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S-wave elastic scattering of o-Ps from H2 at low energy
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The confined variational method is applied to investigate the low-energy elastic scattering of orthopositronium
from H2 by first-principles quantum mechanics. Describing the correlations with explicitly correlated Gaussians,
we obtain accurate s-wave phase shifts and pickoff annihilation parameters for different incident momenta. By a
least-squares fit of the data to the effective-range theory, we determine the s-wave scattering length AS = 2.02a0

and the zero-energy value of the pickoff annihilation parameter, 1Zeff = 0.1839. The obtained 1Zeff agrees well
with the precise experimental value of 0.186(1) [G. L. Wright et al., J. Phys. B 16, 4065 (1983)] and the obtained
AS agrees well with the value of 2.1(2)a0 estimated from the average experimental momentum-transfer cross
section for positronium energy below 0.3 eV [F. Saito et al., J. Phys. B 36, 4191 (2003)].
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I. INTRODUCTION

Scattering of positronium (Ps), i.e., a hydrogenlike atom
composed of an electron and a positron, from atoms and
molecules is fundamentally important for understanding the
interaction between matter and antimatter [1–18]. Positron-
ium can be in a spin singlet state [parapositronium (p-Ps)] or a
spin triplet state [orthopositronium (o-Ps)]. Pickoff quenching
is the process that the positron in the o-Ps is annihilated on
collision with a molecular electron in the opposite spin state.
The accuracy of the experimental determination of the pickoff
annihilation parameter 1Zeff of the o-Ps interaction with differ-
ent targets such as H2, CH4, and CO2 [1,2,14] is far higher
than that achieved by theoretical methods. The experimental
results therefore can be used to test the quality and efficiency
of theoretical methods, in particular the accuracy of the gen-
erated scattering wave functions. The complicated short-range
electron-positron and electron-electron correlations as well as
the electron exchange between Ps and the target play key roles
in the low-energy scattering of Ps. Theoretically, however, the
accurate description of these interactions is very difficult and
tedious due to the complex nature of a multicenter scattering
system [19].

In this paper we present confined variational studies of the
low-energy scattering properties of the experimentally studied
o-Ps-H2 system. This work extends the ab initio theoretical
description of the scattering of a composite projectile from
a one-center target to a multicenter target. The obtained
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zero-energy value of the pickoff annihilation parameter and
the scattering length show good agreement with experiments
[2,9], demonstrating the high accuracy of the confined varia-
tional method (CVM).

The CVM [20,21] was first developed by Mitroy and
co-workers to accurately determine phase shifts of the low-
energy elastic scattering of electrons (e−) or positrons (e+)
from few-e− atoms. It was further developed by Zhang et al.
[22] to study the scattering of projectiles with internal struc-
ture, such as Ps. The CVM phase shifts for the s-wave e−-He
scattering at wave number k = 0.2a−1

0 and for the s-wave
Ps-H elastic scattering at k = 0.1a−1

0 and k = 0.2a−1
0 have set

a benchmark for other theoretical methods [16]. In addition,
the CVM was used to generate basis sets of energy-optimized
explicitly correlated Gaussian (ECG) functions for other colli-
sion calculation methods such as the stabilization method [21]
and Kohn variational method [23].

The remainder of this paper is organized as follows. In
Sec. II we briefly review the CVM using the e+-atom scat-
tering as an example. The reader is however referred to
Refs. [20,22,24] for a full account. In Sec. III we numerically
verify the CVM by calculating the phase shift and annihilation
parameter of e+ scattering from a H atom, giving also a
comparison to other methods. Then the CVM is applied to
study the scattering of o-Ps from H2 at low energy in Sec. IV.
Finally, we summarize in Sec. V.

II. THEORY

Phase shifts are expressed in radians and atomic units
throughout unless otherwise stated. Investigation of elastic
scattering of e+ from a spherical few-e− atom with infi-
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nite nuclear mass essentially means solving the Schrödinger
equation

H�i(r) = Ei�i(r), Ei > 0, (1)

where r represents the coordinate vectors of all the particles.
Assuming that the interaction between e+ and the atom be-
comes zero beyond a finite radius R0, we may add a con-
fining potential VCP(re+ ) on the positron to the Hamiltonian
in Eq. (1) in order to convert a complicated problem of
many-body continuum states into much easier problems of
many-body discrete bound states, one-dimensional-potential
bound states, and one-dimensional-potential scattering. The
Schrödinger equation of the confined many-body system
becomes

[H + VCP(re+ )]� ′
i (r) = Ei�

′
i (r). (2)

The confining potential VCP(re+ ) is typically chosen in the
form [20,24]

VCP(re+ ) = 0, re+ < R0, (3)

VCP(re+ ) = G(re+ − R0)2, re+ � R0, (4)

where G is a positive number. Confining potentials of this
type are chosen to avoid disturbing the e+-atom interac-
tion. Taking the discrete energies Ei and expectation values
〈� ′

i (r)|VCP|� ′
i (r)〉 as reference, we tune the auxiliary one-

dimensional potential Vaux(re+ ) by solving the Schrödinger
equation(

−∇2

2
+ Vaux(re+ ) + VCP(re+ )

)
�′

i(re+ ) = E ′
i �

′
i(re+ ). (5)

The boundary condition Vaux(re+ ) = 0 has to be satisfied for
re+ � R0. The purpose of the tuning is to achieve E ′

i = Ei

and 〈� ′
i (r)|VCP|� ′

i (r)〉 = 〈�′
i(re+ )|VCP|�′

i(re+ )〉. To this aim,
Vaux(re+ ) can be made flexible by inclusion of two or more
parameters to adjust its shape and strength. For the elastic
scattering of e+ from a H atom, for example, it is chosen in
this work in the form

Vaux(re+) = Vλi,αi,ξi,βi (re+ )

= λi(1 + 1/re+ ) exp(−αire+ ) + ξir
2
e+ exp

(−βir
2
e+

)
,

(6)

where λi, αi, ξi, and βi are the adjustable parameters. Equality
of the energies means that the phase shift is the same and
equality of the expectation values ensures that the normaliza-
tion condition at the boundaries is the same. Finally, the phase
shift is obtained by solving the Schrödinger equation(

−∇2

2
+ Vaux(re+ )

)
�i(re+ ) = Ei�i(re+ ). (7)

The key point of the CVM is that the logarithmic derivatives
of the wave functions �i(r), � ′

i (r), �′
i(re+ ), and �i(re+ ) are

exactly the same for the same energy Ei at re+ = R0, i.e.,

��i = �� ′
i
= ��i = ��′

i
, (8)

with

��i ≡ 1

�i

d�i

dre+

∣∣∣∣
R0

. (9)

As the phase shift is a function of the logarithmic derivative,
the value obtained from solving Eq. (7) equals that of e+-atom
scattering.

The calculation of the annihilation parameters Zeff for e+
scattering and 1Zeff for o-Ps scattering depends on the nor-
malization of � ′

i (r) to the scattering boundary condition. For
e+-H scattering, for example, the procedure for determining
Zeff is as follows. First, the expectation value of δ(re− − re+ )
is computed with � ′

i ,

〈δ(re− − re+ )〉 = 〈� ′
i (re− , re+ )|δ(re− − re+ )|� ′

i (re− , re+ )〉.
(10)

Second, the ratio of �′
i(re+ ) and the continuum radial wave

function at R0 is computed. For s-wave scattering this is
Ab = �′

i(R0)/
√

4π sin(kR0 + δ0). Then Zeff is given by

Zeff (k) = 〈δ(re− − re+ )〉
A2

bk2
. (11)

III. SCATTERING OF e+ FROM A H ATOM

To demonstrate the accuracy of Ab in the CVM, we cal-
culate δ0, Ab, and Zeff for the s-wave e+-H scattering at k =
0.2a−1

0 , using two sets of basis functions: inner and outer. The
inner basis functions are chosen as ECG functions

φk = exp

⎛
⎝−1

2

∑
i j

bk,i jri · r j

⎞
⎠. (12)

They are optimized using the stochastic variational method
[25–27]. The outer basis functions are expressed in the form

� i
outer = ψH(re− ) exp

(− 1
2ηir2

e+
)
, (13)

ψH(re− ) =
∑

j

d j exp

(
−μ jr2

e−

2

)
. (14)

The wave function of the H ground state, ψH(re− ), is written
as a linear combination of 20 ECG functions with energy
EH = −0.499 999 999 43 hartree. Moreover, ηi is defined by
the relation ηi = 18.6/1.45i−1a−2

0 for 1 � i � 40. To take into
account the polarization effect of H, Vaux(re+ ) additionally
includes the polarization potential

Vpol(re+ ) = − αd

2r4
e+

[
1 − exp

(−r6
e+

/
r6
0

)]
, (15)

with the static dipole polarizability αd = 4.5 a.u. and cutoff
parameter r0 = 2.16a0.

Table I addresses the convergence of our calculations
for s-wave e+-H scattering and gives a comparison with
other methods. We obtain k = √

2(E3 − EH) from the third
eigenenergy E3 of the e+-H system confined in the po-
tential VCP(re+ ) = G(re+ − R0)2, where G = 2.732 96 × 10−5

and R0 = 21.0a0. For increasing size of the inner basis, G is
tuned gradually, so k approaches 0.2a−1

0 . Then, using k and
〈� ′

3(r)|VCP|� ′
3(r)〉 as reference, we determine the parameters

of Vaux(re+ ) in Eq. (6). Keeping λi = 0.999 50, αi = 2.0a−1
0 ,

and βi = 0.230a−2
0 fixed for calculations including the 40

outer basis functions, the requirement 〈� ′
i (r)|VCP|� ′

i (r)〉 =
〈�′

i(re+ )|VCP|�′
i(re+ )〉 can be satisfied by tuning only ξi. The
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TABLE I. Convergence of the results for s-wave e+-H scattering
at k = 0.2a−1

0 as a function of the number N of ECG functions.
Here k denotes the wave number, δ0 the phase shift, and Zeff the
annihilation parameter.

N k (a−1
0 ) δ0 (rad) Zeff

Ninner

200 0.200 001 85 0.187 536 5.482
300 0.200 000 36 0.187 630 5.536
400 0.200 000 11 0.187 646 5.545
500 0.200 000 09 0.187 648 5.554

Ninner + Nouter

240 0.200 000 72 0.187 608 5.480
340 0.200 000 12 0.187 646 5.535
440 0.200 000 02 0.187 653 5.545
540 0.200 000 00 0.187 654 5.553

COP [28] 0.200 0.1877 5.538
KV [29,30] 0.200 0.1875
HNV [31] 0.200 0.1876
TM [32,33] 0.200 0.1868 5.5394

operator δ(re− − re+ ) does not commute with the Hamilto-
nian, so there are no common eigenstates. During the opti-
mization, many sets of nonlinear parameters may give the
same energy but they generate different expectation values
δep = 〈δ(re− − re+ )〉. Therefore, the energy is variationally
minimized, while δep is variationally maximized.

The convergence of k is accelerated by augmenting the
outer basis. As a consequence, the convergence of δ0, which
is related to k, is also accelerated. However, this procedure
makes δep slightly smaller than when calculated with only
the inner basis. Both k and δ0 show very good convergence.
We obtain δ0 = 0.187 65 rad. This result agrees well with
the extrapolated value (0.1877 rad) of the correlated optical
potential (COP) calculation by Bhatia et al. [34], with the
value (0.1875 rad) of the Kohn variational (KV) calculation by
Humberston et al. [30], and with the value (0.1876 rad) of the
Harris-Nesbet variational (HNV) calculation by Gien [31]. On
the other hand, it is 4.6‰ larger than the value (0.1868 rad) of
the 21-state close-coupling approach [32]. As the COP result
(5.538 [28]) and the T -matrix (TM) result (5.5394 [32,33]) are
close to the value calculated with 300 ECG functions (5.536),
the CVM final result of Zeff = 5.553 is more accurate than
the results of the COP and TM methods. It turns out that Zeff

increases monotonically with the number of ECG functions
but converges slowly. We estimate that the exact value of Zeff

falls within the range from 5.554 to 5.559. We note that a
calculation with only a large inner basis has the capacity to
generate accurate values for δ0 and Zeff .

IV. SCATTERING OF o-Ps FROM H2

We employ the fixed nucleus approximation with an in-
ternuclear distance of RH2 = 1.45a0, which is almost the
equilibrium distance 1.448a0. Here EH2 = −1.174 057 038
hartree, as calculated by Rychlewski et al. [35] with 300 ECG
functions, is adopted for the ground-state energy of H2. The

Hamiltonian for o-Ps-H2 scattering is

H = −
4∑

i=1

∇2
i

2
+

4∑
j>i=1

qi q j

|r j − ri|

+
4∑

i=1

{
qi

|ri − R/2| + qi

|ri + R/2|
}
, (16)

where ri is the coordinate of the ith particle (e±) relative to
the midpoint of the H2 molecular axis and qi is its charge. The
vectors ±R/2 represent the displacements of the two protons
from the midpoint. The basis for the interaction region has the
form

φk = P̂ exp

(
−1

2

4∑
i=1

bk,i|ri − Sk,i|2
)

× exp

⎛
⎝−1

2

3∑
i=1

4∑
j=i+1

ak,i j |ri − r j |2
⎞
⎠. (17)

The vector Sk,i displaces the center of the ECG function
for the ith particle to a point on the internuclear axis. The
operator P̂ ensures that the basis has �g symmetry. The
confining potential is added in the center-of-mass coordinate
ρi = (re+ + ri )/2 so that the potential acting on the center
of mass of e+ and the ith e− of the target is not reasonable.
However, this effect declines for increasing R0 [22]. Following
previous experience with the s-wave elastic scattering of Ps
from a H atom [22], R0 = 24a0 is used for the o-Ps-H2

scattering. As o-Ps experiences, during the scattering, a van
der Waals potential, we choose the auxiliary potential as

Vλi,αi (ρ) = λi exp(−αiρ) − C6

ρ6

[
1 − exp

(−ρ6
/
ρ6

0

)]
, (18)

with the cutoff parameter ρ0 = 6.0a0 and dispersion coef-
ficient C6 = 49.3 a.u. [36]. The parameters λi and αi in
Eq. (18) are adjusted to satisfy the conditions E ′

i = Ei and
〈� ′

i (r)|VCP|� ′
i (r)〉 = 〈�′

i(ρ)|VCP|�′
i(ρ)〉. When another value

of ρ0 is used, λi and αi are modified to keep the conditions
satisfied. Both the phase shift and scattering amplitude deter-
mined with different ρ0 (e.g., ρ0 = 3a0) do not change as long
as there is no overlap of the Ps and H2 particle clouds. Only the
inner basis is used, because the outer basis is too complicated
in this case. Similar to the case of e+-H scattering, we expect
that accurate scattering parameters can be obtained with a
large inner basis. In the following text, we use a superscript T
to indicate the triplet spin character of the pickoff annihilation.
Due to the complexity of the multicenter scattering system,
variational optimization of the energy and δT

ep together is
very time consuming. Hence, only the energy is optimized by
adjusting the nonlinear parameters of the ECG functions.

Table II shows the convergence of the results for �g

o-Ps-H2 scattering at k = 0.1a−1
0 when the number of ECG

functions increases. We have k = 2
√

(E1 − EPs − EH2 ), where
E1 is generated with the confining potential parameter G =
1.7717 × 10−4 (obtained from the optimization of the nonlin-
ear parameters) and EPs = −0.25 hartree is the exact energy
of the Ps ground state. In Eq. (18), λi and αi have to be tuned
together for each basis to satisfy the requirements to k and
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TABLE II. Convergence of the results for �g o-Ps-H2 scattering
at k = 0.1a−1

0 as a function of the number N of ECG functions. Here
k denotes the wave number, δT

ep = 〈δT (re− − re+ )〉, δ0 is the phase
shift, and 1Zeff is the pickoff annihilation parameter.

N k (a−1
0 ) δT

ep δ0 (rad) 1Zeff

2800 0.100 033 8.4671 × 10−6 −0.1860 0.165 83
3200 0.100 016 8.4769 × 10−6 −0.1854 0.166 28
3600 0.100 003 8.4710 × 10−6 −0.1849 0.166 41
4000 0.099 993 8.4677 × 10−6 −0.1846 0.166 52

〈�′
1(ρ)|VCP|�′

1(ρ)〉. For a basis with 3600 ECG functions,
for example, we obtain λi � −0.382 964 and αi � 0.553a−1

0 .
Both k and δ0 show good convergence for an increasing
number of ECG functions, in contrast to δT

ep and 1Zeff (though
they vary monotonically).

Table III presents results of our CVM calculations for
three values of k. We focus our attention on scattering with
k � 0.1a−1

0 for two reasons. First, the most reliable experi-
mental information comes from annihilation experiments of
thermal o-Ps. Second, the collision can be treated as s-wave
scattering and thus the molecular aspects of the asymptotic
wave function can be neglected. By fitting δ0 from Table III to
the effective-range theory [37]

k cot(δk ) = − 1

AS
+ 1

2
r0k2 − 4πC6

15A2
S

k3 − 16C6

15AS
k4 ln(k),

(19)

the scattering length AS = 2.02a0 and effective range r0 =
−8.16a0 are obtained.

In addition, we estimate δ0 and 1Zeff for �g o-Ps-H2 scatter-
ing with k up to 0.5a−1

0 using the stabilization method (SM)
[21] with 4400 ECG functions and 15 external basis functions
constructed from products of the wave functions of Ps and H2

with connecting Gaussians

� i
ext = ψH2 (r1, r2)ψPs(r3 − r4) exp

[
−1

2
ηi

(
r3 + r4

2

)2
]
,

(20)

TABLE III. Confining potential parameter G, δT
ep = 〈δT (re− −

re+ )〉, phase shift δ0, and pickoff annihilation parameter 1Zeff for �g

o-Ps-H2 scattering at different k. Experimental values of 1Zeff are
listed for comparison. Numbers in parentheses give the uncertainty
in the last digit.

k (a−1
0 ) G δT

ep δ0 (rad) 1Zeff

0.060 94 2.15 × 10−6 1.7876 × 10−6 −0.1196 0.1736
0.082 75 2.27 × 10−6 4.7048 × 10−6 −0.1527 0.1688
0.099 993 1.7717 × 10−4 8.4677 × 10−6 −0.1846 0.1665

0.0 Effective-range theory 0.1839

Experiment at 77.4 K [1] 0.197(3)
Experiment at 250 K [1] 0.195(5)
Experiment at 293 K [1] 0.193(5)
Experiment at 293 K [2] 0.186(1)

FIG. 1. Plot of the s-wave phase shift δ0 for �g o-Ps-H2 scattering
as a function of k. The line represents an effective range fit using
Eq. (21).

where ηi = 1/1.452i−2a−2
0 . The ground state ψH2 (r1, r2) is

represented by a linear combination of 120 ECG functions
with an energy of −1.174 056 790 hartree, which is only
2.5 × 10−7 hartree higher than the close-to-exact value of
−1.174 057 038 hartree [35]. The ground state ψPs(r3 − r4)
is represented by a linear combination of 12 ECG functions
with an energy of −0.249 999 95 hartree. For individual pseu-
dostates the phase shifts are shown in Fig. 1 together with an
effective range fit to the expression

kcot(δk ) = − 1

AS
+ 1

2
r0k2 + Bk3, (21)

which is more suitable than Eq. (19) for data including larger
k values. The SM value of the scattering length (1.78a0) is
almost 14% smaller than the more accurate CVM value. As r0

is sensitive to the effective range expansion and momentum
fitting range, the SM (−0.72a0) and CVM (−8.16a0) val-
ues deviate strongly. The value AS = (2.1 ± 0.2)a0 estimated
from the average experimental momentum-transfer cross sec-
tion σm for Ps energy below 0.3 eV agrees well with the CVM
result [9]. Using Doppler broadening spectroscopy, Skalsey
et al. [10] obtained σm = (3.8 ± 0.8)πa2

0 over an incident
energy range from 0.39 to 3.00 eV. Garner et al. [4] found in
their o-Ps beam experiments that the total cross section rises
from 5.3πa2

0 at 10 eV to a maximum of 10.3πa2
0 at about

25 eV, declines to 6.02πa2
0 at about 60 eV, and hardly changes

from 60 eV to 110 eV. Our CVM result for the s-wave cross
section at k = 0.1a−1

0 (13.59πa2
0) is much larger than that

of the three-Ps-state coupled-channel method (3.79πa2
0) [7]

(obtained by tuning the parameter of the exchange potential to
fit the experimental data by Garner et al. [4] and Skalsey et al.
[5]). Moreover, the scattering length of the pseudopotential
method is much smaller when taking into account the van der
Waals interaction (0.64a0) [17], while otherwise it is only a bit
larger (2.06a0) than the CVM value (2.02a0). The large spread
in the experimental results of Garner et al. [4], Saito et al.
[9], and Skalsey et al. [10] indicates that the Ps-H2 total cross
section (and/or σm) probably has a strong energy dependence

032701-4



S-WAVE ELASTIC SCATTERING OF o-PS FROM H2 … PHYSICAL REVIEW A 100, 032701 (2019)

FIG. 2. Plot of the s-wave pickoff annihilation parameter 1Zeff

for �g o-Ps-H2 scattering as a function of k. The line represents an
effective range fit using Eq. (22).

at low energy (similar to intermediate energy), which has to
be investigated further by both experiment and theory.

Using the effective-range theory expansion [38]
1Zeff(k) = 1Z (0)

eff + 1Z (1)
eff k2 + 1Z (2)

eff k3, (22)

fitting the CVM value of 1Zeff leads to 1Z (0)
eff = 0.184, while a

6% smaller and less accurate value (1Z (0)
eff = 0.173) is obtained

by fitting the SM value of 1Zeff (see Fig. 2). Experimental
values of 0.197(3) [1], 0.195(5) [1], 0.193(5) [1], and 0.186(1)
[2] from weighted least-squares fits of observed decay rates
at low H2 gas densities and temperatures of 77.4, 250, 293,
and 293 K, respectively, indicate that the low-density 1Z (0)

eff is
independent of the temperature (at the level of accuracy of
the experimental data). The fit of Ref. [1] was constrained
to a vacuum annihilation rate of �vac = 7.24 μs−1, which
is almost 3% larger than the accurate experimental value of

7.0401(7) μs−1 [39]. Using no such constraint, a better value
of �vac = 6.95(8) μs−1 was determined in Ref. [2]. The
very good agreement with the experimental value of 1Z (0)

eff =
0.186(1) [2] demonstrates the high quality of the CVM near-
zero-energy wave functions and hence indicates that the CVM
phase shifts and scattering length are accurate at the level of
1Z (0)

eff (about 1%).

V. SUMMARY

The CVM is a powerful method that fully utilizes the
advantages of studying bound states of atoms and molecules
to determine phase shifts and normalization constants of
asymptotic wave functions for collisions. We have verified the
accuracy of the CVM normalization constant for e+-H scat-
tering by comparison with other methods. The CVM result
of Zeff = 5.553 for s-wave e+-H scattering at k = 0.2a−1

0 is
a significant improvement in accuracy since the COP value
of Zeff = 5.538 was reported [28]. For o-Ps-H2 scattering
we have reported accurate values of δ0 and 1Zeff for three
different incident momenta. The CVM results of 1Z (0)

eff and
AS , extracted by means of the effective-range theory, show
excellent agreement with precise experimental data [2,9].
As the studied problem was intractable for a long time, we
believe that the present work will inspire new experimental
and theoretical efforts on the low-energy o-Ps scattering from
few-body targets.
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