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Scalar and spin-dependent relativistic effects can influence the geometries and wave functions of the ground
and excited states of molecular systems in a way that is not always trivial. However, it is still common for
researchers, in particular within the quantum chemistry community, to neglect the spin-dependent effects while
discussing the binding between atoms in heavy-element systems. Within multiconfigurational self-consistent
field frameworks, the binding in diatomic molecules can be derived from the occupation of the natural orbitals,
which by definition form a basis that diagonalizes the one-body density matrix. This does not fully prevent
arbitrariness, and the first objective of the present paper will be to review the concept of effective bond order, in
particular with respect to the rounding up rule. Then, the respective roles of the scalar and the spin-dependent
relativistic effects on the bond lengths are investigated by means of state-of-the-art nonrelativistic, scalar-
relativistic, and exact two-component coupled-cluster calculations, providing reference molecular geometries for
the whole AtX (X = At – F) series. A diagnostic of relevance for defining effective bond orders in heterodiatomic
molecules is introduced and applied to this series, showing that the more dissymmetric the system, the less
defined the effective bond order is. Finally, the role of the spin-orbit coupling on the effective bond orders is
discussed. AtI appears as a key intermediate in the series in terms of the ground-state π bonding or antibonding
character. Although emphasis will be put on ground states, the present methodology is readily applicable to the
description of excited states.
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I. INTRODUCTION

The description of the binding between atoms is a long-
standing issue in quantum chemistry and in molecular physics.
Without attempting an exhaustive description of the many
philosophies that may be followed, two main strategies
emerge: (i) discussing properties of the sole bound system
(such as the interatomic distances, atomic charges, an ap-
proximate wave function for it, etc.) or (ii) discussing joint
properties of both the bound and the dissociated system (the
most elementary one being the binding energy, although one
may also derive contributions to this energy, for instance).
Except trivial indicators such as the interatomic distances, the
outcomes of the descriptive approaches always suffer from
some degree of arbitrariness, and it is hard to make general
recommendations on what is a good description of a bond (or
not) and how to universally interpret a descriptor value.

From a wave function calculation, it seems natural to
try to interpret the resulting wave function of the quantum
state of interest. One may then define the role of physical
ingredients such as electron correlation, some particular or
all the relativistic effects on the wave function by comparing
the outcomes of calculations that do or do not include the
physical effect(s) of interest [1]. When several configurations
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may play an important role on the wave function of interest,
the multiconfigurational wave function approaches that do
optimize both configuration interaction (CI) and molecular
orbital (MO) coefficients [2] appear well suited.

As pointed out by Löwdin decades ago [3,4], the multi-
configurational wave functions may appear more “compact”
when expressed within the basis of natural orbitals (NOs),
which by definition make the one-body density matrix di-
agonal. This characteristic may be exploited for making the
computations more efficient (faster convergence) [3,5] and
also for facilitating the interpretation of the wave function,
for instance, in terms of the effective bond order (EBO)
descriptor [6]. However, despite general acceptance of the
advantages of the NOs, they may present some limita-
tions [7,8], in particular for systems with more than two
electrons.

Actually, although it is known that the spin-orbit coupling
may affect chemical bonds [1], it is quite common in the quan-
tum chemistry community to neglect it when discussing the
binding in heavy-element systems [9–11]. Nevertheless, the
inclusion of the spin-orbit coupling (SOC) in the computation
of EBOs is quite straightforward and has been first reported by
Gendron et al. [12] and independently reported soon after by
some of us [13]. Furthermore, the EBO concept has also been
very recently generalized to the fully relativistic frameworks
[14], and thus we consider that it should now be admitted
that the SOC must not be neglected while computing EBOs
in heavy-element systems.
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Despite these recent efforts, several issues remain con-
cerning the EBO concept: (i) no rule of thumb has been
proposed for defining EBOs in heterodiatomic systems and
(ii) the EBOs are often misinterpreted because of the rounding
up rule that is at play in the quantum chemistry community.
This last issue is in our opinion quite critical since it may
question conclusions that have been reported in the literature.
Therefore, the first objective of the present paper will be
to review the EBO concept and to tackle the issue of the
heterodiatomic systems by means of a diagnostic of relevance.

We will discuss the AtX (X = At – F) case studies because
(i) these systems display a heavy element, astatine (Z = 85),
meaning that significant SOC may occur and (ii) some of
these systems are among the rare astatine ones of experimental
relevance [15–17], in particular AtI that can form halogen-
bonded adducts with Lewis bases in solution [18]. Prior to
this, the role of the scalar relativistic effects and of the spin-
dependent relativistic effects on the molecular geometries
will be highlighted by means of state-of-the-art calculations,
providing us with reference geometries for performing the
EBO study. Finally, the role of the SOC on the chemical bonds
of interest will be discussed in terms of EBO, revealing a
nontrivial role of the SOC within the series.

II. THEORY: DEFINITIONS AND GENERAL COMMENTS

A. Effective bond order concept for a single
multiconfigurational state

In the H2 molecule, the two “delocalized” σ and σ ∗ MOs
belong to two distinct irreducible representations. Thus they
are not allowed to mix, meaning that they display pure bond-
ing and antibonding characters, respectively. If one works
within this basis, the ground electronic configuration, σ 2,
corresponds to a formal bond order of 1, independent from the
retained geometry (near equilibrium or anywhere else on the
potential-energy curve). If one allows the ground-state wave
function to be expanded on two configurations, namely σ 2

and σ ∗2, the weights associated with both configurations, ωb

and ωa, respectively, will evolve all along the potential-energy
curve, becoming equal at dissociation (neutral dissociative
state). If one expresses the one-body density matrix for the
ground state within the basis of these two σ and σ ∗ MOs, it
is diagonal. Thus these orbitals are referred to as NOs. The
occupation numbers of these two orbitals, ηb = 2 × ωb and
ηa = 2 × ωa, thus also evolve all along the potential-energy
curve, both of them becoming equal to 1 at dissociation.
Therefore, one may define an EBO out of these occupation
numbers, such that [6]

EBO = ηb − ηa

2
. (1)

This bond descriptor has two main advantages: (i) it grad-
ually tends to zero toward dissociation (vide supra) and (ii) at
equilibrium, its difference with the formal bond order directly
gives the contribution of electron correlation to the EBO.
Naturally, this concept can be extended to any homodinuclear
system, simply by summing over all the bonding and all the
antibonding active NOs [6]:

EBO =
∑

b ηb − ∑
a ηa

2
. (2)

In the seminal paper [6], all the σ , π , etc. contributions to
the EBO are summed, thus only total EBOs are reported. For
the sake of detailed discussions, it may be wise though to dis-
tinguish all these different contributions, principally since two
apparently equal total EBOs may hide quite different bonding
schemes. In particular, it is quite clear that one effective σ

bond is not equivalent to one effective π bond, which can be
attested by a significant energy difference between two states
of these two kinds.

The concept of EBO is particularly interesting since it does
not force us to define only integer BOs. Unfortunately, Roos
et al. recommended that “in naming the multiplicity of a bond
one may then use the lowest integer value larger than the
EBO” [6], meaning for instance that the bond multiplicity of
H2 is back again to 1 all along the potential-energy curve.
Another drawback of this rounding up rule emerges when
one considers systems with odd numbers of electrons. For
instance, if one applies this definition to the H2

+ prototype,
one concludes for a bond multiplicity of 1, which is clearly
incompatible with the number of electrons in the system.
Although we are aware that this issue is an interpretation one,
and thus that it may be hard to reach a consensus, we advocate
for rounding up or down to the closest integer or half-integer
value, if rounding off is performed. Also, if one wants to
evidence the consequence of a physical or mechanistic effect
on a given bond, it is wiser to perform the rounding off after
computing the numerical difference between the two EBOs of
interest.

The EBO concept has been originally defined for describ-
ing the binding in homodiatomic molecules. However, in
sufficiently symmetric situations, it can be readily applied to
metal-metal complexes [6]. Also, Bolvin and Wagner have
evidenced a σ half-bond [19] with an even number of elec-
trons case corresponding to an extended system, meaning that
EBOs can also be defined in extended systems via the use of
the cluster approach and more interestingly that half-integer
bond multiplicities are of course not restricted to systems with
odd numbers of electrons. Since the definition of EBOs in het-
erodiatomic molecules is already problematic (vide infra), this
issue also transfers to the case of heterobimetallic complexes.
In the present work, we will address the definition of EBOs in
heterodiatomic molecules, thus also concluding for potential
extension of our methodology to heterobimetallic complexes.

B. Multistate cases: The state-average and the “state-specific”
natural orbitals

When one considers multistate cases, one may choose to
express each quantum state with its own set of MOs (state-
specific approach) or with a common set of MOs, defined
to averagely describe the ensemble of quantum states (state-
average approach). In this latter approach, which is the one
that is followed in this work, the state-average NOs (SA-
NOs) for the ensemble of states are obtained by diagonalizing
the weighted sum of the one-body density matrices of all
the considered states after having democratically optimized
the MOs for the ensemble of states. These MOs differ from the
state-specific NOs (SS-NOs), obtained by optimizing the MOs
for only one quantum state and by diagonalizing its one-body
density matrix, and may differ in the general case from the
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FIG. 1. Partial molecular orbital diagrams of the At2 (left) and AtI (right) molecules. Each color box represents an irreducible
representation in the considered symmetry subgroup (D2h for At2 and C2v for AtI, respectively).

state-average “state-specific” NOs (SA-SS-NOs), obtained
from the SA-NOs by diagonalizing the one-body density
matrix for the quantum state of interest. However, the SA-SS-
NOs and the SA-NOs can be strictly identical, for instance, for
homodiatomic molecules in the actual D∞h symmetry group
(and in the D2h symmetry subgroup), providing that orbital
mixings are symmetry forbidden. This situation occurs in
At2 (see Fig. 1 and Table I for which only the MOs formed
from the 6p atomic orbitals are considered), meaning that the
previously introduced EBO concept is readily applicable to
multistate problems for At2.

In the general case, which already occurs in the AtI system
(see Fig. 1 and Table I), orbital mixings are not symmetry
forbidden, which has two main consequences for the sake
of this work: (i) the SA-SS-NOs and the SA-NOs are not
identical anymore and (ii) since orbital mixings between
bonding and antibonding orbitals are allowed, the SA-SS-NOs
and the SA-NOs are not necessarily fully bonding or fully
antibonding, unlike in the homodiatomic situations (this issue
also applies to the SS-NOs, i.e., for the description of a
single multiconfigurational state). However, a net bonding or
antibonding character is assumed for each NO when applying
Eq. (2). Defining EBOs in heterodiatomic molecules is there-
fore a bit ambiguous, although some readily apply Eq. (2), in
particular in the case of heterobimetallic complexes [20–22].
In an attempt to solve this issue, we will propose a diagnostic

TABLE I. Irreducible representations associated to the molecular
orbitals displayed in Fig. 1 as a function of the considered symmetry
group (actual group vs subgroup).

At2 AtX (X �= At)

Group D∞h D2h C∞v C2v

σ ∗ A1u B1u A1 A1

π∗ E1g B2g ⊕ B3g E1 B1 ⊕ B2

π E1u B2u ⊕ B3u E1 B1 ⊕ B2

σ A1g Ag A1 A1

of relevance for EBOs in heterodiatomic molecules, readily
applicable to heterobimetallic complexes.

C. Relativistic effective bond orders: Spin-orbit coupling
a posteriori or a priori

It is quite straightforward to include scalar relativistic
effects while computing EBOs, either via the use of scalar-
relativistic pseudopotentials [23] or of a scalar relativistic
Hamiltonian [24–31], that must at least differ from the nonrel-
ativistic one on the kinetic-energy terms. The wave function(s)
of interest are then expressed in terms of real MOs, and
one can directly apply Eq. (2) after having determined the
appropriate NOs and the corresponding occupation numbers.

When one wants to include SOC effects, two main routes
may be envisaged, by considering (i) that the SOC is a pertur-
bation of the nonrelativistic and scalar-relativistic solutions,
and treat it a posteriori [32–34], or (ii) that the SOC is intro-
duced a priori, the wave function of interest being expanded
in terms of molecular spinors within a quasirelativistic or a
fully relativistic framework.

In the first case, the resulting wave functions are expanded
within the basis of real MOs, meaning that the complex
character, inherent to relativistic wave functions after the
introduction of spin-dependent effects, only appears on the
CI coefficients resulting from the spin-orbit configuration
interaction (SOCI) step. The SA-NOs may correspond to
the SA-SS-NOs of a given spin-orbit quantum state, if it is
imposed by symmetry (as in At2), or differ, as in the general
case (e.g., for the heterodiatomic AtX systems). One can then
determine the SA-SS-NOs by diagonalizing the one-body
density matrix that is obtained after the introduction of the
SOC [35], and afterwards apply Eq. (2) for defining the EBO
at the SOCI level [12]. Alternatively, the interpretation of
the wave function is possible without explicitly computing
the occupation numbers [13], and strictly equivalent to the
previous approach providing that the same set of MOs (in
practice, the SA-SS-NOs) is used. One can also determine
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EBOs at the uncontracted SOCI level [36], as shown by some
of us [13].

In the second case, the complex character of the wave
function is introduced within the molecular spinors, which
do not display strict σ , π , etc. and bonding or antibonding
characters, even in homodiatomic molecules. Because of this,
Knecht et al. proposed to define a generalized EBO (gEBO)
as follows [14]:

gEBO =
∑

σ ησ

(
ωσ

b − ωσ
a

)

2
, (3)

where the summation runs over the active spinors and where
the ωσ

b and ωσ
a weights give the bonding and antibonding

contributions to a given σ spinor. Obviously, the gEBO re-
duces to the previously mentioned EBO for homodiatomic
molecules at the scalar relativistic level, since at this level
the NOs have pure bonding or antibonding characters. For
the U2 molecule, a gEBO of 3.8 was obtained [14], to be
compared with the scalar-relativistic EBO of 4.2 of Roos and
co-workers [6,9,37]. Thus one can conclude that the SOC
effectively reduces the bond multiplicity by half a unit in U2,
even though both the scalar-relativistic and fully relativistic
bond multiplicities may be rounded off to 4, i.e., one can
speak of quadruple bonds in both the cases. Also, since a
wrong ground state was initially proposed [9,37], it is clear
that quasirelativistic or fully relativistic calculations may be
of high importance for determining the correct nature of the
ground and excited states in heavy-element systems.

In the present work, exact two-component (X2C) calcula-
tions will be performed for computing equilibrium distances,
at which the EBOs will be computed at both the scalar-
relativistic and SOCI levels. This way, we aim at solving for
the issue of heterodiatomic systems in the simpler picture
that is obtained while introducing the SOC a posteriori. Note
that, in all the studied cases, the nature of the relativistic
ground state is similar at both the SOCI and X2C levels, as
was also observed in At2 [13]. Therefore, we are confident
in the conclusions that we will obtain at this level for the
AtX (X = At – F) series, and consider the extension of
the proposed methodology for heterodiatomic systems to the
gEBO framework as a perspective.

III. COMPUTATIONAL DETAILS

A. Geometry optimizations

Equilibrium bond distances have been calculated at the un-
restricted coupled cluster level with single, double, and pertur-
bative triple excitations [CCSD(T)] [38] using the DIRAC15
[39] program. The X2C Hamiltonian [30] was employed.
The use of this approach was justified by comparison with
the four-component level, resulting in negligible changes in
bond lengths (less than 0.0025 Å of difference for the tested
cases, i.e., At2, AtI, and AtBr). We have also used the corre-
sponding nonrelativistic and scalar-relativistic Hamiltonians
in order to highlight the respective roles of the scalar and
spin-dependent relativistic effects on the molecular geome-
tries. Dyall’s relativistic basis sets of quadruple-zeta quality
[40,41], augmented (in an even tempered fashion) with one
set of diffuse functions per angular momentum block (AVQZ)
were employed. The differences in bond lengths compared to

using the nonaugmented VQZ basis sets were in all the test
cases less than 0.003 Å; thus we consider the results to be
sufficiently converged at the AVQZ level for our purposes.
All the orbitals within the −20 to 30 a.u. energy range were
included in the correlation treatment and the atomic nuclei
were modeled by a Gaussian nuclear model [42].

B. Determination of the relativistic and multiconfigurational
wave functions

All the relativistic and multiconfigurational wave functions
were determined at the reference X2C CCSD(T) geometries.
As previously shown [13], the SOCI equilibrium geometries
for astatine diatomics are usually in good agreement with the
fully relativistic ones, the nature of the ground state being also
similar. All the wave function calculations were performed
with the MOLPRO program package [43].

The scalar-relativistic wave functions have been ob-
tained by means of state-average complete active space self-
consistent field (SA-CASSCF) calculations [44,45]. Then,
scalar-relativistic energies have been computed using the
N-electron valence state perturbation theory at second
order (NEVPT2) [46–48]. For all the calculations, ba-
sis sets of quadruple zeta quality were employed (aug-
cc-pVQZ) [49–52], in conjunction with energy-consistent
scalar-relativistic pseudopotentials, supplemented by SOC
pseudopotentials for the heaviest atoms, namely At, I, and Br
[51,52].

In the second step of the calculation, the Htot = ENEVPT2

+ HSOC matrix has been diagonalized within the basis of
the MS components of the previous scalar-relativistic states
(contracted SOCI scheme), generating the perturbed relativis-
tic and multiconfigurational wave functions (the perturbation
being here the SOC and this perturbation being variationally
treated). Note that it has become standard to dress the diagonal
of the Htot = Eel + HSOC matrix with more correlated energies
than the SA-CASSCF ones, while computing the off-diagonal
matrix elements still with the SA-CASSCF wave functions
[53,54]. The considered scalar-relativistic states being here
well separated in energy, this approximation appears quite
justified. Note that the expressions for computing the SOC
matrix elements while using pseudopotentials are given else-
where [23].

In each case, the active space of the SA-CASSCF step
comprises 10 electrons within six active orbitals (principally
emerging from the np valence AOs). With one spin-singlet and
four spin-triplet scalar-relativistic states, test calculations have
shown that more than 99% of the wave function was recovered
as compared to the full set of scalar-relativistic states that can
be defined for this active space (21 spin-singlet and 15 spin-
triplet scalar-relativistic states). Thus the reported results are
based on one spin-singlet and four spin-triplet state-averaging
space and the following SOCI calculations have retained the
spin-singlet and the 4 × 3 spin components of the spin-triplet
states. Note that in the At2 diatomic molecule, only two
scalar-relativistic states are at play, because of symmetry
(the lowest-energy spin-triplet state being doubly degenerate
and of ungerade symmetry, its components cannot couple
to the ground spin-singlet scalar-relativistic state of gerade
symmetry via the SOC operator).
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TABLE II. Nonrelativistic, scalar-relativistic, and X2C bond distances (Å) for the AtX (X = At – F) series obtained with coupled-cluster
calculations including single, double, and perturbative triple excitations, CCSD(T) (this work).

Nonrelativistic Scalar relativistic Quasirelativistic X2C
X CCSD(T) DFT [61] CCSD(T) CCSD(T)-F12 [60] DFT [61] CCSD(T)

At 2.877 2.881 2.832 2.858 3.048 2.967
I 2.773 2.794 2.750 2.770 2.879 2.816
Br 2.567 2.596 2.553 2.570 2.671 2.614
Cl 2.416 2.449 2.411 2.420 2.524 2.471
F 1.984 2.028 1.996 2.010 2.086 2.045

Finally, apart from the At2 case where the SA-NOs are
NOs of all the scalar-relativistic and of all the perturbed
relativistic and multiconfigurational states, one should stress
that the SA-SS-NOs of a given state at the SOCI level are not
readily available. The ground-state SA-SS-NOs at the SOCI
level were determined by diagonalizing the weighted sum of
the density matrices for the five scalar-relativistic states com-
puted at the SA-CASSCF level (the weights corresponding to
the sum of the weights associated with the spin components
of each scalar-relativistic state in the SOCI wave function).

IV. RESULTS AND DISCUSSION

A. Role of the scalar-relativistic and spin-dependent effects
on the geometries

The nonrelativistic, scalar-relativistic, and X2C CCSD(T)
bond distances for all the AtX (X = At – F) systems are
displayed in Table II. The present values may be compared
with previous estimates for these quantities from the literature,
for At2 [13,55–59] or for the entire series [60,61]. In the At2

case, the X2C CCSD(T) value is notably in good agreement
with the contracted and uncontracted SOCI ones, 2.957 and
2.971 Å, respectively [13], and the X2C CCSD(T) value of
Höfener et al., 3.006 Å [57]. For the rest of the series, only
DFT estimates [61] are available for comparison with the new
X2C values. At the scalar-relativistic level, a good agreement
is found for the entire series with the very accurate CCSD(T)–
F12 values proposed by Hill and Hu [60], with a mean
absolute deviation of 0.017 Å, as compared to the deviation
of 0.024 Å with DFT. Note that in both cases, i.e., CCSD(T)
or DFT, the deviation from the CCSD(T)-F12 values is of the
same order of magnitude, while the mean signed deviations
display opposite signs. Overall, we thus consider that the
new results reported in Table II clearly represent the most
accurate and consistent set of bond distances for the entire
AtX (X = At – F) series, with an appropriate treatment of
both relativity and electron correlation.

After having settled the good accuracy of the results re-
ported in Table II, it is worth commenting on the role of
the scalar-relativistic and of the spin-dependent (mainly the
SOC) relativistic effects on the bond distances of interest.
It is clear that in most of the systems (X = At – Cl), the
scalar-relativistic effects lead to a (moderate) bond shorten-
ing, as expected for diatomic molecules made of p elements
[62]. The AtF molecule appears as an outlier within the
series, displaying an apparent bond lengthening induced by

scalar-relativistic effects. Actually, this bond distance enlarge-
ment is not seen at the Hartree-Fock level, and thus results
from the addition and interplay between electron correlation
and scalar-relativistic effects. Consequently, it is of different
origin than the “classical” scalar-relativistic bond length-
enings that may occur for instance in diatomic molecules
with f elements [62]. The differences between the ground-
state energies obtained at both the nonrelativistic and scalar-
relativistic geometries and at the nonrelativistic and scalar-
relativistic Hartree-Fock and CCSD(T) levels being small
(the four resulting energy differences being of the order of
1 kJ mol−1), it is difficult to draw conclusive insight into the
bond lengthening in AtF and we thus do not discuss it here in
further detail.

The role of the SOC on the bond distances is quite system-
atic in the series, all bonds being significantly lengthened (see
Table II). This bond lengthening can be interpreted in a similar
way as the role of electron correlation on the bond distance,
provided that one considers real MOs for reasoning. As can be
seen in Fig. 1, the ground scalar-relativistic configuration for
all the systems is σ 2π4π∗4. The dominant SOC excitations are
typically single-excited ones (the two-body SOC terms being
usually much smaller than the one-body ones). In these sys-
tems, while electron correlation triggers the σ 2 to σ ∗2 double
excitation, the SOC leads to the promotion of one electron
from the π (all the series, as in At2 [13]) or from the π∗ (AtX
with X �= At) MOs to the σ ∗ one. In both cases, the stabilizing
effect of the triggered excitations on the total energy of the
bound system is favored by diminishing the energy difference
between the involved levels, i.e., by lengthening the bond,
which is of course in competition with the scalar-relativistic
and uncorrelated energy destabilization that arises by moving
out of the reference equilibrium geometry. Therefore, it is not
surprising to observe a general SOC bond lengthening in the
AtX series, as for electron correlation in H2 [63,64].

B. Relevance of effective bond orders in
heterodiatomic molecules

The EBOs obtained with the SA-SS-NOs at the SOCI level
are given in Table III. Prior to discussing the diagnostic of
relevance, it is important to discuss the two contributions to
EBOtot that arise in the studied cases, i.e., EBOσ and EBOπ .
While one may consider at first sight that EBOσ is practically
constant at the SOCI level all along the series (with only minor
variations for At2 and AtF), EBOπ significantly evolves from
a noticeable negative value for At2 (π antibonding character,
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TABLE III. Partial and total effective bond orders for the AtX
(X = At – F) series obtained with the SA-SS-NOs at the SOCI
level and relative difference of the total bond effective order with
the alternative one (see text).

X EBOσ EBOπ EBOtot EBOalt

|EBOtot − EBOalt|
EBOtot Relevance

At 0.83 −0.05 0.78 0.78 0 Full
I 0.87 0.00 0.87 0.85 2.3% Strong
Br 0.87 0.03 0.90 0.83 7.8% Moderate
Cl 0.87 0.06 0.93 0.79 14.1% Weak
F 0.85 0.07 0.92 0.82 10.9% Weak

which was already pointed out in [13]) to a noticeable positive
one for AtF. Although this may seem a bit counterintuitive to
devotees of the scalar-relativistic picture, this behavior will be
elucidated in Sec. IV C. Consequently, EBOtot first increases
in the series (from X = At to X = Cl), before reaching an
apparent plateau (for X = Cl and X = F). Again, this behavior
was not easily predictable, especially if one neglects the SOC
in the reasoning.

In the At2 case, the SA-NOs and the SA-SS-NOs of any
of the scalar-relativistic or SOCI solutions perfectly coincide,
and each NO has a perfect bonding or antibonding character.
As a consequence, if one defines an “alternative” EBO, such
as maximizing the bonding and the antibonding characters of
the active MOs (see the discussion below), EBOalt would be
strictly equal to EBOtot. No deviation between the alternative
and the reference value would be observed, and EBOtot is
thus perfectly relevant. Due to the symmetry lowering with
the AtX (X �= At) systems, it cannot be the case and we
propose to use the deviation between EBOalt and EBOtot as
a measure of the ambiguity that occurs while defining EBOs
in heterodiatomic compounds.

For doing this, we must define how to generate the most
bonding and most antibonding active MOs by an appropriate
transformation of a given set of active MOs, i.e., how to “ro-
tate” the active MOs and which criteria to use for maximizing
the bonding and antibonding characters of each pair of active
MOs. As can be seen in Fig. 1 and Table I, in the C2v symmetry
subgroup, the bonding and antibonding orbitals may pairwise
mix. For a given pair of active MOs (namely the σ/σ ∗ pair or
one of the two π/π∗ ones), a rotation between MO0

1 and MO0
2

may be defined as follows:

MOφ

1 = cos(φ)MO0
1 + sin(φ)MO0

2 (4)

and

MOφ

2 = − sin(φ)MO0
1 + cos(φ)MO0

2, (5)

where φ is the rotation parameter in both equations. For
φ = φmax, |Si j

1 |, and |Si j
2 |, the respective interatomic absolute

overlaps between the I and J atoms for the two rotated MOs,
defined as

|Si j
k | =

∣∣∣∣∣∣

∑

i

∑

j

ci
kc j

kSi j

∣∣∣∣∣∣
, (6)

are maximized, one orbital being the most bonding one
(Si j

k > 0) and the other (Si j
k′ < 0 with Si j

k′ �= −Si j
k ) the most

antibonding one, with k referring to a given rotated MO (still
for φ = φmax), ci

k and c j
k being the linear combination of

atomic orbital coefficients of orbital k associated with the i
and j (contracted) atomic basis functions of atoms I and J , re-
spectively, and Si j being the overlap between one atomic basis
function of atoms I and one of atom J . After quick numerical
“scans” over the various possible φ values (with first a step of
1◦, and then refining the maximum value with a step of 0.1◦
in appropriate intervals), approximate values of the φmax’s
have been determined for each AtX (X �= At) compound and
the diagonal elements of the one-body density matrix used to
compute EBOalt. The relative deviations between the EBOalt

and EBOtot values are reported in Table III.
The first important result of the “scans” relates to Lowdin’s

conjecture [3]: are the SA-SS-NOs actually extremizing the
occupation numbers, which would here mean that the absolute
values of EBOσ and EBOπ are maximized? Since we were
unable to find better extrema of the occupation numbers with
the previously described scans, we conclude that this is nu-
merically the case, even if we do not strictly have two-electron
systems [4,7] (the total σ population being 2 + δ here with
δ ≈ 0.1e−, and the one of each of the two π subsystems being
2 − δ

2 ). In this sense, the SA-SS-NOs have a well-grounded
meaning (since they do maximize the absolute contributions
to EBOtot), and so does EBOtot.

Another important aspect concerns the ambiguity of the
definition of EBOs in heterodiatomic compounds. As can be
seen in Table III, the deviation between the EBOalt and EBOtot

values increases from X = At to X = Cl, and then decreases
from X = Cl and X = F. Where it comes to interpreting these
deviations enters arbitrariness. Some of us have shown that
the SOC decreases the EBO in At2 by more than 10% [13].
Because the ambiguity that affects the EBO must be of smaller
magnitude than the physical effects we are interested in, this
ambiguity must be kept at least smaller than 10%. Therefore,
we qualify the relevance of the EBOtot descriptor as “strong”
in the case of a deviation between EBOalt and EBOtot that is
comprised between zero and 5%, “moderate” between 5 and
10%, and “weak” for more than 10% (see Table III). With this
reading grid, the EBO in AtI is strongly meaningful, the one
in AtBr moderately meaningful (but still acceptable), and the
ones in AtCl and AtF are weakly meaningful (though one may
still attempt to comment on them). The pointed out situation in
AtCl and AtF is not surprising owing to the strong asymmetry
and the expected significant ionicity of these systems, in
contrast to what is expected by assuming the active MOs to
have net bonding or antibonding characters (i.e., by thinking
of a quite symmetric and “covalent” system).

C. Role of the spin-orbit coupling on the effective bond orders

We now continue the analysis of the AtX (X = At –
F) series by discussing the role of the SOC on the EBOs.
The scalar-relativistic EBOs, reported in Table IV, are quite
distinct to the SOCI ones. For instance, the EBOπ s are
practically zero for all the series, which is not surprising
since the ground electronic configuration displays full π

shells (σ 2π4π∗4). In At2, some of us have already shown
that the SOC admixes the ground scalar-relativistic state (a
spin-singlet state dominated by the σ 2π4π∗4 configuration,
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TABLE IV. Partial and total effective bond orders for the AtX
(X = At – F) series obtained with the SA-SS-NOs at the scalar-
relativistic level (SA-CASSCF wave functions). �EBOtot is the spin-
orbit coupling contribution to EBOtot.

X EBOσ EBOπ EBOtot �EBOtot

At 0.90 0.00 0.90 −0.12
I 0.92 0.00 0.93 −0.06
Br 0.93 0.00 0.93 −0.03
Cl 0.93 0.00 0.94 −0.01
F 0.92 0.00 0.92 0.00

and of course, to a lesser extent, the σ 0π4π∗4σ ∗2 one be-
cause of electron correlation) with spin-triplet components of
dominant σ 2π3π∗4σ ∗1 electronic configuration [13]. These
spin-triplet components belong to the highest-energy doubly
degenerate scalar-relativistic spin-triplet state that has been
computed, the lower-energy one being uncoupled by symme-
try to the ground scalar-relativistic state via the SOC operator.

In the AtX (X �= At) systems, we recall that the SOC
can couple the spin components of the two computed doubly
degenerate scalar-relativistic spin-triplet states to the ground
scalar-relativistic one. While the highest-energy doubly de-
generate scalar-relativistic spin-triplet state has the same na-
ture as the spin-triplet state previously discussed for At2 (it
essentially corresponds to the σ 2π3π∗4σ ∗1 electronic con-
figuration), the nature of the lowest-energy doubly degener-
ate scalar-relativistic spin-triplet state must be specified: it
is dominated by the σ 2π4π∗3σ ∗1 electronic configuration,
which gives positive contributions to EBOπ , in contrast to
the negative contributions associated with the previous spin-
triplet state. The more asymmetric the system, the more
important the positive contribution is, eventually leading to
a change in the π character of the ground SOCI state, from π

antibonding for X = At to π bonding for X = Br – F. Note
that this contribution not only depends on the dissymmetry of
the system (which translates into the SOC magnitude between
the ground scalar-relativistic state and the components of
the first doubly degenerate spin-triplet one), but also on the
scalar-relativistic excitation energies that may also vary within
the series. Since two competing contributions are at play
(π bonding and π antibonding, respectively) and since the
SOC magnitudes and the relevant excitation energies vary in
the series, the evolution of EBOπ to positive values could not
be anticipated without performing the present wave function
theory study.

AtI appears as a key intermediate within the series since
both competing contributions to EBOπ practically cancel out,
leading to a nonbonding π character for the ground state.
However, this does not mean that the role of the SOC on the

bonding is dumb, since both competing terms are associated
with the promotion of partial electrons from the π system to
the σ one, leading to a significant reduction of EBOσ , and thus
to an effective “weakening” of the bond.

Intriguingly, the SOC practically leaves EBOtot unchanged
in AtCl and AtF, which is not an artifact of the choice of
the MOs to compute the EBOs (a similar pattern would
be observed with the EBOalts). This is actually hiding a
strong difference between the two quantities. At the scalar-
relativistic level, only EBOσ contributes to EBOtot, while both
EBOσ and EBOπ count and sum up to give a similar EBOtot at
the SOCI level. Since the σ and π bondings are not equivalent
(usually, one would consider that the σ bonding is “stronger”
than the π one), the bonding pictures are then truly distinct
at the two considered relativistic levels (scalar relativistic vs
SOCI) even though the EBOtots are similar.

V. CONCLUDING REMARKS

The description of the binding between atoms in the ground
and excited states of molecules and ions is of everlasting
interest in the quantum chemistry and molecular physics
communities. In this work, we have contributed to this field
by (i) tackling the issue of the definition of EBOs in het-
erodiatomic molecules, (ii) showing that the SOCI method
and the EBO concept can be useful for highlighting in an
intelligible way the significant role of the SOC on the binding
in heterodiatomic molecules containing a heavy atom such as
At (Z = 85), (iii) providing reference geometries for a few
astatine systems of experimental relevance, and (iv) revealing
the role of the scalar and spin-dependent relativistic effects
at the molecular geometries of interest. Somehow, this work
may be seen as a step toward the nonambiguous definition of
gEBOs in heavy heterodiatomic molecules. The reported re-
sults may be of broad interest since the issue of defining EBOs
in heterodiatomic compounds concerns the entire Periodic
Table and because the proposed diagnostic of relevance is
also applicable to more compelling systems, such as hetero-
bimetallic complexes (see for instance [20–22]). Finally, we
would like to recall that, if an EBO has to be rounded off,
we recommend to round up or down to the closest integer or
half-integer value, and not to the first superior integer.
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