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Accuracy of analytical theories for relativistic bremsstrahlung
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Angular and energy-dependent photon distributions emitted from 50-keV to 2.5-MeV electrons colliding with
targets ranging from Cu to Pb are calculated using a consistent higher order analytical approach as well as the
exact Dirac partial-wave theory. By comparison with exact numerical results for neutral atoms, the validity of the
Olsen-Maximon-Wergeland additivity rule for handling the screening correction is probed, and its applicability
for collision energies above 100 keV, if the photon frequency and emission angle are both small, is established.
The comparison for a point-Coulomb field, aimed at testing the accuracy of the underlying analytical theory,
reveals in most cases a deviation below 60% for Au, decreasing with target nuclear charge down to 10–20%
for Cu.
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I. INTRODUCTION

When an electron traverses a given material, it may lose
equal amounts of its energy to ionization and radiation emis-
sion [1]. The collision energy Ecrit , where this happens, ranges
typically from several tens of MeV for C to a few MeV for Pb.
Hence, it is clear that accurate bremsstrahlung cross sections
are of paramount importance to describe the interaction of
electrons with matter around Ecrit or above. In other cases,
which are focused on radiation emission, like the generation
of x rays with electron tubes or plasma focus devices, the
knowledge of bremsstrahlung cross sections is fundamental
for energies even much below Ecrit . Taken all together, such
diverse fields as the simulation of the interaction of parti-
cles with detectors, the interaction of cosmic rays with the
atmosphere, medical physics, and the generation of terrestrial
γ -ray flashes in thunderstorms are in need of these fundamen-
tal data.

Only nuclear bremsstrahlung will be considered here be-
cause it is the dominant process for all elements except
the lightest ones. From the point of view of fundamental
physics, nuclear bremsstrahlung is one of the simplest interac-
tion mechanisms between an electron and an atom involving
the coupling to the radiation field. Essentially, it is the radia-
tive version of elastic scattering, to which it is related by the
low-energy theorem. First calculations were performed more
than 80 years ago, at the dawn of quantum electrodynamics,
by Sommerfeld in 1931 [2] for nonrelativistic electrons and
by Sauter [3], Bethe and Heitler [4,5], and Racah [6] in
1934 for relativistic electrons. These formulations, employing
the plane-wave Born approximation (PWBA), are inadequate
for meeting the quantitative demand of modern applications.

*dj@math.lmu.de
†alessio@if.usp.br

PWBA results can be incorrect by even an order of magnitude
at large angles, and they are incapable of giving a nonzero
value of the cross section at the short-wavelength limit of
the photon spectrum. Despite the large progress over the past
50 years, it is still impossible to calculate bremsstrahlung
cross sections accurately from 1 keV to 1 TeV with a single
approach. Instead, a patchwork of different methods with
different accuracies is in use. There are two main reasons
for this dilemma. One is the need to account for both the
distortion of the wave function of the projectile electron
close to the nucleus, which renders the PWBA incorrect as
discovered by Bethe and Maximon in their seminal work [7],
and for the screening effect of the atomic electrons. The other
reason is the impossibility to express the scattering states of a
relativistic electron for a point-Coulomb field in closed form,
which is in contrast to the nonrelativistic Schrödinger case.
Only approximate analytical solutions to the Dirac equation,
the Sommerfeld-Maue (SM) wave functions [8], are known to
date.

An exact method for nuclear bremsstrahlung was pio-
neered in the 1970s by Pratt and coworkers [9], which,
nevertheless, needs numerical computations. It is based on
the expansion of the Dirac wave functions of the electron in
a realistic atomic potential in terms of partial waves (DW).
However, for initial energies of the electron beyond a few
MeV, low photon frequencies (below some 10% of the colli-
sion energy), and photon emission angles close to the forward
direction, the number of terms contributing to the cross sec-
tion can exceed a million. Although the DW theory is accurate
per se, it is beyond its reach to obtain reference cross sections
above tens of MeV for the full radiated spectrum. As a matter
of fact, this type of approach was pushed to its limits in our
previous work [10] by using the Olsen-Maximon-Wergeland
(OMW) additivity rule [11] to calculate the spectral distri-
bution of the emitted photons for unobserved final electrons.
This rule relies on the separability of the Coulomb distortion
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(which is important at high momentum transfers, i.e., q �
me c, respectively small distances, where the electron gets
close to the nucleus) from the screening (which occurs pre-
dominantly at low momentum transfer, q � me c, respec-
tively large distances, where the distortion by the central
field is weak). Therefore, the distortion and screening ef-
fects can be treated in an additive way when calculating
the bremsstrahlung intensity. It was then possible to reach
10 MeV and to obtain results for a major part of the radiated
spectrum by using a highly optimized code for the case
of a point-Coulomb field, where the solutions of the Dirac
equation possess an asymptotic representation in terms of
Whittaker functions [12]. This asymptotic representation is
much easier to handle numerically above a few MeV (or at the
foremost angles) than the Bessel function asymptotics in the
case of a neutral target. We note that the OMW prescription
was not only used in our previous work but it is in fact the
basis of the most accurate analytical results.

Above 10 MeV, only analytical calculations are possible
for a large part of the radiated spectrum. Therefore, a detailed
study of their validity is of great interest. In the analytical
description of bremsstrahlung, basic progress was made by
introducing the Sommerfeld-Maue wave functions instead of
plane waves. This leads to an improvement since the distortion
by the central field is treated in a better way but can be applied
only to the point-Coulomb case, thus neglecting screening.
The resulting SM theory was first applied to bremsstrahlung
by Bethe and Maximon [7]. Their work is still the basis for
the identification of those matrix elements which contribute
to leading order (LO) in α Z (where Z is the nuclear charge
number of the target and α is the fine structure constant) to
the cross section, a nontrivial task in the SM theory. However,
their expression for the cross section was obtained in the ultra-
relativistic (i.e., Ei � me c2 and Ef � me c2) and small-angle
limits. The complete result without these approximations was
first published by Elwert and Haug [13]. It is a relativistic
theory which is exact up to first order in α Z for the radiation
matrix element (i.e., second order for the cross section). We
recall that the SM wave functions are accurate: (i) when
α Z � 1 or (ii) at high energies and large distances from the
origin of the central field. Because the analytical approach is
limited to the point-Coulomb case, screening must be taken
into account in a separate step via the OMW additivity rule.

In order to improve on this leading-order Sommerfeld-
Maue (LO-SM) approach, a next-to-leading-order (NLO) ap-
proximation to the initial and final wave functions of the
electron was introduced by Roche and coworkers [14], which
is accurate up to second order in α Z . In the high-energy
limit, the respective wave functions can be represented in
a way that leads to a closed form for the correction to the
cross section. In their resulting theory, which will be termed
NNLO-SM, Roche et al. [14] included also one extra term
of the next-to-next-to-leading-order (NNLO), justifying it by
an improved agreement with experimental data. This practice
was later followed by all published works on that topic, to the
best of our knowledge (see, e.g., the review by Mangiarotti
and Martins [15] and a follow-up paper [10]).

The main goals of the present paper are twofold. One is
to probe the OMW additivity rule by comparing its results to
those from a DW theory where screening is fully accounted

for. To this aim, we consider collision energies between
100 keV and 1 MeV, which is a region where the OMW
additivity rule can be checked effectively. The other goal is to
introduce and to test an alternative approach, termed NLO-SM
theory, which is consistent in orders of α Z . It is defined with-
out the pathological NNLO contribution, which was recently
found to lead to severe errors, at least in some cases, for
backward photon emission (see the conference proceedings
[16]). This testing can only be achieved by a comparison with
DW results, because currently available experimental data are
too scarce and inaccurate (the uncertainties being of the order
of 10%) to serve such a purpose [17]. As demonstrated below,
a large improvement of the correction to the leading order at
backward photon angles is found and much better results can
be obtained for bremsstrahlung cross sections at a few MeV
by analytical means than previously thought possible.

The paper is organized as follows. Section II gives an
outline of the analytical approach and of the DW theory.
Screening effects as a function of collision energy are investi-
gated in Sec. III for Sn, Au, and Pb targets, including the test
of the OMW additivity rule against the screened DW theory.
In Sec. IV, results for the photon spectra are given within the
analytical theory in comparison with experimental data and
DW results for targets ranging from Cu to Au. The conclu-
sions are drawn in Sec. V. Atomic units (h̄ = me = e = 1) are
used unless indicated otherwise.

II. THEORY

In our theoretical approaches, the photon field is treated
to first order, a commonly used approximation for collision
energies up to the MeV region. Accounting for undetected
scattered electrons and unobserved polarization degrees of
freedom, the doubly differential cross section for the emission
of bremsstrahlung with momentum k and frequency ω = c k
into the solid angle d�k , is given by [18]

d2σ

dω d�k
= 4π2ω kf Ei Ef

c5 ki

1

2

∑
σi,σf

∑
λ

∫
d�f |Wrad|2, (2.1)

where the triply differential cross section for the elementary
process of bremsstrahlung is integrated over the final solid
angle d�f of the electron, summed over its spin projection
σf as well as over the two linear polarization directions λ1 and
λ2 of the photon, and averaged over the initial spin projection
σi of the electron. The radiation matrix element is defined by

Wrad =
∫

dr ψ
(σf )†
f (r) (α · e∗

λ) e−ik·rψ (σi )
i (r), (2.2)

where α is the vector of Dirac matrices. In Eq. (2.1), ki, kf and
Ei, Ef are, respectively, the momenta and total energies of the
initial and final states of the electron.

The approaches introduced below differ in the choice of
the wave functions ψi and ψf , which describe the scattering
electron. On one hand, they are exact solutions to the rela-
tivistic Dirac equation and are expressed as a sum of partial
waves. In this DW theory, the electron-target atom interaction
is either described by a central static screened potential or
by a point-Coulomb field. On the other hand, ψi and ψf

032703-2



ACCURACY OF ANALYTICAL THEORIES FOR … PHYSICAL REVIEW A 100, 032703 (2019)

are approximated by the analytical Sommerfeld-Maue wave
functions valid only for a point-Coulomb potential.

A. Analytical approach

In the analytical approach, the treatment of the static
atomic potential V (r) proceeds in two steps. In the first step,
V (r) is replaced by a point-Coulomb field, VCoul(r) = −Z/r.
In the leading-order Sommerfeld-Maue (SM) approximation,
ψi and ψf are represented by SM wave functions. For an
incoming electron, this wave function reads

ψ
SM(σi )
i (r) = ψSM(σi )

a (r) + ψ
SM(σi )
b (r),

ψSM(σi )
a (r) = NSM

i eiki·r
1F1(i ηi, 1, i(kir − ki · r)) u(σi )

ki
,

ψ
SM(σi )
b (r) = −NSM

i eiki·r ic

2Ei
α ·∇1F1(iηi, 1, i(kir−ki · r))u(σi )

ki
,

NSM
i = eπ ηi/2 �(1 − i ηi )/(2π )3/2, (2.3)

where 1F1 is a confluent hypergeometric function, ηi = Z Ei/

(kic2), � is the � function, and uki is a free 4-spinor. In the
next-to-leading-order SM approximation, an additional term
ψRDP

c is added to the SM wave function according to the
prescription by Roche et al. [14]. No closed form can be
obtained explicitly for ψRDP

c . However, in the high-energy
limit, ψRDP

c is defined implicitly, e.g., again for the incoming
electron, by the solution of the equation

(∇2 + k2
i

)
ψRDP(σi )

c (r) = − (Z/c)2

r2
ψSM(σi )

a (r). (2.4)

As shown by Roche et al. [14], Eq. (2.4) is sufficient to obtain
a closed form for the corrections to the matrix element and
hence to the cross section. When applying these modified
wave functions to the calculation of the bremsstrahlung cross
section, care has to be taken to retain consistently just those
contributions which (a) survive in the high-energy limit and
(b) are at most of third order in Z/c. To make this clear, the
radiation matrix element is represented in the following form,

Wrad = WSM + WRDP, (2.5)

where WSM is the radiation matrix element of the (leading-
order) SM theory (see, e.g., Ref. [13]), while WRDP is the
analytical matrix element which accounts for the NLO correc-
tions to the SM theory. In terms of the contributions ψSM

a and
ψSM

b introduced in Eq. (2.3), the expression of WSM correct to
leading order is

WSM = Wfa,ia + Wfa,ib + Wfb,ia, (2.6)

where the subscripts indicate whether ψSM
a , subscript (a), or

ψSM
b , subscript (b), are used for the initial, subscript (i), or

final, subscript (f), states. The expression for WRDP containing
all terms of third order in Z/c in the cross section that survive
at high energies, consists, as shown in Ref. [14], of the two
contributions which consider the additional term ψRDP

c in the
initial, respectively final, channel,

WRDP = Wfa,ic + Wfc,ia, (2.7)

following the nomenclature of Eq. (2.6). Roche et al. [14]
managed to obtain with the help of Eq. (2.4) the following

closed form,

WRDP = −
[

1

k2
i − (kf + k)2

+ 1

k2
f − (ki − k)2

]

×2π2Z2

c2 q
NSM

i NSM
f

(
u(σf )†

kf
α · e∗

λ u(σi )
ki

)
, (2.8)

where q = ki − kf − k is the momentum transfer and NSM
f is

analogous of NSM
i for the final state.

The bremsstrahlung intensity has, however, to be calcu-
lated from∫

d�f |Wrad|2 ≡
∫

d�f [|WSM|2 + 2Re(W ∗
SMWRDP)]. (2.9)

The integrand in Eq. (2.9) differs from the absolute square of
Eq. (2.5) by the term |WRDP|2, which is one of the still higher
order terms in Z/c. We recall that this term had been retained
inconsistently in all earlier publications on this subject.

The second step in the analytical theory is the inclusion
of screening of the point-Coulomb potential, VCoul, by the
potential of the atomic electrons, Vel. This is done by means of
the Olsen-Maximon-Wergeland (OMW) sum rule [11] applied
to the cross section [d2σ/(dω d�k )]Coul, pertaining to VCoul, in
order to obtain the respective cross section for the full static
potential, V = VCoul + Vel,(

d2σ

dω d�k

)
screened

=
(

d2σ

dω d�k

)
Coul

+
[(

d2σ

dω d�k

)PWBA

screened

−
(

d2σ

dω d�k

)PWBA

Coul

]
. (2.10)

The screening correction in the second line of Eq. (2.10) is
given by the difference in the PWBA cross sections with
V = VCoul + Vel and V = VCoul, respectively. The applicability
of the OMW additivity rule to the doubly differential cross
section for not too low initial or final electron energies was
conjectured by Olsen et al. [11]. This screening correction can
be calculated within the PWBA, because it is only important
at large electron-atom distances where the nuclear potential
is considerably attenuated. A quantitative justification of the
neglect of higher order terms in the PWBA is offered at the
end of Sec. III.

An important simplification introduced by treating screen-
ing in the PWBA is that the effect of the potential Vel,
generated by the charge distribution of the atomic electrons,
is completely accounted for by an atomic form factor [18]

F (q) = 1 + c q2

4 π Z

∫
dr eiq·r Vel(r). (2.11)

We note that the replacement of the potential by its form factor
is only strictly valid in the PWBA.

To establish the OMW rule, three main assumptions had
to be made: (a) the relevant contributions to the radiation
matrix element in Eq. (2.2) originate from the same regions of
space (corresponding to q ≈ c and q ≈ c3/Ei ≈ c3/Ef ) both
for the correct result and for the PWBA, (b) the initial and
final energies of the electron are high (i.e., Ei � c2, Ef � c2)
so that the Wentzel-Kramers-Brillouin (WKB) approximation
can be used, and (c) all involved angles are small. Moreover,
Olsen et al. [11] adopted for [d2σ/(dω d�k )]Coul the LO-SM
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expression, which is justified by the assumptions (b) and (c).
Since their result is based on the WKB approximation and
not on an expansion in Z/c, it holds for all Z/c. As was also
shown, the OMW additivity rule is only valid for the singly
and doubly differential cross section: In fact, for the triply
differential one, there is an additional correction to the PWBA
from the region of space where q ≈ c. So Ref. [11] leaves
open three main questions about the general validity of this
prescription: (i) what is the lowest allowed collision energy,
(ii) what happens at larger angles, and (iii) what happens when
higher order corrections to the LO-SM theory are included.

Explicit formulas for the PWBA, the LO-SM, and the
NLO-SM cross sections used in the present work can be
found in Refs. [15,18]. Despite the closed-form expressions,
it is still necessary to evaluate the Gauss hypergeometric
function twice for each value of the triply differential cross
section and to perform multidimensional integrations with
adaptive Gaussian quadratures. Details about the numerical
implementation and all the tests that have been performed to
ensure the correctness of the developed program are reported
in Ref. [19].

B. Dirac partial-wave method

In the Dirac partial-wave (DW) theory, the scattering states
ψi and ψf are expanded in terms of partial waves. For each
partial wave, the radial Dirac equation for an electron moving
in the potential V (r) is solved numerically (with the help of
the code by Salvat et al. [20]). V (r) can be obtained from the
nonrelativistic Hartree-Fock density distribution of the target
electrons. Koga [21] provides a representation of this density
in terms of a superposition of exponentials obtained by a
fitting procedure.

An advantage of the partial-wave representation is the fact
that the angular integration involved in the calculation of
the radiation matrix element can be performed analytically.
However, the radial integrals have to be evaluated numer-
ically [9]. In the present work, the complex-plane rotation
method, introduced by Yerokhin and Surzhykov [12] into the
bremsstrahlung theory to achieve convergence, is used for
carrying out these integrals. Details of the formalism and of
the numerical procedure can be found in Refs. [12,22].

In order to quantify screening, the calculations are repeated
with the point-Coulomb field VCoul(r) instead of the static
potential V (r). The screening effects, both in the SM and DW
approaches, are gauged in terms of the ratio Rsc. This ratio
is given by the difference of the respective cross sections,
normalized to the result of the DW theory including screening,
according to

Rsc = d2σCoul − d2σscreened

d2σ DW
screened

, (2.12)

where d2σ is an abbreviation for d2σ/(dω d�k ).
It is important to stress that as long as a sufficiently large

number of partial waves is included to achieve convergence,
the results obtained are exact to all orders in Z/c. Thus, they
can be used to benchmark the various approximations made
in the analytical approaches.

III. TESTING THE OMW ADDITIVITY RULE
AT LOW IMPACT ENERGIES

We start by investigating the importance of screening for
a fixed photon emission angle θk in the forward domain and
for a fixed ratio ω/Ee between the photon frequency ω and the
kinetic energy Ee of the beam electron. Only small frequencies
are considered for which the momentum transfer is small
and hence the photon emission occurs predominantly at large
electron-atom distances where the reduction of the photon
intensity by the passive target electrons is substantial. The
DW calculations with screening use tabulated potentials pro-
vided by Haque [23], who employed the parametrization by
Koga [21]. The corresponding form factors F (q), necessary
in the NLO-SM approach, are obtained by an auxiliary code
based on Eq. (2.11). By comparing to available nonrelativistic
Hartree-Fock form factors tabulated by Hubbell et al. [24], it
was verified that their difference is insignificant for momen-
tum transfers up to q ≈ c, which are relevant for the results
under consideration. However, for a full consistency between
the DW and the NLO-SM approaches, we have preferred to
adopt here the potential by Haque for the former and the
corresponding form factors obtained from Eq. (2.11) for the
latter, respectively.

Figure 1 shows the cross section results related to VCoul(r)
and V (r) from both the analytical theory [using Eqs. (2.9)
and (2.10)] and from the Dirac partial-wave method for the
two target atoms Sn and Pb. Two cases are selected: (i) θk =
20◦ and ω/Ee = 0.1 and (ii) θk = 10◦ and ω/Ee = 0.2. (For
θk = 10◦ and ω/Ee < 0.2, the DW calculations suffer from
convergence problems as the angular momentum, represented
by the number of required partial waves, increases both with
decreasing ω and with decreasing θk .) Comparing Fig. 1(a)
with Fig. 1(b), it can be seen that the reduction by screening
is much larger for Pb than for Sn at low impact energies.
The general trends of the DW results are well reproduced
by the NLO-SM approach. The agreement between the two
is better at lower energies. This can be understood for the
unscreened case by resorting to a result by Elwert and Haug
[13], who actually proved that, in the low-energy limit, the
LO-SM formula turns into the exact nonrelativistic expression
obtained by Sommerfeld [2], which is correct to all orders. As
a matter of fact, the NLO term, which is the only part of the
unscreened NLO-SM approach that requires the high-energy
limit, is not important for such small angles (e.g., for Pb
at Ee = 100 keV it is �2 per mille) and does not spoil the
quality of the LO result. The disagreement which appears
toward Ee = 1 MeV between the unscreened DW and NLO-
SM approaches is mostly due to a failure of the latter at high
Z , to be discussed in the next section. The representation
adopted in Fig. 1 is, however, not adequate to probe the
OMW additivity rule because it entangles the calculation of
screening with the analytical approach for a point-Coulomb
field and compensations can even happen between a failure
of the two contributions which result in an improvement al-
together: Consider, for example, for θk = 10◦ and ω/Ee = 0.2
the case of Sn at Ee ≈ 50 keV and of Pb at Ee ≈ 100 keV,
where the screened calculations are in better agreement than
the unscreened ones.
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FIG. 1. Doubly differential cross section d2σ/(dω d�k ) for
bremsstrahlung emission by electron impact on (a) Sn (Z = 50) and
(b) Pb (Z = 82) as a function of the initial kinetic energy Ee of the
electron. Legend: − − −, point-Coulomb DW; ——–, screened DW;
· · · · · · , point-Coulomb NLO-SM; and − · − · −, screened NLO-
SM. Upper curves (green): θk = 20◦ and ω/Ee = 0.1. Lower curves
(red): θk = 10◦ and ω/Ee = 0.2.

In order to disentangle the validity of the analytical ap-
proach from the validity of the OMW additivity rule, we apply
the DW theory to obtain the following ratios. If the screening
effects in the DW theory are accounted for by means of this
rule, we get from Eq. (2.10)

d2σ DW
Coul − d2σ DW,OMW

screened = − d2σ, (3.1)

where  d2σ ≡ d2σ PWBA
screened − d2σ PWBA

Coul . This has to be com-
pared with the result from the exact DW theory, d2σ DW

Coul −
d2σ DW

screened. Normalizing with respect to d2σ DW
screened, we get for

the respective ratios, according to Eq. (2.12),

RDW,OMW
sc = − d2σ

d2σ DW
screened

,

RDW
sc = d2σ DW

Coul

d2σ DW
screened

− 1, (3.2)

which are shown in Fig. 2 for Sn and Pb.

FIG. 2. Screening ratio RDW
sc (——–) and RDW,OMW

sc (− − −)
according to Eq. (3.2) for bremsstrahlung from (a) Sn and (b) Pb as
a function of the initial kinetic energy Ee of the electron. The results
for θk = 20◦ and ω/Ee = 0.1 and for θk = 10◦ and ω/Ee = 0.2 are
shown both in the upper (a) and lower (b) panels by the upper pair of
curves (green) and lower pair of curves (red), respectively. In panel
(b), the results for θk = 20◦ and ω/Ee = 0.2 are shown in addition
with an even lower pair of curves (blue).

At ω/Ee = 0.1, the two ratios are much alike down to
Ee = 0.1 MeV, for both target atoms. The ratios decrease
strongly with Ee, in agreement with the expectation of di-
minishing screening effects [according to Eq. (2.12), Rsc = 0
if screening does not occur]. However, when ω/Ee is in-
creased to 0.2, the OMW additivity rule underestimates
screening by about 30% for Ee < 0.2 MeV, the difference
getting smaller at higher values of Ee where screening is less
important.

In order to show that this feature is not due to the different
choices of photon emission angle, we have studied the angular
dependence of Rsc at ω/Ee = 0.2 and Ee = 0.1 MeV for Pb up
to 50◦. No change in the deficiency of RDW,OMW

sc with angle is
observed. To demonstrate this, the results for ω/Ee = 0.2 and
θ = 20◦ are included in Fig. 2(b). It is seen that the difference
in Rsc at lower values of Ee is much like the one for θk = 10◦.
The sensitivity to the value of ω/Ee indicates that the failure
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of the OMW additivity rule is primarily due to the violation
of the high-energy condition for the final electron. Thus, it is
in general expected that the OMW prescription is not accurate
for the higher part of the spectrum. However, it is important
to note that, with increasing initial energy of the electron Ee,
this inadequacy happens in a region where the screening itself
is almost zero, so that even a large error is immaterial for the
final cross section. If the cases (i) ω/Ee = 0.2 and θk = 10◦
and (ii) ω/Ee = 0.2 and θk = 20◦ are compared for collision
energies beyond 300 keV, it is clear that a violation of the
small-angle assumption may also lead to a failure of the OMW
additivity rule. But again, with increasing initial energy of the
electron, screening is small at large angles.

To analyze the behavior of our two approaches as a func-
tion of the photon frequency ω and to estimate their accuracy,
we compare them with measurements [25] at an impact energy
of 1 MeV. These experiments were done with foil targets thin
enough so that multiple scattering and energy loss are negligi-
bly small at photon angles above a few degrees, as analyzed in
the review article by Mangiarotti and Martins [15]. Moreover,
even in the worst case considered here, i.e., 1-MeV electrons
emitting 0.1-MeV photons at 10◦, the minimum momentum
transfer is about one order of magnitude bigger than necessary
to see appreciable differences between the form factors for
metallic elements and free atoms (which is the case below
≈0.5 Å

−1
; see, e.g., Ref. [26]). Therefore, it is safe to employ

the latter.
By choosing an emission angle of 10◦ and increasing

the photon frequency, the transition from large screening (at
low ω) to insignificant screening (near the short-wavelength
limit) is covered. Figure 3 shows our results for a Sn and
an Au target. The DW calculations without screening are
performed on a grid of points which are indicated in Fig. 3. For
the lowest frequency, ω = 0.1 MeV, partial-wave numbers
|κi| � 150 and |κf | � 130 are required to achieve convergence
in the Coulomb case, corresponding to a computation time
of nearly two weeks on a conventional work station with
an 800-MHz CPU. Subsequently, a spline interpolation is
used to generate a continuous curve, and finally the OMW
prescription is applied. The result is shown in Fig. 3 as well.
The same grid is also employed for the DW calculations
with screening, but only the spline interpolation is shown in
the figure. The analytical approaches can be computed on a
much finer mesh of about a hundred points, and therefore
they can be plotted by directly joining them with segments of
straight lines. For Sn [Fig. 3(a)], it is seen that the DW results
using the OMW additivity rule are very close to the exact
screened DW results for all frequencies. This illustrates nicely
that, for Ee � 1 MeV, when the OMW rule fails because the
initial and final energies of the electron are not both high,
screening is small and even a large error in its evaluation
is not visible in the cross section. The analytical theory is
somewhat lower, likewise agreeing with experiment within
the error bars. This is an indication of the limitation of the
NLO-SM approach for higher values of Z , discussed in the
next section, where different atomic numbers and a larger
angular range are studied. Similar results are found for the
Au target, except that, for ω � 0.5 MeV, the analytical theory
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FIG. 3. Bremsstrahlung intensity ω d2σ/(dω d�k ) from 1 MeV
electrons colliding (a) with Sn and (b) with Au and radiating photons
at an angle of θk = 10◦. Legend: ——– (blue), screened DW; �
(red), point-Coulomb DW; − · − · − (red), point-Coulomb DW with
OMW additivity rule; − − − (green), screened NLO-SM; · · · · · ·
(pink), screened LO-SM; and ◦ (black), experimental data by Rester
and Dance [25].

underestimates the DW results and experiment by up to 50%.
This is a manifestation of increasing inaccuracies in the NLO-
SM approach, when Z gets very large. The difference between
the DW results when screening is included by means of the
OMW additivity rule and the screened DW ones increases
only by a small amount when proceeding from Sn to Au (the
deviation grows from 0.2% for Sn to 5.1% for Au at ω =
0.15 MeV, increasing to 5.8% for Sn and 8.7% for Au near
the tip), which indicates that the OMW prescription within
the PWBA is rather accurate, whereas higher order terms in
the Born series are obviously not relevant.

In order to check the OMW additivity rule at higher ener-
gies, we have also performed calculations within the screened
DW at 2.5 MeV. For Cu at 10◦, where screening is most
relevant (see Fig. 4 below), the deviations between the two
results at the lowest frequency investigated, ω = 0.5 MeV,
amount to 1.7%.
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IV. VALIDITY OF THE ANALYTICAL THEORY

Having established the validity of the OMW additivity rule
at Ee = 1 and 2.5 MeV for small angles and all frequencies,
we can safely apply it in our further investigations. Figures 4–
6 show photon spectra at Ee = 2.5 MeV and angles 10◦ �
θk � 150◦ for various target atoms. In these plots, all screened
DW results are obtained by means of the additivity rule

Eq. (2.10) after spline interpolating the calculated unscreened
values, which are displayed by points. Again, the analytical
approaches are computed on a fine mesh of about 120 points.
The form factors tabulated by Hubbell et al. [24] are employed
for the OMW prescription, which is applied to both the
partial-wave and the analytical approaches for consistency.
For Cu (Fig. 4), the lightest target investigated, the analytical
NLO-SM theory is very close to the DW one up to θk = 120◦,
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FIG. 4. Bremsstrahlung intensity ω d2σ/(dω d�k ) from 2.5-MeV electrons colliding with Cu and radiating photons at angles of (a)
θk = 10◦, (b) 30◦, (c) 60◦, (d) 90◦, (e) 120◦, and (f) 150◦ as a function of the photon frequency ω. Legend: � (red), unscreened DW; ——–
(red), screened DW via OMW; · · · · · · (pink), screened LO-SM; − − − (green), screened NLO-SM; and ◦ (black), experimental data by Rester
and Dance [25].
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and only at 150◦ it overestimates the DW results above ω ≈
1 MeV. In contrast, the lowest-order SM theory gives too
low cross sections already at and beyond 60◦. This result
is different from those of the previous works on the subject
(see, e.g., Refs. [10,15,17,19]), because one still higher order
term in Z/c had always been retained. Such an inconsistent

prescription may hinder possible cancellation effects among
all NNLO terms and gives a final result which is in severe
error for backward angles, as demonstrated in Ref. [16], where
results with and without this extra NNLO term are compared.
Since the closed expression of the cross section found by
Roche and coworkers is only valid at high electron energies,
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FIG. 5. Bremsstrahlung intensity ω d2σ/(dω d�k ) from 2.5-MeV electrons colliding with Sn and radiating photons at angles of (a) θk =
10◦, (b) 30◦, (c) 60◦, (d) 90◦, (e) 120◦, and (f) 150◦ as a function of the photon frequency ω. For the legend, see Fig. 4.
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FIG. 6. Bremsstrahlung intensity ω d2σ/(dω d�k ) from 2.5-MeV electrons colliding with (a) Y, (b) Sn, (c) Sm, and (d) Au and radiating
photons at an angle of θk = 120◦ as a function of the photon frequency ω. For the legend, see Fig. 4.

the calculations are expected to fail in the vicinity of the
short-wavelength limit (tip) where the electron is left with a
small kinetic energy. Indeed, this is observed in Fig. 4 for
θk = 10◦, where the NLO correction, when compared to the
LO-SM result, actually worsens the agreement with the DW
results and the measurements close to the tip. This limitation
of the NLO-SM theory is hard to perceive in the linear plots of
Ref. [16]. For θk = 30◦, the NLO term has no effect and above
this angle it always improves the LO-SM up to the tip region
(even if, in principle, there is no reason for it to work close
to the short-wavelength limit). It should also be noted that
screening effects are only important at the lowest frequencies
and at angles θk � 30◦, but are absent at all higher angles as
follows from the comparison between the Coulombic and the
OMW-corrected DW results.

Proceeding to the heavier element, Sn (Fig. 5), the devi-
ations between the NLO-SM and the DW results are larger
for the smaller angles, being similar to the ones for Cu at
θk = 120◦ and 150◦. When the photon emission angle in-
creases, the average momentum transfer q is larger. Thus,
the region of space which gives the dominant contribution to
the radiation matrix element Eq. (2.2) or, in the semiclassical
language of the Weizsäcker-Williams approach, the relevant
electron-nucleus distance at which the photon is emitted, r ≈
1/q, is located closer to the nucleus, such that the distortion

by the Coulomb field is stronger. Since the SM wave functions
are less accurate for higher Z and close to the nucleus, this
leads to a genuine failure of the LO-SM theory at larger
angles. Correspondingly, the NLO correction gets more im-
portant and, in turn, less precise: As in every expansion, the
NLO term can be trusted as long as it is a small correction to
the LO one. However, a fundamental property of the SM wave
functions, when using them for calculating bremsstrahlung
cross sections, is that they are always a good approximation
to the exact ones, irrespective of Z , if the photon emission is
simultaneously close to the direction of both the initial and
final momentum of the electron [7]. This property renders the
LO-SM cross sections very accurate at high energies and low
θk for all Z , since the final angles of the electron contributing
significantly to Eq. (2.1) are indeed small. This is confirmed
for θk = 10◦ and 30◦, where the LO result agrees with the
data within the experimental uncertainty. By using the DW
results as a guide for the correct behavior close to the tip
(where the spread of the experimental points increases due to
the reduction in statistics), it is evident that there the LO-SM
fails at all angles. Actually, for small final energies of the
electron, larger final angles of the electron can contribute to
Eq. (2.1), which worsen the accuracy of the LO-SM approach.
Like for Cu, the NLO term increases the inaccuracy of the
LO result for θk = 10◦ close to the tip, being worse for Sn
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TABLE I. Deviation of the doubly differential cross section
for bremsstrahlung calculated with the LO-SM and NLO-SM ap-
proaches with respect to the ones obtained by the DW method
and corrected for screening with the OMW additivity rule. The
case considered is that of electrons with Ee = 2.5 MeV imping-
ing on Cu, Y, Sn, Sm, and Au and radiating photons at the in-
dicated θk angle. To get a single value, a maximum has been
taken over the photon energies ω � 2.5 MeV for θk > 30◦ and over
ω � 1.5 MeV for θk � 30◦. The calculations are the same as em-
ployed for Figs. 4–6.

θk Cu Y Sn Sm Au
[deg] [%] [%] [%] [%] [%]

LO-SM
10 8.8 16
30 14 26
60 26 46
90 31 53
120 32 41 54 65 78
150 29 50

NLO-SM
10 9.2 18
30 13 26
60 11 29
90 10 27
120 20 14.5 19 35 57
150 63 60

than for Cu. For θk = 30◦, this effect is minimized, whereas
for larger angles, the NLO-SM theory improves the LO-SM
theory.

The angle θk = 120◦, where for Sn our two theories agree
best, has been selected to study the photon spectrum for
other targets including yttrium (Z = 39), samarium (Z = 62),
and gold (Z = 79), as shown in Fig. 6. While for Z � 50
the NLO-SM and DW results are very close at this angle,
they start to differ for the heavier atoms, particularly for
Au, by up to a factor of 2. However, these results clearly
demonstrate the improvement over the LO-SM theory when
the next-to-leading-order terms in Z/c are retained. In par-
ticular, the behavior with Z is smooth and monotonic. This
contrasts the results of the inconsistent analytical theory used
in previous works; for example, compare Sn and Au at Ee =
1.7 MeV and θk = 60◦ in Fig. 1 of Ref. [17] or Sn and
Au at Ee = 2.5 MeV and θk = 30◦ in Fig. 6 of Ref. [19],
where the higher order correction is bigger for the lower Z
element.

To summarize in a quantitative way Figs. 4–6, the max-
imum deviations of the LO-SM and NLO-SM results with
respect to the DW ones, accounting for screening by means of
the OMW additivity rule, are reported in Table I. Because of
the limitations discussed above, for θk = 10◦ and 30◦, only the

part of the spectrum below 1.5 MeV is considered to evaluate
the largest error. Except for the smallest and largest angles
(θk = 10◦ and 150◦), the positive effect of the NLO correction
is rather clear. Excluding θk = 150◦ and ω > 1.5 MeV for
θk = 10◦ and 30◦, the errors are between 10% and 20% for
Cu, rising to 20–30% for Sn. For Au, where only θk = 120◦ is
probed, it reaches nearly 60%.

V. CONCLUSIONS

In this work, doubly differential cross sections for
bremsstrahlung emission in the collision of electrons with a
series of neutral target atoms are considered. Two theoretical
approaches are used, the analytical NLO-SM theory (accurate
to third order in Z/c at high energies) and the numerical DW
theory (exact to all orders).

By comparing for small frequencies and forward photon
emission angles the DW theory, with an exact account of
screening, with the results obtained from the point-Coulomb
DW ones with the help of the Olsen-Maximon-Wergeland
additivity rule, it has been shown that such a prescription can
be applied when the initial and final energies of the electron
are both not small and when the photon is emitted into for-
ward directions. Notably, the rule works even down to beam
energies of Ee = 100 keV, provided the photon frequency is
very low as compared to Ee and the photon angle is small.
However, for Ee � 1 MeV, the conditions where the rule holds
are just the ones where screening is appreciably different from
zero. This results in a general applicability for all frequencies
and emission angles.

A comparison between the NLO-SM and the DW results
for larger angles has revealed that at impact energies as low as
2.5 MeV the SM-based theory gives quantitative results even
for the heaviest elements at all photon angles up to at least
120◦ (the maximum deviations being between 10% and 20%
for Cu, rising to 20–30% for Sn, and up to 60% for Au).
The exception is a small frequency interval near the short-
wavelength limit, where a SM function for the slow scattered
electron is bound to fail if Z is large. We could also demon-
strate that the NLO-SM approach improves considerably on
the (lowest-order) Sommerfeld-Maue theory for the larger
angles.
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