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Energy-loss straggling with higher-order effects and electron correlations taken into account
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The approach suggested previously to treat the mean energy loss of charged projectiles in terms of induced
currents is extended to describe the energy-loss straggling. It has been shown that, provided the perturbed wave
function of electrons is known, the phenomenon can be represented in a form of distributions of densities of
energy and energy squared within the target volume. These distributions satisfy respective continuity equations
with the source terms defining the local deposition of energy and energy squared. The approach is applied to treat
the canonical phenomenon, the stopping in a uniform electron gas, and provides a possibility to account for the
spatial correlation of electrons. Two types of approximations for the perturbed state of electrons are considered,
the impulse and continuum distorted-wave approximations. Together with the effect of electron correlations,
these nonperturbative approaches permit one to evaluate the higher-order correction over the projectile charge.
The origin of this correction is similar to the origin of Barkas correction in the stopping power; it can be argued
also that there is no place in straggling for the Bloch correction. These properties, i.e., nonlinear electron response
and electron correlations, can result in significant effects, both capable of changing dramatically the straggling
at small projectile energies. However, in the case of positively charged projectiles, the two effects mainly
compensate for one another. For negatively charged projectiles, due to the impossibility of close approaches
of the collision partners, both effects are effectively smeared out.
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I. INTRODUCTION

Straggling of energy loss of swift charged particles is
mainly due to violent close collisions with electrons. For the
energy spread � of a charged particle penetrating a gas of
noninteracting electrons, Bohr [1] gave the simple expression

�2 = 〈E2〉 − 〈E〉2 = �2
B = 4πZ2

1 e4n�R, (1)

where Z1e is the charge of the projectile, n is the electron
gas density, and �R is the thickness of the traversed layer
of electron gas. The electrons are considered herein as being
initially at rest, and, due to the coincidence of the scattering
cross sections, the result (1) is valid in both classical and
quantum mechanics.

More effort is required to account for the states of electrons
in real matter. Considering the same case of a uniform electron
gas, one has to estimate the effect of initial motion of electrons
and of interelectron interaction. Both effects are accounted
for in Lindhard’s treatment of uniform gas of interacting
electrons with a Fermi distribution of their momenta where
the response of electrons to external perturbation is described
in the random-phase approximation (RPA) [2]. As expected,
the main corrections to Bohr’s result appear at small projectile
velocities when the gas has a chance to react to the change of
state of a separate electron [3]. Chu [4] used these results to
describe straggling in the case of an atomic target: The RPA
results were averaged over the distribution of electron density
in the atomic shell.
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Another important ingredient of straggling theory is the
statistics of collisions with electrons. The Poisson distribution
of the number of collisions with a certain impact parameter
and its quantum-mechanical equivalent were assumed in the
developments described above. In reality, however, electron
density is nonuniform since electrons are clustered in atomic
shells. On an even smaller scale, the positions of electrons
are correlated due to their Coulomb repulsion and quantum
exchange, the phenomenon commonly referred to as electron
correlation. These two effects can be considered separately as
follows from the rule of variance decomposition [5].

Sigmund [6] considered the effect of the atomic structure
of the stopping medium. For this goal, the projectile-atom
collisions can be considered as elementary events with the
mean energy loss depending on the impact parameter. Thus,
one encounters here the only essential problem: In the case
of a molecular gas or solid target the Poisson statistics of
projectile-atom collisions is modified due to the correlations
of atom positions.

The main topic of this paper is the effect of electron
correlations. As a basis for this consideration, the model of
uniform electron gas should be appropriately developed and
then Chu’s model can be accordingly improved. It is easy to
show that only pair correlations are essential to determine the
second moment of energy-loss distribution. Meshakin [7] ap-
proached this problem by applying the impulse approximation
to treat collisions with each electron of the pair. However,
it seems hardly appropriate to consider these collisions as a
superposition of two finished collisions; the correlation length
could be of the same order as the range of projectile-electron
interaction. This is illustrated in Sec. III, where the impulse
approximation is applied in its standard form [8].
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Recently [9], ab initio numerical calculations of the energy
loss and energy-loss straggling were fulfilled for the simplest
correlated system, the He atom. The results show that the
straggling is sensitive to the correlation in simultaneous ex-
citations of two electrons. However, the primary effect in this
case is not the correlation of electron locations but the shake-
up processes: In the two-electron system, the eigenstates of an
electron are modified when the second electron is excited.

For a uniform electron gas, the simplest way to estimate the
effect of electron correlations is replacement of the statistics
of independent collisions in Bohr’s classical model by statis-
tics with a different distribution of distances between consecu-
tive collisions. Such a generalization of statistics is treated by
the renewal theory [10]. In a quantum-mechanical description,
one has to consider from the outset the target electrons as
a multiparticle system whose properties are presented by a
nontrivial density matrix.

In this paper, the problem is treated using the approach
proposed in Ref. [11], where energy deposition in the stop-
ping medium is described by a continuity equation for the
energy density distribution. In the treatment of stopping in an
electron gas, this nonperturbative method has demonstrated
its efficiency, showing in particular the origin of the higher-
order corrections over the projectile charge. The approach
also accounts for the screening of the projectile field due to
the electron gas polarization [12]. In Sec. II this method is
extended to develop an analogous description of the depo-
sition of energy squared. The possible use of the impulse
approximation (IA) for treatment of the straggling is discussed
in Sec. III. In Sec. IV the current density approach is applied
using the continuum distorted-wave (CDW) approximation
for the electron wave function perturbed by the projectile field.
The results of numerical calculations are shown in Sec. V. A
summary is given in Sec. VI.

Atomic units are used throughout unless stated differently.

II. CONTINUITY EQUATIONS

A detailed picture of energy deposition in the stopping
medium can be presented by the evolution of the energy den-
sity and its flux in the volume around the moving projectile.
Analogously, the mean square of energy of electrons 〈E2〉 can
be determined by integration of the density of energy squared.
Let us define the interesting densities in the configuration
space R = {r1, . . . , rN } of all N electrons as

ρ(R, t ) = �∗�, (2a)

ρE (R, t ) = 1
2 (�∗ · H0� + H0�

∗ · �), (2b)

ρE2 (R, t ) = H0�
∗ · H0�, (2c)

where �(R, t ) is the wave function of electrons and

H0 = T + Vee + Ven (3)

is the unperturbed Hamiltonian with

T =
∑

j

T j =
∑

j

−� j

2
(4)

as the kinetic energy operator, Vee(R) the interelectron inter-
action, and Ven(R) the potential energy of the interaction of

electrons with the nuclei of atoms of the stopping medium.
The wave function � is asymmetric over electron permuta-
tions; the spin coordinates insignificant in the present task
are omitted. So defined ρE and ρE2 are real valued and their
integration over space gives the actual expectations of the
self-energy of electrons and its square.

Continuity equations for the densities ρE and ρE2 can be
derived by a procedure analogous to that used in the derivation
of equation for ρ [13]. The evolution of �(R, t ) in (2) is
determined by the Schrödinger equation

i
∂�

∂t
= (H0 + U )�, (5)

where

U =
∑

i

V (ri − R) =
∑

i

− Z1

|ri − R| (6)

is the potential of electron interaction with the projectile at its
current position R(t ). Then, in the resulting expressions for
the time derivatives of densities (2), the coordinate derivatives
of the kinetic energy operator T can be rearranged, transform-
ing the equations to

∂ρ

dt
= −∇i ji, (7a)

∂ρE

dt
= −∇i jE ,i + E i ji, (7b)

∂ρE2

dt
= −∇i jE2,i + 2E i jE ,i, (7c)

where E i = −∇iV (ri − R) is the projectile electric force act-
ing on the ith electron (summation over repeating indices is
assumed here and later on). The current densities related to
the densities ρ, ρE , and ρE2 are defined as

ji(R, t ) = 1

2i
�∗←→∂i �, (8a)

jE ,i(R, t ) = 1

4i
(�∗←→∂i H0� + H0�

∗←→∂i �), (8b)

jE2,i(R, t ) = 1

2i
H0�

∗←→∂i H0� − E i
∂ρ

∂t
, (8c)

where A
←→
∂i B = A · ∇iB − ∇iA · B.

In order to interpret the source terms in the continuity
equations (7b) and (7c) as describing the local deposition
of energy and energy squared, one has to ensure that the
integrals of divergence of the fluxes jE and jE2 over all
space are vanishing. This is equivalent to the requirement that
there are no runoffs at the points of Coulomb singularities
of the potentials. It can be shown that, due to the Kato cusp
condition [14] for the wave function �(R, t ), this requirement
is fulfilled. Notice that, in this respect, the presence of the
term on the right-hand side of (8c) which explicitly depends
on the projectile-electron interaction E i is of key importance.
Although this term only negligibly contributes to the flux
at large distances and vanishes in the classical limit (an
additional factor h̄2 is omitted in using atomic units), it is
significant as compensating a nonzero runoff at ri = R(t ) due
to the first term.

Thus, the time variation of the mean value 〈E2〉, determin-
ing the mean square of energy loss of the projectile, is given by
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the integral over all the volume of the source term 2E i jE ,i in
Eq. (7c). Notice that, like all other terms in Eqs. (7), this one
also has the form of the corresponding classical expression.
The straggling �2 is determined in terms of densities (2) and
current densities (8) as

d�2

dt
= d〈E2〉

dt
− 2〈E〉d〈E〉

dt
, (9)

where

〈E〉 =
∫

dR ρE (R, t ), (10)

d〈E〉
dt

=
∫

dRE (ri, t ) ji(R, t ), (11)

d〈E2〉
dt

= 2
∫

dRE (ri, t ) jE ,i(R, t ). (12)

If the wave function �(R, t ) is known, the method de-
scribed above enables calculation of both the mean energy
loss and the energy-loss straggling. In the two following
sections, the impulse and CDW approximations for the wave
function of a uniform electron gas perturbed by the projectile
field are used to describe the straggling of energy loss.

III. IMPULSE APPROXIMATION

In this approximation, all internal interactions in the target
atom are disregarded during the collision, H0 ≈ T . The re-
spective form of the perturbed wave function � is obtained
[8] by a proper modification of its representation in the
momentum space

�(R, t ) =
∑
K

fK exp(iKR), (13)

where K = {k1, . . . , kN } is the set of momenta ki of all
electrons. Each plane wave eikiri here is replaced by the wave
of scattering in the projectile frame ψ (+),

eikiri → eivri eikiRψ
(+)
ki−v

(ri − R), (14)

where v is velocity of the projectile assumed as moving along
a straight-line trajectory. The exponential factors on the right-
hand side of (14) appear as a result of the transformation to
the laboratory frame with the coordinate origin at R.

Although the results obtained will be the same, it is conve-
nient to follow here a simpler procedure than that described in
the preceding section. The quantities on the right-hand side of
(9) can be determined using the equations

〈E〉 = 〈�|H0|�〉 ≈ 〈�|T |�〉, (15)

d〈E〉
dt

= 1

i
〈�|[H0,H]|�〉 ≈ 1

i
〈�|[T ,U ]|�〉, (16)

d〈E2〉
dt

= 1

i
〈�|[H2

0,H]|�〉 ≈ 1

i
〈�|[T 2,U ]|�〉. (17)

Insertion of the wave function (13) with distortion (14) into
(15) results in the equation

〈E〉 ≈ 〈�|
∑

i

Ti|�〉 =
∑

i

∑
K,K′

f ∗
K′ fKei(ki−k′

i )R

× (k′
i − v|e−vriTie

vri |ki − v). (18)

Here |ki − v) is the state of scattering with the wave function
ψ

(+)
ki−v

(ri − R) in (14). The addition of the sum of intermediate
momentum states, the operators |qi〉〈qi|, ahead of Ti puts the
matrix element in (18) in the form

∑
qi

q2
i

2
(k′

i − v|qi − v〉〈qi − v|ki − v). (19)

Analogously, Eq. (16) is transformed to

d〈E〉
dt

≈ 2 Re
∑

i

∑
K,K′

f ∗
K′ fKei(ki−k′

i )R

× 1

i

∑
qi

q2
i

2
(k′

i − v|qi − v〉〈qi − v|V |ki − v). (20)

Averaging of the exponential factor over R results in the
appearance of the delta function δ(ki − k′

i ). Hence, for each
i, the sum over K and K′ converges to the sum over ki of
diagonal elements of the one-electron density matrix f ∗

ki
fki .

Also, the summation over i is trivial: All electrons give
identical contributions. Further, we have the relation [13]

〈q − v|V |k − v) = −2πA(k − v, q − v), (21)

where A(k − v, q − v) is the amplitude of scattering from the
state |k − v〉 to |q − v〉, and the momentum representation of
the scattering state |k − v) is given as

〈q − v|k − v) = δ(q − k) + 1

2π2

A(k − v, q − v)
(q−v)2

2 − (k−v)2

2 − io
. (22)

The presence of the delta function δ(q − k) here results in
the appearance of a combination of two terms in (20) with
the forward scattering amplitude A(k − v, k − v) which are
suited for application of the optical theorem.

With all this taken together, Eq. (20) acquires the form

d〈E〉
dt

= n
∫

dk| fk|2
∫

dq
(

q2

2
− k2

2

)
|A(q − v, k − v)|2

× δ

(
(q − v)2

2
− (k − v)2

2

)
, (23)

where n is the electron density. In the case of electrons being
initially at rest, k = 0, this is nothing but the familiar repre-
sentation of energy loss through the transport cross section.

Relying more on the CDW method considered in Sec. IV,
I do not treat here the straggling in detail. I mention only
the main differences from the mean energy loss and compare
this approach with the approach used in [7]. The difference
between (16) and (17) is that the operator T 2 contains not
only the single-electron terms T 2

i , but also the two-electron
terms TiT j . For the former, the above procedure results in
replacement of the terms q2/2 and k2/2 in expression (23) by
their squares. This result is readily associated with Bohr’s pic-
ture of the phenomenon, and, in the case of purely Coulomb
interaction, the straggling is given again by the formula (1).

For collisions with two electrons, the equation for
d〈TiT j〉/dt with i 	= j has the form of Eq. (20) with respective
modifications on its right-hand side. First, instead of two states
of the ith electron with the momenta ki and k′

i we have now
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two pairs of states with momenta ki and k j and momenta k′
i

and k′
j and also two final states with momenta qi and q j . In

turn, this results in the necessity to consider the two-electron
density matrix f ∗

k′
ik

′
j
fkik j while the averaging over R establishes

a less restrictive relation of the momenta: k′
i + k′

j = ki + k j .
Finally, instead of the last factor in the integrand in (20) we
will have

(k′
j − v|q j − v〉〈q j − v|k j − v)(k′

i − v|qi − v〉
× 〈qi − v|V |ki − v). (24)

With this expression, where the entering matrix elements are
determined by (21) and (22), the contribution of collisions
with two electrons can be presented by a set of Feynman
diagrams. Their number suggests that such calculations would
require considerable effort. A simpler expression is used in
[7], where in fact the product of four respective scattering
amplitudes is used instead of (24). This is, however, just one
diagram; the contribution of others is left uncertain.

Finally, it is easy to verify that in the absence of corre-
lations fkik j = fki fk j , the contribution of collisions with two
different electrons in 〈E2〉 is exactly compensated when the
variation of the square of the mean energy is subtracted
[Eq. (9)]. So, as expected, the principal property of statistics
of classical independent collisions is exactly reproduced.

IV. DISTORTED-WAVE APPROACH

In this approach, the wave function � is approximated as
[15]

� = D�0, (25)

where �0 is the wave function of the unperturbed ground state
of electrons and the factor D(R, t ) accounts for the distortion
due to the projectile field U . If this factor is chosen so that it
satisfies the equation

i
∂

∂t
D = (T + U )D, (26)

the wave function � [Eq. (25)] satisfies the wave equation
with the residue ∇iD · ∇i�0. It is argued that, at sufficiently
large energy of the projectile, this term can be disregarded.

In this approximation,

H0� = T D · �0 + E0�, (27)

where E0 is the energy of the ground state �0. Notice that, in
contrast to the IA, the internal dynamics of electrons is herein
considered. In the insertion of (27) into expressions (2b) for
ρE and (8a) and (8b) for ji and jE ,i, the term E0� can be
omitted; it is easy to verify that this does not change the value
of �2. The resulting expressions are

ρE (R, t ) = ρ0ρd
E , (28)

ji(R, t ) = ρ0 jd
i + ρd j0

i , (29)

jE ,i(R, t ) = ρ0 jd
E ,i + ρd

E j0
i , (30)

where ρ0 = |�0|2 and j0
i are, respectively, the density and

current in the unperturbed electron system. The latter, if
existent, can be safely excluded in further consideration. The
variables with the upper index d are defined by the same

expressions (2) and (8) where � is replaced by D and H0 by
T . Further, for the indistinguishable electrons the distortion D
is expressed as a product of identical factors:

D(R, t ) =
∏

i

D(ri, t ). (31)

We can introduce one-electron densities and current densities
in three-dimensional space which are later denoted by the
same symbols ρ and j, respectively.

Substitution of (28)–(30) into Eqs. (9)–(12) results in the
equation for straggling [in Eq. (8b) separately consider the
terms with j = i and i 	= j, where j is the index of the electron
in the sum of kinetic energies (4)]

d�2

dt
= d�2

0

dt
+ d��2

c

dt
, (32)

where

d�2
0

dt
= 2n

∫
d3rE (r, t ) jd

E (r, t ), (33)

d��2
c

dt
= 2n

∫
d3r1d3r2n[g(r1, r2) − 1]ρd

E (r1, t )
dρd

E (r2, t )

dt
.

(34)

Here

dρd
E (r2, t )

dt
= E (r2, t ) jd (r2, t ) (35)

and g(r1, r2) is the pair-correlation function,

n2g(r1, r2)=N (N − 1)
∫

d3r3 · · · d3rN |�0(r1, r2, . . . , rN )|2.
(36)

In the case of uniform electron gas g(r1, r2) = g(|r1 − r2|) and
used below is the structure factor S(q) defined as the Fourier
transformation

n[g(|�r|) − 1] = 1

(2π )3

∫
d3q[S(q) − 1]eiq�r. (37)

To satisfy correct boundary conditions, the distortion factor
D(s), s = r − R, is taken in the CDW approach as D =
eivsψ+

−v (s). In the case of Coulomb interaction it is expressed
as

D(s) = C0M(−iν, 1, iu) = (F ′
0 − iF0)ei(u/2), (38)

where M(α, γ , z) is the confluent hypergeometric function,
C0 = 2πν/[exp(2πν) − 1], and ν = −Z1/v. With such a
choice of sign, ν > 0 corresponds to negatively charged
projectiles, the repulsive projectile-electron interaction. The
variable u is the parabolic coordinate u = vs + vs. In the
second form in (38), D is expressed through the function
F0 = F0(ν, u/2), the Coulomb scattering wave, and the prime
indicates the derivative with respect to the second argument.
The function F0(ν, z) satisfies the equation

F ′′
0 +

(
1 − 2ν

z

)
F0 = 0. (39)
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In these terms, the density and current densities in (33) and
(34) are written as

ρd
E = νv

s

(
F 2

0 − F ′2
0

)
, (40)

jd = 2ν

us
F 2

0 (vs + sv), (41)

jd
E = νv

2s2

(
2F0F ′

0
s
s

+ (
F 2

0 − F ′2
0

)
(vs + sv)

)
. (42)

These expressions are used in the Appendix to write Eqs. (33)
and (34) for �2

0 and ��2
c in a form appropriate for numerical

calculation. It is also shown therein that Eq. (33) for �2
0,

the noncorrelation term in straggling, converts to the Bohr
formula (1).

Using Eqs. (40)–(42), one can easily derive expres-
sions for the straggling in the perturbation and quasiclas-
sical approaches by just replacing F0 by the perturbative
F0 = sin(u/2) or by the WKB solution of Eq. (39), respec-
tively. Though such an analysis is not significant in the present
context, one important issue arising in the quasiclassical treat-
ment is worth mentioning. Equation (12) is represented in this
approach as

d〈E2〉
dt

= 2πa2v3Z1n
∫ ∞

umin

du

u2
√

1 − 2a
u

, (43)

where a = −2Z1/v
2, |a| is the collision diameter in the

Rutherford scattering, and again a > 0 for a repulsive inter-
action. At a > 0, the integral over the classically accessible
region u > umin = 2a is convergent and Bohr’s result (1) is
exactly reproduced. At the same time, in the most interesting
case of attractive projectile-electron interaction, a<0, umin=0,
and the integral in (43) diverges at small u as

√
1 − 2a/u.

However, the flux of jE2 through the surface u = const also
diverges at small u and only accounting for both terms on the
right-hand side of (7c) leads to the correct result. Clearly, this
issue originates from the fact that the condition, analogous to
the Kato cusp condition, is not fulfilled in the classical case.
This agrees well with the conclusion made in [11] that, in the
description of energy transfer in the projectile-electron colli-
sions, the classical approach fails at small impact parameters
b � λ, where λ = 1/v is the de Broglie wavelength of electron
moving with velocity v.

The screening of the projectile field plays an important role
at low energies, precisely where the electron correlations are
effective (see the next section). In general, results obtained in
the distorted-wave approximation are of questionable value
if, simultaneously, the interelectron interaction is not taken
into account. Considering a collision with an electron, one
must take into account the presence of a “third body,” all
other electrons, and, as shown by Dodd and Greider [16],
all interactions in the three-body system must be considered
already in the first-order approach. An example of the proper
treatment is the RPA description of the electron gas response
to external perturbation [2] where a qualitatively different
feature, the plasmon excitations, is revealed and the effect
of the screening is well illustrated. In the next section, the
screening is introduced into Eqs. (33) and (34) by a proper
modification of the projectile electric field E .

V. NUMERICAL RESULTS AND DISCUSSION

The results of the preceding section are used herein to
describe the effect of electron correlations in the case of a
uniform electron gas. The cross term of the kinetic energy
operator neglected in the CDW approximation can be esti-
mated as a product of the velocity of a recoiled electron,
which is of the order of the projectile velocity, and a typical
velocity of unperturbed electrons. Ignoring this term in H0�

is thus justified if v � vF . Notice also that the importance of
this term is otherwise diminished when it is averaged over
the directions of the velocities. Thus, it is believable that the
approach is capable of providing reliable results at v � vF

and, moreover, can reveal major trends at lower velocities.
This is supported by successful applications of the CDW
approach in the description of ion-atom collisions. It has
been recognized in this case that the main obstacle for usage
of the CDW approximation at lower energies is improper
normalization of the wave function of the distorted states of
bound electrons [17], a problem that is not significant in the
case of a translation-invariant system.

To estimate its effectiveness, the screening of the projectile
Coulomb field can be introduced as an additional exponential
factor exp(−κs/λad) in the potential V (s). Here λad is the adia-
batic distance for the projectile-electron collision λad = v/ωp,
where ωp = √

4πn is the plasma frequency. The parameter
κ ∼ 1 is to be chosen empirically. Such an isotropic form
does not reflect, however, the wakelike pattern of screening
of a moving particle. To model this, the screening function
is taken further as exp(−κu/vλad) and the screening pattern
is shaped by the parabolic coordinate curves u/v = s + x =
const, with x the coordinate along v. The value of κ = 1.5
is chosen to reproduce the RPA results [18] when an equiva-
lent perturbation approximation F0 = sin(u/2) is used in the
present method. Figure 1 shows the noncorrelation part of the
straggling �2

0 [Eq. (33)] for four values of the conventional
parameter χ2 = 1/πvF characterizing the electron density,
where vF = (3π2n)1/3 is the Fermi velocity. The RPA results
at each χ2 are presented as the low- and high-velocity asymp-
totic curves joined at their crossing. Though not perfectly,
such a simple model of screening approximately reproduces
the general tendency of its variation with χ2.

0 0.5 1 1.5 2
v/vF

0

0.5

1

1.5

Ω
2 0/Ω

2 B

Perturb.
RPA

FIG. 1. Perturbation results for the straggling �2
0 at χ 2 = 10−3,

10−2, 0.1, and 0.4 (solid curves from top to bottom, respectively).
The dashed lines are the corresponding RPA results.
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0.5
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1 2
3

3

1
1

2
2

3

3

1

Z1=−1

Z1=1

FIG. 2. Results of calculations of �2
0 in CDW approxima-

tions (solid curves) compared with the perturbation results for 1,
χ 2 = 0.01; 2, χ 2 = 0.1; and 3, χ 2 = 0.4.

In Fig. 2 the perturbation results for Z1 = 1 and Z1 = −1
are shown together with the results obtained in the present
CDW approach. At small χ2 = 0.01, the Fermi velocity is
large, vF ≈ 32. Consequently, the absolute value of the pa-
rameter ν = Z1/v is small at almost all velocities v shown;
the perturbation approach is thus applicable. An exception is
the range v � 1 (v/vF  1) but, as seen in Fig. 2, the field
of a projectile moving with such velocities is almost totally
screened.

To illustrate the origin of the higher-order corrections seen
at larger values of χ2, Fig. 6 in the Appendix shows the
integral in (A1) as a function of the upper limit umax con-
sidered now as variable, the function U (umax) [Eq. (A2)]. It
would show the values of �2

0/�
2
B if, instead of the exponential

screening, a sharp cutoff of the potential at the equivalent
distance umax ≈ vλad is assumed. It can be seen in the figure
that at ν < 0 (Z1 > 0) the attractive interaction results in a
concentration of the higher-order effects at small u (close
collisions). In the absence of screening, the resulting excess
over unity is compensated at larger u and the screening
makes this compensation incomplete. At ν > 0 the situation
is different; the concentration of effects at the boundary of
the classically accessible region u ≈ 4ν is less expressive, the
main reason being that the singular behavior of the energy
flux jd

E [Eq. (42)] occurring at the points of classical return is
not accompanied in this case by singularity of the projectile
field E .

The behavior of U (u) at large u (Fig. 6) has a simple
classical explanation. Note first that the contribution of this
region to the energy loss is partly due to electrons experienc-
ing close collisions. These recoiled electrons have significant
speed and, depending on the sign of Z1, attractive or repulsive
interaction, their energy is additionally decreased or increased
in the passage through this region of u. Therefore, weakening

0 5 10 15
v (a.u.)

−1

0

1

2

Ω
2 /Ω

2 B

χ2=0.1 (VF=3.2)

H

He
Li

H
He Li

FIG. 3. Velocity dependence of �2
0 (upper curves) and ��2

c

(lower curves).

of the interaction due to the screening results in charge asym-
metry of the higher-order correction. The same arguments
were used to interpret the origin of the Barkas correction
[19] in the mean energy loss [11,20]. Obviously, equivalent
results will be obtained in the transport cross-section method
[21] if the screening of the projectile field is consistently
taken into account. It is worth noting also that the alternative
interpretation of the Barkas effect is its association with the
electron binding [22], and a special analysis is required to
specify which effect is dominating in specific conditions.

At the same time, there is no place here for the even-order
correction analogous to the Bloch correction in the stopping
cross section [23]. As shown in [11,21], this correction is
not related to the screening; the nonlinear corrections in the
current density j(R, t ) do not vanish when the integration over
all space is fulfilled in (11). In contrast, the integration (12)
with the pure Coulomb E (ri, t ) results in Bohr’s straggling
and all higher-order effects in jE (R, t ) are canceled out
(see also Ref. [21]).

Calculations of the contribution of the electron correlations
��2

c were performed using Eqs. (A3), (A7), and (A11). For
the structure factor of the electron gas S(q), the analytic
approximation [24] of the quantum Monte Carlo data [25]
was used. Results for H, He, and Li ions slowing down in the
electron gas with χ2 = 0.1, one of the values characteristic of
atomic shells, are shown in Fig. 3. It can be seen in the figure
that the value of ��2

c is of the same order as the magnitude
of screening and higher-order effects in �2

0 (deviations from
unity of the upper curves). Recall that the CDW approach
may be not reliable at v � vF and vF = 3.2 in this case. It
is believable, however, that the order of magnitude of the
corrections is properly reproduced also at such velocities.

Figure 4 shows the results of calculations for He ions,
illustrating the contribution of both corrections. Ordinarily,
the decrease of �2 at small velocities is attributed to the
screening effect alone. However, the present results show that
a comparable decrease of the straggling may be produced
by electron correlations. At the same time, the higher-order,
nonlinear, effects act in the opposite direction. Unfortunately,
since �2

0 and ��2
c are described independently, their sum-

mation can result in a nonphysical negative value of �2,

032711-6



ENERGY-LOSS STRAGGLING WITH HIGHER-ORDER … PHYSICAL REVIEW A 100, 032711 (2019)

0 5 10 15 20
v (a.u.)

−1

0

1

2

Ω
2 /Ω

2 B

He,  χ2=0.1 (VF=3.2)

0.4 0.1 χ2=0.01

FIG. 4. Total straggling �2 of He ions moving in electron gas
with χ 2 = 0.1. The dashed curve on top shows �2

0 and the bold dash-
dotted curve on the bottom shows ��2

c . For an explanation of the two
other dash-dotted curves see the text.

as observed at very small velocities. Actually, however, all
approximations used lose their applicability at such velocities.

The values of ��2
c are determined by both the screening

and the correlation function g(r). To separately illustrate the
effect of correlations, three results for ��2

c (v) are shown in
Fig. 4 (dash-dotted curves). These results are obtained using
the same screening function, determined at χ2 = 0.1, but
with different correlation functions. Specifically, the structure
factor S(q) was calculated for different densities of electron
gas, the values of χ2 were taken as in Fig. 2. As shown in
Fig. 4, the effect of the correlations increases when χ2 is de-
creased; this is explained as follows. The factor n[g(r1, r2)−1]
in the integrand of (34) represents the exchange-correlation
hole, the depletion of density of other electrons in the vicinity
of one distinct. The volume of the hole is equal to −1, the
conservation of the number of electrons, and its width is
scaled proportionally to rs, where rs is the density param-
eter, 4πr3

s /3 = 1/n, χ2 = αrs, and α = (4/9π4)1/3 ≈ 0.17.
With this hole in the two-particle distribution, the averaging
(34) assigns large weights to the products of ρd

E (r1, t ) and
dρd

E (r2, t )/dt when r1 and r2 are small, less then ∼rs. The
weights are approximately proportional to n, hence the ob-
served increase of the absolute value of ��2

c .
The behavior of the electron wave function in the vicinity

of the projectile is not changed significantly due to the screen-
ing of its field at larger distances and, under the conditions
of strong interaction, the defects of the CDW approximation
are also insignificant. Thus, these results show that the spatial
correlations, an integral feature of a real electron gas, must
necessarily be included in theoretical models of straggling of
energy loss.

The asymmetry with respect to the sign of the projectile
charge is illustrated in Fig. 5, where the straggling of energy
loss of protons is compared with that of the antiprotons. The
much smaller values of ��2

c for antiprotons compared to

0 2 4 6 8 10
v (a.u.)

0

0.5

1

Ω
2 /Ω

B2

χ2=0.1 (VF=3.2)
p

p

FIG. 5. Comparison of the energy-loss straggling of protons
and antiprotons. The dashed curves show �2

0, the straggling in the
absence of electron correlations.

those for protons is easily explained. In the integral (34), the
main contribution is provided by the region where all three
factors in the integrand have significant values. For the last
two factors in the case of protons, this happens at small r1

and r2, where, simultaneously, the pair-correlation function
has its minimum. Such a picture is significantly smeared out
in the case of repulsive projectile-electron interaction where
the close approach of collision partners is not allowed.

Møller et al. [26] measured the straggling of protons
and antiprotons in Al, Ni, and Au foils but at low energies
1–70 keV where the CDW approach is hardly applicable.
In the measurement results, the effects discussed here are
strongly obscured by additional fluctuations of energy loss
due to inhomogeneity of the target foils. However, at least for
one, Al, foil, the straggling of antiprotons is seen to be lower;
thus the type of charge sign asymmetry is the same as in Fig. 5.
In this paper, the measurement results are compared with
calculations carried out in the binary collision approach [27].
Before correcting for the target inhomogeneity, the calculation
result shows also the Barkas effect comparable to that pre-
dicted in Fig. 5. It is however hardly doubtful that the classical
model used in the approach is suitable in these conditions.
Really, as it is argued in [11], the classical description of
energy loss is not applicable at v � 1. The reason is that any
wave packet of an electron with the width in the transverse
direction δb spreads during the time of collision τ ∼ b/v
to the width b/vδb > 1 since, clearly, δb/b must be small.
However, even with δb/b ∼ 1 the wave packet spreads to the
size of an atom, and thus the desired picture of the electron
moving along a classical trajectory cannot be realized.

VI. SUMMARY

In most approaches, the energy loss of a charged projectile
is expressed as a sum of probabilities of excitations of the
target electrons weighted with the corresponding energies of
transitions. The only alternative used hitherto is calculation
of the backreaction of the medium, the retarding force acting
on the projectile from the polarized electron cloud [2]. The
present paper provides further development of the method
where the energy deposition is determined locally at each
point of the stopping medium. Provided the perturbed wave
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function of electrons is known, at least approximately, this
greatly simplifies further analysis.

In Sec. II the same method was used to describe the den-
sity of energy squared. The method was applied to describe
the energy-loss straggling using two approximations for the
perturbed wave function: the IA and CDW approximations.
It has been demonstrated that, in contrast to the mean energy
loss, the straggling is sensitive to the correlations of projectile
collisions with different electrons. Neglecting the interelec-
tron interaction during the collisions, one can consider only
pair correlations. It was shown in Sec. III that the treatment of
a projectile collision in the impulse approximation turns out to
be rather cumbersome. Fortunately, calculations in the CDW
approach, which are more reliable in general, are feasible.
In contrast to the IA, two features, distortion of the wave
function and the initial motion of electrons, are considered in
this case independently. Compared to the effect of correlations
of collisions with atoms discussed previously [6], the electron
correlations, an inherent feature of any multielectron system,
modify the statistics of close collisions with electrons which
are the main cause of the straggling.

Except for the screening of the projectile field, the strag-
gling at low velocities is modified also due to the higher-order
correction over Z1. This correction originates from the same
effect as that responsible for the Barkas correction in the stop-
ping cross section, and its effect is comparable to the effect of
electron correlations. For positively charged projectiles, the
higher-order and correlation corrections are of opposite signs;
they could effectively compensate one another. At Z1 < 0,
in contrast, the higher-order correction originating from the
distant collisions is still effective, while the effect of electron
correlations is less pronounced.

Charge exchange of ions in a medium, not accounted for in
the preceding consideration, can effectively contribute to the
straggling. The effect is twofold: First, electrons bound to the
ion additionally screen the Coulomb field of the projectile nu-
cleus and, second, electron capture and loss events themselves
result in energy losses. Provided the dynamics of charge
exchange is known, the former effect can be accounted for
in the proposed scheme of calculation. On the other hand, this
scheme provides also an alternative vision of effects due to
the electron captures and losses. Ordinarily, they are believed
to result in sharp changes of momentum of the projectile.
Here, instead, the effects are to be presented as a specific
modification of the current densities j(r, t ) and jE (r, t ), both
being smooth functions of time. Basically, the jumps in charge
state, as if really occurring, do not fit in the picture of a
smoothly evolving quantum state of electrons.

To reveal the considered effects in experimental data, a per-
formance of detailed calculations is required where, following
the Lindhard-Sharff model [28], the results for a uniform
electron gas are to be averaged over the distribution of electron
density in an atom. Such work is beyond the scope of the
present paper.

Neither of the approximations considered provides a re-
liable description at low energies. At these energies, the
density-functional theory is seen as an attractive alternative.
The electron correlations are inherently included in this the-
ory. Runge and Gross [29] developed a nonstationary ver-
sion of this approach, the time-dependent density-functional

theory, which was used already in the description of the mean
energy loss [30]. Considering the results of the present paper,
the current density-functional theory developed by Dhara and
Ghosh [31] seems even more attractive.
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APPENDIX: FORMULAS FOR NUMERICAL
EVALUATION OF �2

0 AND ��2
c

Herein the expressions (33) and (34) for the components of
straggling �2

0 and ��2
c are represented in a form facilitating

numerical calculations. The integration in these expressions
is easier to perform when the parabolic coordinates are used:
u = vs + vs, w = vs − vs (s = r − R), and the azimuthal an-
gle ϕ. The volume element in these variables is

d3s = 1

2v2
s dudwdϕ, s = |s| = u + w

2v
.

Let us consider first the case of the nonscreened
Coulomb potential of the projectile-electron interaction
V (r, t ) = −Z1/s = νv/s and E = νvs/s3. Substitution of
(42) into (33) gives(

d�2
0

vdt

)
= 4πZ2

1 n
∫ ∞

0

du

u2

[
2F0F ′

0 + u
(
F 2

0 − F ′2
0

)]
. (A1)

For the integral on the right-hand side, the indefinite integral
is found to be

U (u) = F 2
0 + F ′2

0 − 2

u
F0F ′

0 − 4ν

u
F 2

0 . (A2)

Knowing also that at small u the function F0(ν, u/2) ≈ C0u/2
and at large u it behaves as sin(u/2 + σ ), where σ is a constant
phase [32], we arrive at Bohr’s result (1), as expected. Figure 6
illustrates details of the behavior of U (u) for different signs
of the projectile charge. To account for the screening, it is
necessary to add an additional factor, the screening function,
to the integrand in (A1).

In Eq. (34) it is convenient to perform the Fourier transform

d��2
c

dt
= 2n

(2π )3

∫
d3q[S(q) − 1]ρd

E (q)
dρd

E (−q)

dt
, (A3)

04020
umax

0

1

2

3

4

U
(u

m
ax

)

ν=−2

ν=0
ν=2

FIG. 6. Integral in (A1) as a function of the upper limit, the
function (A2).
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where, according to Eqs. (40), (41), and (35),

ρd
E (q) = νv

∫
d3s
s

(
F 2

0 − F ′2
0

)
eiqs, (A4)

dρd
E (−q)

dt
= 2ν2v

∫
d3s

1

s3
F 2

0 e−iqs. (A5)

The only factor dependent on w and ϕ in the integrand in (A4)
is

eiqr = ei(k‖(u+w)+2k⊥
√

uw cos ϕ),

where k = q/2v and k‖ and k⊥ are, respectively, the longitudi-
nal and transverse components of this vector with respect to v.
Integration of this factor over ϕ results in the Bessel function
J0(2k⊥

√
uw), and then the integral over w is taken as [33]∫ ∞

0
dw J0(2α

√
w)e−iβw = − i

β
ei(α2/β ).

The result is

ρd
E (q) = − iπν

vk‖

∫ ∞

0
du

(
F 2

0 − F ′2
0

)
ei(α+iε)u, (A6)

where α = k2/k‖ and the positive infinitesimal ε is added to
ensure convergence of the integral. Finally, after integration
by parts with replacement of F ′′

0 with that from (39), Eq. (A6)
is converted to

ρd
E (q) = −2iπν

vk‖

(
2ν − iα2 ∂

∂α

)
I0(ν, α + iε), (A7)

where

I0(ν, t ) =
∫ ∞

0

du

u
F 2

0

(
ν,

u

2

)
eitu. (A8)

Using the relation [32]

F0(ν, z) = C0ze−izM(1 − iν, 2, 2iz),

this integral is taken using Nordsieck’s method [34]

I0(ν, t ) = C2
0

4
[−i(t + 1)]−1+iν[−i(t − 1)]−1−iν

× F

(
1 − iν, 1 + iν; 2;

1

1 − t2

)
, (A9)

where F (α, β; γ ; z) is the hypergeometric function.

To transform (A5) in the same way, we first add one more
integration replacing the factor 1/s3 in the integrand by

1

s

∫ λ

0

dx

x3
e−s/x =

(
1

s3
+ 1

λs2

)
e−r/λ.

At λ = ∞ this expression gives the desired factor 1/s3 and, as
can be easily checked, a finite λ corresponds to the screening
of the projectile Coulomb field in the form

V (s) = νv

s
e−s/λ. (A10)

Thus λ defines the value of the screening radius.
The main result of such modification is lowering of the

power of s in the denominator of the integrand in (A5), which
allows one, after the change of order of integration over x and
over s, to apply again Nordsieck’s method:

dρd
E (−q)

dt
= 8πν2v

∫ λ

0

dx

x2(k‖x + i)

∂

∂β
I0(ν, β + iε), (A11)

where I0 is the same integral (A8) and

β = − 1 + k2x2

x(k‖x + i)
. (A12)

Note that this method admits some freedom in choosing the
screening function; the exponent in (A10) can be taken as an
arbitrary linear combination of u and w.

The advantage of derived Eqs. (A7) and (A11) is that the
integration of the oscillating function F0(ν, u/2) has been
performed analytically. The integral I0(ν, t ) [Eq. (A9)] is a
smooth function of t with the only (integrable) singularity at
t = ±1 [the two factors in front of the hypergeometric func-
tion in (A9)]. With t = α = k2/k‖ as in (A7), this corresponds
to the condition q2 = 2vq associated with the Bethe ridge.
Note that when taken into account, the screening eliminates
this singularity.
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