-cutoff order on the laser peak-
electric-field strength (left vertical axis) or intensity (right vertical
axis) in two-band approximation. Square markers show HHG cutoffs
for �-point-only (k = 0) emission. Triangular markers indicate HHG
cutoffs including k channels from the entire first BZ. The red dashed
and green solid line show approximate cutoffs obtained from the
saddle-point equations in Secs. II C 1 and II C 3 for �-point-only
emission and k channels from the entire first BZ, respectively. The
dashed red line, in particular, is given by Eq. (37). The solid blue line
shows two-band TDSE results adapted from Fig. 3(b) in Wu et al. [8]
for �-point-only emission.

�-point-only emission and k channels from the entire first BZ.
As the comparison of interband and total yields in Figs. 5
and 6 reveals, inclusion of the entire first BZ increases the
highest generated frequencies, as compared to �-point-only
emission. For each given peak electric-field strength, we
visually determine the cutoff as the HHG order at which the
yield starts to decline exponentially [as indicated in Fig. 3(d)],
for both �-point-only and BZ-integrated yields. This leads to
the intensity-dependent cutoff shown by the markers in Fig. 7.
For the shown range of harmonic orders, inclusion of all k
channels results in cutoffs (indicated as triangular markers)
in good agreement with our saddle-point prediction (green
dotted line) that lie 8–10 harmonic orders above the cutoff
for �-point-only emission (square markers). The cutoff orders
predicted for the �-point-only emission by our two-band
TDSE calculations and our saddle-point analysis (red dashed
line) are in fair agreement with the two-band TDSE results of
Wu et al. [8] (solid blue line), which we adapted from Fig. 3(b)
in Ref. [8]. In agreement with Wu et al., we find that the cutoff
increases approximately linearly with laser peak-electric-field
strength over the displayed range of harmonic orders, albeit
with a noticeably smaller slope.

To better understand the field-strength dependence of the
HHG cutoff, we resort to the saddle-point analysis of the HHG
process in the two-band approximation discussed in Secs.
II C 1 and II C 3. Referring to HHG including all k channels
in the first BZ, we numerically solve the saddle-point Eq. (46)
for te and subsequently Eq. (45) for each kr . This yields the
frequency curve 
εcv

κr (te ), from which we get the maximal
frequency ωc

BZ and cutoff harmonic order ωc
BZ/ω0. The red

FIG. 8. Determination of the cutoff HHG order for a driving-
laser peak intensity of 0.13V/Å and a model MgO crystal with
interlayer spacing a = 8 a.u.. The black solid line shows the max-
imum local vertical band-gap energy at the field-dressed crys-
tal momentum κ (t ) = k + A(t ) during one optical cycle of the
driving laser as a function of the field-free crystal momentum
k ∈ [−π/a = −0.39, π/a = 0.39] a.u. The vertical thin blue lines
indicate crystal momenta ±kr , determined in saddle-point approx-
imation, that maximize the interband HHG yield Y er (ω) given in
Eq. (E4). The red line shows the interband HHG cutoff in each k
channel. The vertical green dotted lines indicate the highest cutoff
energies reached at crystal momenta kc

r that do not need to coincide
with the maximum vertical band gap at the first BZ edge (k = π/a).

line in Fig. 8, shows the harmonic energy 
εcv
κr (te ) as a function

of values for kr that contribute to the BZ-integrated interband
yield for a peak field strength of the driving laser of 0.13V/Å.
As discussed in Sec. II C 3, |kr | < A0 (indicated by vertical
thin blue lines). The maximum harmonic energy is obtained
at crystal momenta ±kc

r indicated by the dotted green lines.
Channels for which k = ±kc

r thus yield the maximum cutoff
energy at the given laser field strength. The V-shaped black
solid line in Fig. 8 shows the maximum energy ωc(k, A0), i.e.,
the electron-hole-pair-recombination energy in each k channel
given by Eq. (37) [cf. Fig. 3(b)]. This energy depends on the
maximum local band gap in each channel and exceeds the
cutoff energy in the BZ-integrated yield 
εcv

κr (te ) (red line).
Since ωc(kr, A0) ≈ 
εcv

κr (te ) the k = ±kc
r channels have the

largest contribution the HHG yield.

B. Multiband spectra

1. Field-strength dependence of HHG spectra

Figures 9 and 10 show multiband HHG spectra for both
the �-point-only and BZ-integrated calculations, respectively.
Including the lowest 13 bands of the Kronig-Penney model
MgO crystal, we find these spectra to have converged. The
convergence of the results was determined from the eval-
uation, in the k = 0 channel, of the population ρMM

0 (t ) in
each new band M we added to the calculation. Based on
our convergence criterium ρMM

0 (t ) < 10−12ρvv
0 (0), we find

M = 13 for a maximum peak field strength of E0 = 0.3 V/Å.
We included the same number (13) of bands for calculations
at lower field strengths and for k �= 0. Comparison with the
two-band yields of Figs. 5 and 6 shows that the spectral
region below the first band-gap threshold is dominated by
the electron dynamics in the lowest two bands. For harmonic
orders below ≈35, the shape of the multiband spectra and their
laser-electric-field dependence largely resemble the two-band
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FIG. 9. Total HHG spectrum from MgO driven by a 10-cycle
3250 nm laser. The spectral yield includes intra- and interband
contributions from the k = 0 channel (�-point) only. Thin vertical
lines mark odd harmonics. (a) Harmonic orders 50 and below. The
white line indicates the cutoff energy. (b) Harmonic orders 51 to
129. The vertical black dashed lines correspond to the minimal
local band-gap energy, 
εcv

0 ≈ 11 ω0, and maximal local band-gap
energies, 
εcv

max ≈ 35 ω0 and ≈123 ω0, between the valence band and
lowest and third conduction band, respectively.

spectra. Our numerical tests showed that the inclusion of more
than two bands gradually improves the agreement with fully
converged spectra in the shown spectral range.

Above the ≈35th harmonic and at the highest field
strengths shown in Figs. 9 and 10, a new plateau emerges,
which we attribute to contributions from the second and
third conduction band. If only the k = 0 channel is in-
cluded, the second plateau emerges at a higher field strength,
E0 > πω0/a, than in calculations including the entire first
BZ. This field strength corresponds to the vector potential
for which the cutoff frequency acquires its maximum value
ωc(0, E0/ω0) = 
εvc

max given by Eq. (37).

2. Field-strength dependence of the HHG cutoff

Figure 11 shows the field-strength dependence of the HHG
cutoff we obtained from 13-band TDSE calculations by ei-
ther including �-point-only emission (square markers) or k
channels from the entire first BZ (triangular markers), in com-
parison with the multiband calculations from the literature.
The solid blue line shows 51-band TDSE results for emission

FIG. 10. As Fig. 9, but integrated over initial k channels from the
entire first BZ.

FIG. 11. Dependence of HHG-cutoff order on the peak laser-
electric-field strength (left vertical axis) or intensity (right vertical
axis) from calculations including more than two bands. Square
markers show HHG cutoffs for �-point-only (k = 0) emission. Tri-
angular markers indicate HHG cutoffs including k channels from the
entire first BZ. The blue solid line shows 51-band TDSE results for
emission from the �-point-only, adapted from Fig. 3(a) in Ref. [8].
The black dotted and orange dashes lines are adapted from the
BZ-integrated four-band SBE calculation and the numerical TDSE
solution for �-point-only emission by Li et al. To facilitate the
comparison with the two-band cutoff calculations, we reproduce the
saddle-point-approximation results of Fig. 7 (red dashed and green
solid line).

from the �-point-only, adapted from Fig. 3(a) in Ref. [8].
The orange dashed line shows HHG cutoff orders obtained
by the direct propagation of the one-dimensional TDSE for
�-point-only emission by Li et al. [23]. The black dash-dotted
line is adapted from the six-band SBE calculation, including
k channels from the entire first BZ, of Li et al..

For �-point-only emission yields our saddle-point approx-
imation results in Fig. 11 (red dashed line) compare well
with our 13-band calculations (square markers). Both are in
reasonable agreement with the 51-band TDSE calculation of
Wu et al. [8] (blue line). The cutoff harmonic orders we
obtain in saddle-point approximation are red-shifted by about
three harmonic orders relative to the results of Li et al. [23]
(orange dashed line), but approximately match the slope of
the field-strength-dependent cutoff increase found by Li et al.
The cutoff harmonic orders predicted by our BZ-integrated
13-band calculation (triangular markers) agree well with our
analytical saddle-point approximation (green dotted line) and
the 6-band SBE calculation of Li et al. (black dashed-dotted
line). We note that the calculation of Li et al. includes a
heuristic dephasing time, in contrast to our approach, where,
apart from the adjusted potential strength of the Kronig-
Penney model potential, no ad hoc parameters are introduced.

IV. SUMMARY AND CONCLUSIONS

We investigated intra- and interband HHG from a solid
in SAE approximation, by adjusting a one-dimensional
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Kronig-Penney model potential to a DFT-LDA calculation
[42] of the MgO electronic-structure. We expanded the active
electron wave function in a basis of adiabatically field-dressed
Bloch states (Houston states) to solve the TDSE. For numer-
ical applications, we first carried out two-band calculations
and evaluated contributions to the HHG yield from specific
initial-state crystal momenta k in the first BZ. This revealed
essential contributions to the HHG yield from nonzero crystal
momenta in the first BZ, in agreement with the theoretical
work of Floss et al. [31]. We find significant HHG yields at
even high-order harmonic orders for k �= 0 (off the � point).
Even harmonics are particularly prominent for the lowest in-
traband harmonics. As observed experimentally and expected
due to the symmetric dispersion of the model MgO crystal
with respect to the BZ-zone center, our BZ-integrated yields
predominantly contain odd harmonics. Next, we examined
analytical properties of k-resolved HHG yields and cutoff fre-
quencies within a saddle-point approximation. This allowed
us, for example, to estimate the loss of accuracy in calculating
HHG yields that are induced by restricting k to a small interval
near the � point in the first BZ, as compared to BZ-integrated
yields.

We studied complementary contributions to the HHG yield
from intra- and interband emission. As expected [8,9], while
intraband emission dominates below the threshold for inter-
band excitation, interband emission almost exclusively deter-
mines the HHG yield above this threshold. We revealed that
intra- and interband BZ-integrated HHG spectra are qualita-
tively different compared to �-point-only calculations. For the
intraband contribution to the HHG yield, this difference can
be deduced from our expressions for quantum-mechanically
calculated currents. For the interband contribution, we con-
firm the well-known [7] linear increase of the cutoff frequency
with the peak electric-field strength of the driving laser in
both fully quantum-mechanical calculations and in simpli-
fied saddle-point-approximation calculations. These analyti-
cal predictions and numerical calculations are in very good
agreement with each other. They are also in qualitative and fair
quantitative agreement with different numerical calculations
from other authors.

Finally, by performing multiband TDSE numerical calcu-
lations, we studied a second plateau which emerges above the
maximum cutoff HHG order we determined in two-band cal-
culations. Because the field-strength dependence is different
in BZ-integrated and �-point-only yields, this second plateau
emerges at different field strengths in both cases.
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APPENDIX A: KRONIG-PENNEY BASIS FUNCTIONS

The band structure of the Kronig-Penney model for peri-
odic δ potentials,

V (x) = V0

∑
j

δ(x − ja), (A1)

is given by Eq. (3) of the main text and the eigenfunctions

φnk (x) = |Ank|
[

eiαnk (x− a
2 ) − 1 − eia(αnk−k)

1 − e−ia(αnk+k)
e−iαnk (x+ a

2 )
]
,

with the normalization factor

|Ank|2 = sin2[a(αnk + k)/2]

1 − sin(2aαnk )
2aαnk

− cos(ak)
[
cos(aαnk ) − sin(aαnk )

aαnk

]
and corresponding eigenenergies

εnk = α2
nk

2
. (A2)

In Fig. 12, we show the four lowest bands included in our
numerical calculations of Sec. III. For crystal momenta k = 0
and even n, and for k = π/a and odd n, we have αnk = nπ/a.

We adjust the global phase of the eigenfunctions to yield
real matrix elements in Eq. (7) of the main text,

Pnn′
k = 2|Ank||An′k|αnkαn′k[cos(aαn′k ) − cos(aαnk )]

a sin
[

a
2 (αnk + k)

]
sin

[
a
2 (αn′k + k)

](
α2

nk − α2
n′k

) ,
for n �= n′, and real diagonal matrix elements,

Pnn
k = αnk sin(aαnk ) sin(ak)

1 − sin(2aαnk )
2aαnk

− cos(ak)
[
cos(aαnk ) − sin(aαnk )

aαnk

] .
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APPENDIX B: ANALYTICAL CONTINUATION
OF THE KRONIG-PENNEY BASIS

In our analysis of the interband current, we extend the ener-
gies in Eq. (A2) to the complex K plane, defining K = k + iki,
where ki is the imaginary part of the complex crystal momen-
tum, and request

lim
ki→0

αnK = αnk, lim
ki→0

εnK = εnk .

Equation (3) and its K-derivative at K = 0 yield

1 = cos(aαn0) + V0

αn0
sin(aαn0),

0 =
[

aV0 cos(aαn0)

αn0
−
(

a + V0

α2
n0

)
sin(aαn0)

]
dαn0

dK
.

After eliminating V0 in these two equations, we see that the
term in square brackets of the second equation cannot be zero,
since 2π � aαn0 < 3π for n = v, c. This implies

dαnK

dK

∣∣∣∣
K=0

= 0, n = v, c (B1)

and shows that

d
(

εcv

K

)
dK

∣∣∣∣∣
K=0

= 0. (B2)

From the second derivative of Eq. (3) with respect to K and
Eq. (B1), we obtain

−a2 =
[

aV0 cos(aαn0)

αn0
−
(

a + V0

α2
n0

)
sin(aαn0)

]
d2αn0

dK2
.

As noted in the main text, the coefficients in front of the
second derivative are real. They do not vanish, since 2π �
aαn0 < 3π for n = v, c. From this we conclude that

�
[

d2αnK

dK2

∣∣∣∣
K=0

]
= 0, n = v, c

and, consequently,

�
[

d2
(

εcv

K

)
dK2

∣∣∣∣∣
K=0

]
= 0.

APPENDIX C: ALTERNATIVE EXPRESSION
FOR THE INTERBAND CURRENT

We here derive the interband current given by Eq. (18) of
the main text. Defining the function

ηer
k = ρcv

k (t )Dvc
κ (t )e

−iS(k, t ), (C1)

we employ Eq. (6) to obtain its derivative

η̇er
k = ρ̇cv

k (t )Dvc
κ (t )e

−iS(k, t ) + ρcv
k (t )Ḋvc

κ (t )e
−iS(k, t )

− Pvc
κ (t )ρ

cv
k (t ) e−iS(k, t ).

Using (Dvc
κ (t ) )

2 = −|Dvc
κ (t )|2 and substitution of ρ̇cv

k (t ) from
Eq. (21) results in

−ρcv
k (t )Pvc

κ (t )e
−iS(k, t )

= η̇er
k − i
ρvc

k (t )E (t )
∣∣Dvc

κ (t )

∣∣2 − ρcv
k (t )Ḋvc

κ (t )e
−iS(k, t ).

FIG. 13. Contour integration for the action evaluation. (a) Inte-
gration path in the complex crystal-momentum (K) plane, starting
at K = k (green dot), moving along the real K axis to K (t0), and
arriving at the root of the analytic continuation of the band-gap
energy 
εcv

K , K (ts). (b) Corresponding path in the complex temporal
plane, starting at time t = 0 (green dot) and arriving at ts (blue dot).

Since the second term in this equation is purely imaginary,
after replacing the ηer

k (t ) from Eq. (C1), Eq. (17) can be
written as

Jer
k (t ) = d

dt

[
ρcv

k (t )Dvc
κ (t )e

−iS(k, t )
] − ρcv

k (t )Ḋvc
κ (t )e

−iS(k, t ) + c.c.

(C2)

APPENDIX D: SADDLE-POINT APPROXIMATION
FOR THE k-CHANNEL INTERBAND YIELD

We evaluate the action in Eq. (36) by splitting its integral
representation into two parts,

S(k, ts) =
∫ t0

0

εcv

K (t )dt +
∫ ts

t0


εcv
K (t )dt, (D1)

with t0 = �[ts]. Along the integration path illustrated in
Fig. 13, the first integral is real.

To evaluate the second integral, we need to calculate ts.
For this purpose, we consider the continuum-wave vector
potential A0 sin(ω0t ), for which we find

ts = 1

ω0
arcsin[−k/A0 ± iγ ], (D2)

with

γ = ω0
√

2
εcv
0 m∗

0

E0

and E0 = A0 ω0. For γ < 1 and k < A0 < π/a, Taylor expan-
sion of Eq. (D2) results in

�[ts] = ± γ

ω0

√
1 − (k/A0)2

+ O(γ 3), (D3)

which will be a fair approximation if
√

1 − (k/A0)2 < γ .
We can now carry out the integrations in Eq. (D1) and

obtain

S(k, ts) = �[S(k, ts)] + i
εcv
0 �[ts]

+ A2

8m∗
0

{2�[ts] − sinh {2ω0�[ts]}/ω0}
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+ k2

2m∗
0

{�[ts] − tanh [ω0�[ts]}/ω0}, (D4)

where

�[S(k, ts)] =
∫ t0

0

εcv

K (t )dt + �
[∫ ts

t0


εcv
K (t )dt

]
.

To find the pre-exponential factor in Eq. (36), we first
point out that the cross derivatives ∂2σω(k, t, t ′)/∂t∂t ′ and
∂2σω(k, t, t ′)/∂t ′∂t vanish, such that

|det Hess| =
∣∣∣∣∂2σω(k, te, ts)

∂t ′ 2

∂2σω(k, te, ts)

∂t2

∣∣∣∣
=
∣∣∣∣∣E (ts)

√
2
εcv

0

m∗
0

E (te)
(
Pcc

κ (te ) − Pvv
κ (te )

)∣∣∣∣∣.
Following [40,44], only keeping the regular solution in
Eq. (D3), �[ts] > 0, we obtain

ˆ̄Jer
k (ω) ≈ −(2πω)

∣∣Dvc
0

∣∣2e−�[S(k, ts )]

×
∑

te

i E (ts)e−iωte ei�[S(k, ts )]eiS(k, te )∣∣∣E (ts)
√

2
εcv
0

m∗
0

E (te)
(
Pcc

κ (te ) − Pvv
κ (te )

)∣∣∣1/2 .

The interband HHG yield is thus given by

Y er
k (ω) ≈ (2πω)2e−2�[S(k, ts )]

∣∣Dvc
0

∣∣4E (ts)

√
m∗

0

2
εcv
0

×
∣∣∣∣∣
∑

te

e−iωte
[
ei{�[S(k, ts )]+S(k, te )+ π

2 } + c.c.
]

∣∣E (te)
(
Pcc

κ (te ) − Pvv
κ (te )

)∣∣1/2

∣∣∣∣∣
2

.

To get a more explicit equation in terms of the band and
laser field parameters, we approximate E (ts) to first order
in γ ,

E (ts) ≈ E0

√
1 − (k/A0)2 + O(γ 2), (D5)

and we apply the approximations used to derive �[S(k, ts)] in
Eq. (D4). This leads to the interband yield

Y er
k (ω) ≈ exp

[
− 2

√
2m∗

0 
εcv
0

3/2

E0

√
1 − (k/A0)2

]

× (2πω)2
∣∣Dvc

0

∣∣4E0

√
1 − (k/A0)2

√
m∗

0

2
εcv
0

×
∣∣∣∣∣∣
∑

te

e−iωte
[
ei{�[S(k, ts )]+S(k, te )+ π

2 } + c.c.
]

∣∣E (te)
(
Pcc

κ (te ) − Pvv
κ (te )

)∣∣1/2

∣∣∣∣∣∣
2

. (D6)

Applying the effective mass theorem [38],

1

m∗
nk

= 1 + 2
∑
n′ �=n

(
Pnn′

k

)2


εnn′
k

,

we obtain

m∗
0 ≈ 1

4 
εcv
0

∣∣Dvc
0

∣∣2 . (D7)

This allows us to rewrite Eq. (D6) as

Y er
k (ω) ≈ exp

[
−

√
2 
εcv

0

E0

∣∣Dvc
0

∣∣√1 − (k/A0)2

]

× 2
(
πω

∣∣Dvc
0

∣∣)2

(
E0

∣∣Dvc
0

∣∣√1 − (k/A0)2

√
2
εcv

0

)

×
∣∣∣∣∣∣
∑

te

e−iωte
[
ei{�[S(k, ts )]+S(k, te )+ π

2 } + c.c.
]

∣∣E (te)
(
Pcc

κ (te ) − Pvv
κ (te )

)∣∣1/2

∣∣∣∣∣∣
2

.

APPENDIX E: SADDLE-POINT APPROXIMATION
OF THE BZ-INTEGRATED INTERBAND YIELD

In analogy to Eq. (36), we obtain the Fourier-transformed
net interband current as

ˆ̄Jer (ω) ≈ − ω
∣∣Dvc

0

∣∣2 (2π i)3/2

×
∑

|kr |<A0

∑
te

∑
ts

E (ts)eiσω (kr , te, ts )∣∣det[Hess σω(kr, te, ts)]|1/2
.

(E1)
This expression is equivalent to

ˆ̄Jer (ω) ≈ − ω
∣∣Dvc

0

∣∣2 (2π i)3/2

×
∑

|kr |<A0

∑
te

∑
ts

E (ts)eiσω (kr , te, ts )ycv
κr

(te, ts), (E2)

where

ycv
κr

(te, ts) =
∣∣∣∣∣
√

2
εcv
0

m∗
0

E (te)
Pvc
κr (te )

∣∣∣∣∣
−1/2

×
∣∣∣∣∣
[√

2
εcv
0

m∗
0

+ iE (ts)
∫ te

ts

dt
1

m∗
κr (t )

]∣∣∣∣∣
−1/2

, (E3)

resulting in the approximated integrated interband yield

Y er (ω) ≈ (2π )3
(
ω
∣∣Dvc

0

∣∣)2

×
∣∣∣∣∣∣
∑

|kr |<A0

E (ts) e

[
−

√
2 
εcv

0
E0 |Dvc

0 |
√

1−(kr /A0 )2

]

×
∑

te

[
e−iωte ei{�[S(k, ts )]+S(k, te )+ 3π

2 } + c.c.
]

× ycv
κr

(te, ts)

∣∣∣∣∣∣
2

. (E4)

APPENDIX F: SIMPLIFICATION OF EQ. (44)

We here approximate Eq. (44), proceeding in a similar way
as in Appendix D, by splitting Eq. (44) in a real and a complex
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integral (Fig. 13), ∫ te

ts


Pvc
κr (t )dt = I1 + I2,

with

I1 =
∫ t0

ts


Pvc
κr (t )dt,

I2 =
∫ te

t0


Pvc
κr (t )dt .

Following the derivation of Eq. (38), we find

d
(
εcv

K

)
dK

≡ −
Pvc
K = K

m∗
0

+ O(K3).

Using κ (t ) = k + A(t ), we perform the integral in I1 by con-
tour integration in the complex plane to obtain

I1 = k

iω0m∗
0

{tanh[ω0�(ts)] − ω0�(ts)}

− A0

ω0m∗
0

cos(ω0t0){1 − cosh[ω0�(ts)]} ≈ O(γ 3),

where we used that, according to Eq. (38), K (ts) is imaginary.
Thus, to second order in γ , I1 ≈ 0, and Eq. (44) can be
approximated as the real integral∫ te

ts


Pvc
κr (t )dt ≈

∫ te

t0


Pvc
κr (t )dt .

This expression is more suitable for numerical calculations
than Eq. (44).
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