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Experimental and theoretical study of core-excited 3pnd Rydberg series of Mg
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We present an experimental and theoretical study of the structure and autoionization dynamics of the
(3pjc ndj )J=1,3 core-excited Rydberg states of Mg. Spectra were recorded experimentally for principal quantum
numbers n in the range from 30 to 100 using the isolated-core-excitation technique. Large-scale configuration-
interaction calculations combined with the exterior-complex-scaling method were also carried out, which do
not rely on the assumptions used in the usual R-matrix multichannel-quantum-defect-theory treatment of
core-excited Rydberg states. Agreement between theory and experiment is excellent over the entire range of
principal quantum numbers studied and allows us to elucidate in detail the structure of the core-excitation spectra.
The dominant autoionization mechanisms are identified, and in particular the very fast spin-orbit autoionization
of some (3p3/2ndj )J states above the 3p1/2 ionization threshold. We discuss the influence of the principal and
total-angular-momentum quantum numbers n and j of the Rydberg electron and the total-angular-momentum
quantum number J of the atom on the autoionization dynamics. We also identify previously unobserved
resonances attributed to members of the (3pjc ngj )J series.
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I. INTRODUCTION

Doubly excited states of atoms and molecules are states in
which two electrons have been promoted to orbitals not occu-
pied in the ground state. In most cases, they lie energetically
above the first ionization threshold and can decay into a more
stable, ionic state by spontaneous emission of an electron, a
process known as autoionization. This decay results from the
Coulomb repulsion between electrons, making the properties
of doubly excited states highly sensitive to electron-electron
correlations. Doubly excited states have been extensively
studied [1–3] since the early experiment of Beutler on doubly
excited states of Ar, Kr, and Xe [4].

Core-excited Rydberg states are a class of doubly ex-
cited states in which two electrons are asymmetrically ex-
cited, one to a high-lying Rydberg state and the other to
a low-lying excited state. In the alkaline-earth-metal atoms,
core-excited Rydberg states are easily accessible experimen-
tally because these atoms possess only two valence elec-
trons, the remaining electrons forming a closed-shell core
which does not significantly influence their properties. Conse-
quently, these elements have received considerable attention
from experiment and theory and played an important role
in the understanding of autoionizing Rydberg series and the
development of multichannel spectroscopy [2]. The low
single- and double-ionization potentials of alkaline-earth-
metal elements facilitate their study by high-resolution spec-
troscopy with conventional lasers, especially when compared
to the simplest two-electron system, helium, for which syn-
chrotron radiation is required, with comparatively low res-
olution. From a theoretical perspective, alkaline-earth-metal
atoms can be treated as effective two-electron systems, with
the advantage that emphasis can be placed on the physical
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processes at play in core-excited Rydberg states. Core-excited
Rydberg states of alkaline-earth-metal atoms are best de-
scribed using the j j coupling scheme [2] and will be la-
beled by (nclc jc

nl j )J hereafter. The quantities nc, lc, jc denote
the principal, orbital-angular-momentum, and total-angular-
momentum quantum numbers of the inner electron, and n, l ,
and j are the corresponding quantum numbers of the Rydberg
electron. J is the total-angular-momentum quantum number
of the atom.

Experimentally, core-excited Rydberg states have been
studied in two ways: In photoionization spectra of ground-
state atoms recorded following excitation with a single
vacuum-ultraviolet photon, they appear as resonances and
exhibit typical Beutler-Fano profiles [4,5] resulting from the
interference between the direct photoionization and autoion-
ization pathways (see Wehlitz et al. [6] for a recent example on
Mg). In isolated-core-excitation (ICE) spectra, the atoms are
first prepared in a high-lying Rydberg state and, in a second
step, photoionization is achieved using a laser with photon
energies in the vicinity of a transition of the bare ion [2,7,8].
In the isolated-electron picture, this corresponds to the excita-
tion of the second valence electron to an excited state of the
ion core. The direct photoionization of the Rydberg electron
in the second step is negligible compared to excitation of the
core electron and autoionization. Consequently, ICE spectra
exhibit series of Lorentzian-type resonances, indicating the
absence of strong Fano-type interferences [9].

Theoretically, a broad range of core-excited Rydberg states
of alkaline-earth-metal elements have been studied with re-
markable success using the collision-theory framework of
multichannel quantum-defect theory (MQDT) [2]. This ap-
proach proves particularly powerful when the short-range
scattering parameters required by MQDT can be determined
ab initio, e.g., in eigenchannel R-matrix calculations. The
complex structures of numerous alkaline-earth-metal ICE
spectra, strongly perturbed by multiple channel interactions,
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were elucidated with this method [2]. An alternative approach,
developed in parallel to study core-excited Rydberg states of
helium, relies on the direct treatment of the full, two-electron
problem by means of a basis-set expansion of the two-electron
wave function combined with the complex-scaling method
[10–13]. However, this approach was not used to study core-
excited Rydberg states of alkaline-earth-metal atoms until
the recent work of Fields et al. [14], who calculated the
quantum defects and autoionization rates of the (5p1/2np j )J

and (5p1/2n f j )J series of Sr.
Magnesium differs from the heavier alkaline-earth-metal

atoms (Ca, Sr, Ba) in two ways [15,16]. First, the absence
of a (nc − 1)d excited state of the ion lying between the ncs
ground state and nc p excited state reduces the number of
open channels and the complexity of the problem. Second, the
fine-structure splitting of the 3p1/2,3/2 ionic state is relatively
small (91.57 cm−1 [17]). Consequently, interactions between
the Rydberg series converging to these two thresholds occur
over a much broader range of principal quantum numbers of
the np3/2 series, with n as high as 35, compared to n = 14 in Sr
and n = 10 in Ba. These differences, and the effect they have
on ICE dynamics, were investigated in the pioneering works
of Dai et al. [15] and Schinn et al. [16]. They studied ICE
spectra for a broad range of (3p jc nd j )J core-excited Rydberg
states of Mg, with n = 9–40 and J = 1 and 3, both experimen-
tally and theoretically within an R-matrix MQDT approach.
Their work was later extended by Lindsay et al. [18,19], who
measured the angular distributions of autoionized electrons,
by Lyons et al. [20], who studied (3p jc n f j )J=2,4 states, and by
Warntjes et al. [21], who investigated the influence of strong
electric fields on core-excited Rydberg states.

Of particular interest in the context of core-excited Ry-
dberg states is the evolution of the decay dynamics with
the quantum numbers n, l , and j describing the Rydberg
electron and the total-angular-momentum quantum number
J . For example, increasing n or l reduces the strength of
electron-electron interactions and progressively uncouples the
Rydberg electron from the ionic core [22]. This behavior
offers attractive prospects in the field of quantum optics
and quantum simulation with alkaline-earth-metal elements
[23–25]. Provided that the autoionization rate is small, the
core-excitation transition may be used to manipulate Rydberg
atoms with light while the long-range potential associated
with the large dipole moment of the Rydberg electron al-
lows the study of interactions between Rydberg atoms and
the simulation of many-body quantum dynamics [23]. The
fluorescence of core-excited Rydberg atoms has already been
used to image ultracold neutral plasmas [26–28]. Whereas
the effects of n and l on the coupling between the Rydberg
electron and the ionic core are extensively documented [22],
information on the effects of j and J is much scarcer. This
work aims at filling this gap.

We present an experimental and theoretical study of the
(3p jc nd j )J (J = 1, 3) core-excited Rydberg states of Mg. Our
experiment, presented in Sec. II, is based on the ICE tech-
nique. We recorded core-excitation spectra from 3snd 1D2 Ry-
dberg states for principal quantum numbers in the range from
n = 31 to 80. The high n values and the high spectral resolu-
tion reached in our study enabled the observation of spectral
structures that had not been observed previously. The theoret-

FIG. 1. Schematic diagram (not to scale) of the energy-level
structure and excitation scheme used to study the core-excited
(3pjc ndj )J states of Mg. The shaded blue, red, and green regions,
along with the corresponding labels on the left-hand side, indicate
the ranges of energies probed experimentally, in which the series
interact.

ical approach, detailed in Sec. III, is based on a large-scale
configuration-interaction (CI) calculation combined with the
exterior-complex-scaling (ECS) technique. The comparison
of the calculated and experimental high-resolution spectra,
presented in Sec. IV, provides a stringent test for the theory
and illustrates the high accuracy and capability of the CI-ECS
approach. Particular attention is paid to the description of the
dynamics of the core-excited Rydberg states in dependence
of the principal quantum number n and of the fine-structure
quantum numbers j and J .

II. EXPERIMENTAL SETUP

The experiment relies on the resonant multiphoton excita-
tion of Mg(3s2 1S0) ground-state atoms to (3p jc nd j )J core-
excited Rydberg states following the ICE scheme depicted
in Fig. 1. In a first step, two pulsed dye lasers are used to
excite the atoms from the ground state to 3sns 1S0 and 3snd 1D2

Rydberg states by (1 + 1′) resonance-enhanced multiphoton
excitation via the 3s3p 1P1 state. The values of the quantum
defects of these series are 1.525234(29) and 0.61197(3), re-
spectively [29]. Under our experimental conditions, the neigh-
boring 3s(n + 1)s and 3snd pairs of Rydberg states can be
resolved up to n � 60. Below this value, 3snd states can thus
be selectively populated by choosing the corresponding ex-
citation frequency. The square of the transition dipole matrix
element from the 3s3p 1P1 state to the 3sns 1S0 state is about
200 times smaller than that to 3snd 1D2 states. Consequently,
the excitation probability to the s Rydberg series is much
smaller than that to the d Rydberg series. When recording
the photoexcitation spectrum of the 3s3p 1P1 state to Rydberg
states with n = 40–60, we did not observe lines corresponding
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to 3sns 1S0 states. We thus neglect the contribution of 3sns
Rydberg states to the spectra presented in this article.

In the independent-electron approximation, the second ex-
citation step corresponds to the excitation of the 3s1/2 core
electron to the 3p1/2 or 3p3/2 excited states, and is achieved
using a third pulsed dye laser. To ensure that the excitation
occurs in a sequential manner, the pulses of the third laser
are delayed with respect to the pulses of the first and second
lasers by � 4 ns, a value corresponding to their respective
full widths at half-maximum. Core-excitation spectra are
recorded by scanning the wave number ν̃3 of the third dye
laser in the vicinity of the 3s − 3p1/2 and 3s − 3p3/2 isolated-
core transitions, with wave numbers of 35 669.31 cm−1 and
35 760.88 cm−1, respectively [17], and monitoring the Mg+

ion yield. The wave numbers ν̃1 and ν̃2 of the first and second
lasers are kept fixed at the position of the selected 3snd 1D2

Rydberg state (see Fig. 1).
The experimental setup has been described in detail pre-

viously [30,31]. Briefly, magnesium atoms are formed by
laser ablation of a Mg rod by the second harmonic of a
pulsed Nd:YAG laser inside the nozzle of a pulsed-supersonic-
expansion source. They are entrained and cooled by the
N2 carrier gas released by the pulsed valve. The atomic
beam is collimated 8 cm downstream from the nozzle by a
4-mm-diameter skimmer before it enters the photoionization
chamber. In the photoionization chamber, the atomic beam is
intersected at right angles by the light pulses from three com-
mercial, frequency-doubled dye lasers pumped by the second
harmonic of a seeded Nd:YAG laser. Their wave numbers,
denoted ν̃1, ν̃2, and ν̃3 below, are measured with a commercial
wavemeter with a specified absolute accuracy of 0.02 cm−1.
All three lasers are linearly polarized along the same direction,
perpendicular to that of the atomic beam. The wave number
of the first laser is set to 35 051.26 cm−1, corresponding to
the 3s2 1S0 − 3s3p 1P1 transition. Its pulse energy is attenuated
to about 50 μJ in order to prevent direct ionization of atoms
in the 3s3p 1P1 excited state. The pulse energy of the second
laser is �1 mJ and its bandwidth estimated to be 0.15 cm−1

from the full widths at half-maximum of the lines in the pulsed
field ionization spectrum of the Rydberg 3snd 1D2 series.
From previous work [30], we estimate the bandwidth of the
frequency-doubled output of the third laser to be of the order
of 0.1 cm−1. Its pulse energy is attenuated to below 25 μJ in
order to avoid power and saturation broadening.

The interaction between the atoms and the laser pulses
occurs inside a 5.8-cm-long stack of five cylindrical, equally
spaced, and resistively coupled electrodes. The stack is sur-
rounded by two concentric mu-metal shields to suppress stray
magnetic fields. 600 ns after the laser pulses, an electric-field
pulse of about 120 V/cm is applied to the electrode stack
to accelerate the positive ions into a linear time-of-flight
(TOF) region, at the end of which they are detected using
a microchannel-plate (MCP) detector. The MCP signal is
amplified and measured on a fast digital oscilloscope, itself
connected to a computer for data acquisition and analysis.
We record, in the TOF trace, the signals corresponding to
the 24Mg+, 25Mg+, and 26Mg+ ions separately. All results
presented below are for 24Mg+. For principal quantum num-
bers n of the Rydberg electron above �50, the electric field
generated by the extraction pulse is sufficient to field ionize

the Rydberg atoms. In order to distinguish between photoions
and ions produced by pulsed-field ionization (PFI) of Rydberg
states, we follow the procedure described in Ref. [31], and
apply a 2.2-μs-long electric field of 1.4 V/cm to the electrode
stack, 300 ns after the laser interaction but prior to the large
extraction pulse. This separates the photoionization signal
from the PFI signal in the TOF trace and allows their recording
in distinct spectra.

Several effects influence the intensity distributions of the
measured spectra. First, fluctuations of the number of Mg
atoms in the beam, caused by inherent instabilities in the
laser-ablation process, can affect the signal strengths. Fast
fluctuations are eliminated by recording the signal amplitude
at a given wave number for 125 experimental cycles and
subsequently averaging the data. Long-term fluctuations, on
the order of several minutes to hours, are not corrected for.
To ensure the consistency of the relative intensities of the
spectra in the 3p1/2 and 3p3/2 regions, we carried out fast,
low-resolution scans of each region, which we used to nor-
malize the intensities measured in the slow, high-resolution
scans. The spectra were also corrected for variations of the
pulse energy of the third laser. Residual saturation and power
broadening, albeit minimized, can alter slightly the shape of
the spectra.

Photoionization spectra have been recorded for three dif-
ferent ranges of principal quantum numbers n of the Rydberg
electron, labeled 1, 2, 3 and 1′, 2′, 3′ in Fig. 1, and correspond-
ing to the excitation of the inner electron to the 3p1/2 and the
3p3/2 states, respectively. In regions 1 and 1′, around n = 31,
the binding energy �En of the nd Rydberg electron is slightly
larger than the 3p1/2 − 3p3/2 fine-structure splitting of the
ion (91.57 cm−1 [17]). In this case, the core-excited Rydberg
states populated by ICE typically have energies below the
3p1/2 threshold [see Eq. (9)] and can only decay into the
continua associated with the 3s1/2 ion core. In regions 2 and
2′, around n = 39, �En is slightly smaller than the ionic
fine-structure splitting. The continua associated with the 3p1/2

ion core are therefore energetically accessible to (3p3/2nd j )J

states and must be considered (see region 2′ in Fig. 1). In
regions 3 and 3′, with n in the range from 60 to 80, the
open channels are the same as in the second regions, but the
decay dynamics are slower because of the reduced interaction
between the core and highly excited Rydberg electrons.

III. THEORY

The theoretical description of high-n, core-excited Ryd-
berg states is challenging because the total electronic wave
function extends very far away from the nucleus and, at the
same time, properties such as quantum defects and autoion-
ization rates critically depend on the detailed behavior of the
wave function close to the nucleus. In the R-matrix MQDT
approach generally used to study core-excited Rydberg states,
these apparently contradicting requirements are met by parti-
tioning the configuration space into inner (r < R0) and outer
(r � R0) regions [2]. The wave function associated with the
N-electron ion core is confined within the inner region, where
the full (N + 1)-electron problem must be solved. In contrast,
only the Rydberg electron is present in the outer region,
where its interaction with the ion core is assumed to be
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purely Coulombic, i.e., correlations with the core electrons are
neglected. The connection between the inner and outer regions
is expressed in terms of the R matrix used in scattering theory
[32], which can be calculated ab initio. Physical quantities
such as the Rydberg density of states can be derived from the
R matrix, or equivalently from the reaction matrix K , using
MQDT [33]. They are described as the result of the scattering
of the Rydberg electron off the ion core. To reduce the
complexity of the problem, some channels can be neglected,
such as the (3p jc ng j )J channels in Mg [15,16]. A channel
is specified by the state of the ionic core (e.g., 3p jc ), the
set of appropriate angular-momentum quantum numbers of
the Rydberg electron (e.g., l and j) and the set of angular-
momentum quantum numbers of the atomic system (e.g., J).

An alternative approach, used extensively to study the
doubly excited states of helium [10–13] and more recently Sr
[14], consists in solving the full two-electron problem over
the entire space spanned by the total wave function. The
approximations inherent to the R-matrix MQDT approach are
avoided in this way and the bielectronic interaction is treated
everywhere to all orders. Continuum states and resonances
can be accounted for using the complex-scaling method
[34,35]. The two-electron wave function is expanded in a
large basis set used to construct the two-electron Hamiltonian.
Diagonalization of the large, complex-rotated Hamiltonian
matrix yields, in a straightforward manner, the energies and
associated complex-rotated wave functions of both bound
states and autoionizing resonances, along with the widths
of the latter. All channels are automatically included in the
calculation. Another strength of this approach is that the
photoionization cross section from any initial Rydberg state
can be calculated directly and in an absolute manner, without
resorting to the approximations commonly used in the R-
matrix MQDT treatment of ICE and, in particular, without
neglecting the direct photoionization of the Rydberg electron.
R-matrix MQDT, however, offers the advantage that it enables
the description of the coupled Rydberg series, including au-
toionization, in a single configuration-interaction calculation
carried out at short range [2].

In the following, we describe a configuration-interaction-
type approach within the two-active-electron approximation,
where the total wave function is expanded in terms of one-
electron wave functions of the Mg+ ion calculated on a grid.
We require this method to be simultaneously accurate, in order
to allow comparison with the experimental spectra recorded
with a resolution of 0.1 cm−1, and computationally tractable
even for Rydberg states as high as n = 80. To significantly
reduce the numerical complexity, we exploit the inherent
asymmetry of the problem, i.e., the fact that one electron
remains close to the Mg2+ core while the other extends far
away from it. A similar approach was used by Fields et al. [14]
to calculate the autoionization rates of high-lying core-excited
Rydberg states of the Sr atom.

A. Atomic structure

As in previous works [2,36], we consider explicitly only
the two valence electrons of Mg. The remaining 10 electrons
of the Mg2+(1s22s22p6) closed-shell core are accounted for
through an empirical model potential. In the following, atomic

units are used unless stated otherwise. The electronic Hamil-
tonian in the two-active-electron approximation is

H = − ∇2
1

2
− ∇2

2

2
+ Vl1 (r1) + Vl2 (r2) + V SO

s1l1 j1 (r1)

+ V SO
s2l2 j2 (r2) + 1

r12
, (1)

where r1 and r2 are the radial coordinates of the two electrons
described by the quantum numbers (l1, s1, j1) and (l2, s2, j2)
respectively. r12 is the distance between the two electrons. Vl

denotes the l-dependent model potential describing the Mg2+

core and V SO
sl j is the spin-orbit interaction. We use the model

potential

Vl (r) = − 1

r

[
2 + (Z − 2)e−αl

1r + αl
2e−αl

3r
]

− αcp

2r4

[
1 − e−(r/rl

c )6]
(2)

introduced by Luc-Koenig et al. [36], who optimized the
parameters αl

1, αl
2, αl

3, and rc to reproduce as closely as
possible the experimental energies of the Mg+ ion. αcp is
the dipole polarizability volume of the Mg2+ core, 0.49 a3

0,
determined experimentally by Bockasten [37]. The spin-orbit
interaction is given by [2,38]

V SO
sl j (r) = α2

2
�l · �s 1

r

dVl

dr

[
1 − α2

2
Vl (r)

]−2

, (3)

where α is the fine-structure constant. For the model potential
given in Eq. (2), the spin-orbit interaction calculated with
Eq. (3) yields a fine-structure splitting of the 3p1/2 and 3p3/2

levels of Mg+ overestimated by 14 cm−1 compared to the
experimental value (91.57 cm−1 [17]). However, the overall
quality of the present calculation critically depends on the
accuracy of the threshold energies, and in particular on the
relative positions of the 3p1/2 and 3p3/2 thresholds. We have
therefore scaled the spin-orbit interaction for all values of l
and j by a factor of 0.7875 in order to reproduce the correct
threshold energies.

The two-electron wave function is expanded in a basis of
antisymmetrized products of two single-electron wave func-
tions,

ψJM (r1, r2) =
∑

n1,l1, j1

∑
n2,l2, j2

CJ
n1l1 j1n2l2 j2

× A
[

un1l1 j1 (r1)

r1

un2l2 j2 (r2)

r2
ΛJM

l1 j1l2 j2 (r̂1, r̂2)

]
,

(4)

where CJ
n1l1 j1n2l2 j2

are expansion coefficients and A is the anti-
symmetrization operator. The radial parts of the one-electron
wave functions are denoted by unl j (r)/r. The angular and
spin parts of any two-electron basis vector are represented
by ΛJM

l1 j1l2 j2
(r̂1, r̂2) and are built from one-electron spherical

harmonics and spinors using standard angular-momentum
algebra [39]. r̂1 and r̂2 are the unit vectors associated with the
positions of both electrons. As explained by Aymar et al. [2],
the j j-coupling scheme must be used to describe core-excited
Rydberg states of alkaline-earth-metal atoms. The expansion
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coefficients C contain the normalization constants of the two-
electron basis vectors.

One-electron basis functions in the above configuration-
interaction expansion are chosen to be the one-electron or-
bitals of Mg+. The reduced radial one-electron wave functions
unl j (r) are thus solutions of the one-electron radial equation

(
−1

2

d2

dr2
+ l (l + 1)

2r2
+ Vl (r) + V SO

sl j (r) − εnl j

)
unl j (r) = 0.

(5)

The solutions [εnl j, unl j (r)] of the above equation are deter-
mined numerically with the finite-element discrete-variable-
representation (FEM-DVR) method (see, e.g., Rescigno and
McCurdy [40] and Scrinzi and Elander [41]).

In the FEM-DVR method, Eq. (5) is solved on a nonuni-
form grid subject to the condition that eigenfunctions vanish
at both end points. The physical r space is truncated to a finite
size [0, rmax] and further partitioned into several, nonover-
lapping but contiguous elements. Equation (5) is solved in
each element using a DVR method with the boundary condi-
tion that eigenfunctions must be continuous across adjacent
elements. We use the DVR method of Manolopoulos and
Wyatt based on the Gauss-Lobatto quadrature [42] (see also
Rescigno and McCurdy [40]). With this procedure, the end
points of the global grid (r = 0, rmax) are explicitly included
in the calculation and the behavior of the wave function at the
singularity of the Coulomb potential (r = 0) is correctly ac-
counted for. The method requires the physical space spanned
by a given element to be mapped onto the [−1, 1] space of the
Legendre polynomials underlying the Gauss-Lobatto quadra-
ture. We use for that purpose the linear algebraic mapping
proposed in [40]. As in all DVR methods, for a number N of
grid points, the radial Schrödinger equation (5) is reduced to a
(N − 2) × (N − 2)-matrix form, the diagonalization of which
yields N − 2 eigenenergies and eigenvectors. The eigenvec-
tors are proportional to the values of the wave functions at
the grid points. Subsequent calculations of matrix elements
involving these eigenvectors can be carried out using the same
Gauss-Lobatto quadrature without loss of accuracy.

The FEM-DVR approach possesses excellent convergence
properties with respect to the grid size, and accurate energies
can be calculated by evaluating the wave functions at only
a small number of grid points, even for high Rydberg states.
This allows a compact representation of the two-electron basis
vectors and significantly reduces the computational cost of
evaluating matrix elements of the two-electron Hamiltonian.
Moreover, the finite-element character of the approach pro-
vides flexibility in the definition of the grid. In particular, we
define an element with a dense grid close to the nucleus (r
small) and another element, spanning the rest of configuration
space, with a sparser grid. We thus ensure that the bielectronic
repulsion, which is large in the core region, can be accurately
calculated while keeping the grid size small. This feature is
particularly relevant when treating the high-lying Rydberg
states considered in this work.

In the present calculations, we use two elements spanning
the ranges [0, 100] a0 and [100, 17600] a0 and containing 101
and 551 grid points, respectively. For given values of l and j
of the electron, 649 basis functions are calculated. The lowest

ones represent bound Rydberg states of Mg+ with n � 90 and
we verified that their energies are converged to better than
10−13 hartree. Above n � 90, the radial extent of the Rydberg
wave function becomes comparable to and eventually larger
than the size of the truncated r space. Therefore, the remaining
solutions represent positive-energy states in a finite box and
provide a discretized version of the continuum (see, e.g.,
Persson et al. [43]). After scaling the spin-orbit operator by
the factor of 0.7875, as discussed above, the energies of the
low-lying states of Mg+ are reproduced to within less than 1
cm−1 of the measured values [17] in most cases. In particular,
the ionization energy of the 3s1/2 state is smaller by 0.16 cm−1

than the reference value [17], while those of the 3p1/2 and
3p3/2 are smaller by about 0.2 cm−1.

The computation of the matrix elements associated with
the one-electron operators in the two-electron Hamiltonian
given by Eq. (1) is straightforward because basis vectors
are built from products of one-electron spin orbitals. The
calculation of two-electron matrix elements associated with
the bielectronic repulsion operator 1/r12 is more difficult. We
start from its multipole expansion

1

r12
=

∑
q

4π

2q + 1

rq
<

rq+1
>

q∑
m=−q

Y ∗
qm(r̂<)Yqm(r̂>), (6)

with r< = min(r1, r2) and r> = max(r1, r2). Yqm(r̂) denote
spherical harmonics. The matrix elements associated with
1/r12 can be separated into radial and angular integrals. An-
gular integrals can be calculated analytically using standard
angular-momentum algebra [39,44]. The radial, Slater integral
associated with the qth term of the above expansion can be
written, in a general form, as [39]∫∫

dr1dr2uα′ (r1)uβ ′ (r2)
rq
<

rq+1
>

uβ (r2)uα (r1)

=
∫ rmax

0
dr1uα′ (r1)uα (r1)

[ ∫ r1

0
dr2uβ ′ (r2)

rq
2

rq+1
1

uβ (r2)

+
∫ rmax

r1

dr2uβ ′ (r2)
rq

1

rq+1
2

uβ (r2)

]
, (7)

where α and β denote the quantum numbers n, l , and j of
the first and second electrons, respectively. Unfortunately, the
integrals over r2 cannot be evaluated directly with Gauss-
Lobatto quadrature [45,46]. To overcome this problem, we
follow the method of McCurdy et al. [46] and reexpress
the integrals over r2 in Eq. (7) as solutions of a Poisson
differential equation. This equation can be solved by another
application of the FEM-DVR method, with the same high-
accuracy properties. Once the integrals over r2 are calculated,
the integration over r1 can be straightforwardly carried out to
obtain the bielectronic repulsion matrix elements.

In the FEM-DVR method outlined above, wave functions
are required to vanish at the end points of the grid and are
consequently square integrable. By essence, the method is not
suited for treating processes involving continuum electrons,
such as photoionization or autoionization. To overcome this
limitation, we use the exterior-complex-scaling (ECS) method
[47], which was already applied to atomic systems by, e.g.,
McCurdy et al. [46]. The ECS method relies on the fact

032517-5



GÉNÉVRIEZ, WEHRLI, AND MERKT PHYSICAL REVIEW A 100, 032517 (2019)

FIG. 2. Schematic representation of the two-electron radial con-
figuration space used in the ECS method. In the hatched region, both
electrons are far away from the nucleus and both coordinates are
complex scaled. For the problem considered, the amplitude of the
two-electron wave function in this region is exponentially small.

that, upon rotation of the radial coordinate into the com-
plex plane, outgoing waves decay exponentially as r → ∞
and can thus be represented exactly by any complete set
of square-integrable functions [35]. Consequently, one can
treat autoionizing, core-excited Rydberg states with the CI
expansion of Eq. (4) and a basis of two-electron functions
built from square-integrable one-electron orbitals calculated
with the FEM-DVR method. In practice, ECS amounts to
rotating, by an angle θ > 0, the radial coordinates r1 and r2

of the two electrons into the complex plane beyond a certain
radius r0,

r →
{

r if r < r0,

r0 + (r − r0)eiθ if r � r0,
(8)

as schematically depicted in Fig. 2. The calculation of both
one-electron basis functions with the FEM-DVR method and
the two-electron Hamiltonian must be carried out along the
contour defined by the complex-rotated r values, resulting in
complex-valued wave functions and eigenenergies.

The advantage of ECS over uniform complex scaling,
where the r coordinates are complex rotated in the entire
configuration space (r0 = 0) [35], stems from the fact that
we consider only the single ionization of states in which the
two electrons are spatially well separated. By setting the ECS
radius r0 larger than the region of r spanned by the inner
electron, only the outer electron evolves in the complex-scaled
region, while dynamics of the ionic core are described by
usual, real-valued r coordinates (see Fig. 2). Complex scaling
requires the use of L2 complete or nearly complete basis sets
[48]. The use of ECS allows one to remove this requirement
for the inner electron, which can be described by a small set
of core orbitals that possess negligible amplitudes in the outer
region. ECS thus greatly reduces the size of the CI expansion
in Eq. (4). By limiting the description of the inner electron to
core orbitals, we implicitly neglect the two-electron dynamics

in the region depicted by the hatched area in Fig. 2, where both
radial coordinates are large. This assumption is clearly valid
for core-excited Rydberg states. ECS introduces a disconti-
nuity in the derivative of the wave function at r0, which can
be accounted for exactly using, for example, the FEM-DVR
method outlined above [46].

The complex-rotated, two-electron Hamiltonian matrix
H (θ ) is non-Hermitian, complex symmetric, and has eigenval-
ues given by Ei − i�i/2, where Ei and �i are the energies and
widths of the eigenstates. These eigenvalues can be classified
into three groups: (i) those independent of both the complex-
rotation angle θ and the basis-set size N , and having �i = 0.
They correspond to bound states with energies Ei; (ii) those
also independent of θ and N but with �i > 0. They correspond
to resonances with energies Ei and widths �i; (iii) those
depending on θ . They belong to extended quasidiscretized
continua that are associated with continuum states of the
electron, and their eigenenergies are rotated by approximately
−2θ with respect to the real axis [34]. The independence of
the eigenenergies of resonance states with respect to θ, N
and the ECS radius r0 must be ensured by systematically
increasing the size of the truncated, square-integrable basis
set until convergence is reached.

The calculations presented in Sec. IV are carried out
with complex rotation by an angle θ = 5◦ applied to the
second element of the FEM-DVR calculation (r0 = 100 a0).
For a total angular momentum J = 3, the two-electron
wave function is expanded in a basis of 32 928 vec-
tors corresponding to all configurations obtained from the
3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, and 4p3/2

orbitals describing the inner electron and a large set of or-
bitals representing the outer electron [649 orbitals per (l, j)
channels]. For J = 1, this number reduces to 25 841 be-
cause of the reduced number of channels. We checked that
the energies and widths of (3s1/2nl j )J Rydberg states and
(3p jc nl j )J core-excited Rydberg states are converged to better
than 0.03 cm−1, a value smaller than the present experimental
resolution. Therefore, the small differences between theory
and experiment can be attributed to the imperfection of the
model potential and the neglect of dynamical interactions
between the valence electrons and the Mg2+ core.

To assess the overall accuracy of the calculations, one
can compare the computed energies of the bound Rydberg
series of Mg to available data. To this end, we determined the
quantum defects of the calculated 3snl series by fitting the
energies of all states in the range n = 10–80 with Rydberg’s
formula

Enl = EMg+(3s) − R24Mghc

(n − δl )2
, (9)

where EMg+(3s) is the energy associated with the first ion-
ization threshold and R24Mg is the mass-corrected Rydberg
constant. The computed quantum defects of all singlet series
3snl with l = 0–4 lie within ±0.008 of the highly accurate
experimental values of MacAdam et al. [29]. Those of triplet
Rydberg series are within ±0.01 of the values determined
by Amemiya et al. [49]. We further assessed the accuracy
of the calculations by comparing the energies and widths of
members of the core-excited (3p jc nd j )3 and (3p jc n f j )J=2,4

Rydberg series to those reported by Dai et al. [15] and
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Lyons et al. [20]. Quantum defects associated with the present
theoretical results agree within ±0.02 with quantum defects
derived from previous experimental data, with the exception
of a few states for which, however, the quantum defects do
not differ by more than ±0.07 [50]. The calculated widths
agree within error bars (1σ ) with the experimental widths
reported by Lyons et al. [20] in most cases, and within 2σ

in all cases. Overall, there is excellent agreement between the
present calculations and available experimental data. We thus
conclude that the method discussed above for calculating the
properties of core-excited Rydberg states is both reliable and
accurate.

B. Photoionization cross section

In the experiment, the measured signal is related to the
photoionization cross section σ of 3snd 1D2 states for photon
energies in the vicinity of the 3s1/2 − 3p1/2 and 3s1/2 − 3p3/2

core transitions of the Mg+ ion. This cross section can be cal-
culated from the wave functions obtained by diagonalization
of the two-electron Hamiltonian for the relevant total angular
momenta J and J ′ relative to the initial and final states. We
follow Rescigno and McKoy [51] and write σ as

σ (ω) = 4πω

c

∑
J ′,M ′

(
J = 2 1 J ′

M q −M ′

)2

× Im
∑

i

〈ψ̄i,θ,J ′ ||μ(1)(rθ )||ψ3snd,J=2〉2

Ei,θ,J ′ − E3snd − ω
, (10)

where ω is the angular frequency of the radiation and c
stands for the speed of light. The initial state |ψ3snd,J=2〉
and final state |ψi,θ,J ′ 〉 have energies E3snd and Ei,θ,J ′ and
magnetic quantum numbers M and M ′, respectively. The
parameter q indicates the ellipticity of the light polarization,
with q = 0 in the case of linear polarization. The quantity
〈ψ̄i,θ,J ′ ||μ(1)||ψ3snd,J=2〉 is the reduced matrix element of the
complex-rotated transition-dipole operator, expressed in the
length gauge in this work. 〈ψ̄ | denotes the complex conjugate
of 〈ψ |, i.e., the transpose of |ψ〉 [48]. The sum over i in
Eq. (10) runs over all final states with given J ′ and M ′ quantum
numbers.

In writing Eq. (10), we assumed that the initial 3snd 1D2

Rydberg states are prepared with J = 2 and M fixed. More-
over, since they are excited from the 3s2 1S0 state by two
linearly polarized lasers with parallel polarizations, dipole
selection rules impose that M = 0. Core excitation is realized
by a third laser with a linear polarization (q = 0) parallel
to those of the other two, implying M ′ = 0. Under these
conditions, Eq. (10) predicts that dipole excitation is allowed
only to final states with J ′ = 1 and 3. However, weak features
in the experimental spectra can be unambiguously assigned to
J ′ = 2 resonances. This apparent deviation from expectations
may be explained by (i) the imperfect polarization of the
laser light; (ii) a slight angle between the polarization of the
Rydberg-excitation and core-excitation lasers; (iii) depolar-
ization of the Rydberg atoms during the interval between the
Rydberg-excitation and core-excitation laser pulses caused by
nonuniform stray electric fields. These effects would induce
either a distribution of q values or a distribution of M values

for the 3snd Rydberg state. Since the extent to which these
effects occur is unknown, we have empirically added to the
total cross section a small J ′ = 2 component. The best match
to the experimental spectra was obtained when replacing the
square of the Wigner 3 j symbol for the J ′ = 2 term in the sum
of Eq. (10) by 0.01. This correction is small compared to the
square of the Wigner 3 j symbols for J ′ = 1 and 3, which are
equal to 2

15 and 3
35 , respectively.

For the direct comparison between theory and experiment,
the theoretical cross section was convoluted with a Gaussian
with a full width at half-maximum of 0.1 cm−1 corresponding
to the laser bandwidth. To account for a weak saturation of the
excitation, theoretical core-excitation spectra were calculated
from the convoluted cross section σ c(ω) using

Sth = 1 − exp[−σ c(ω)I0�t/(h̄ω)], (11)

where I0 represents the average laser intensity in the interac-
tion volume.

IV. RESULTS

A. Experimental results and qualitative analysis
with the ICE model

The experimental 3s1/2 − 3p1/2 and 3s1/2 − 3p3/2 core-
excitation spectra from the 3s31d, 3s39d, 3s60d , and
3s80d 1D2 Rydberg states are shown in Fig. 3. At the lower
n values, the spectra exhibit a rich structure that extends over
a broad wave-number range. As n increases, these structures
become narrower and eventually coalesce into single lines
located near the ionic transitions, indicated by the vertical
lines. The spectra for the 3s60d and 3s80d states were
recorded at higher laser pulse energies to compensate for the
1/n3 dependence of the excitation probability from the 3s2

ground state to the Rydberg states. Consequently, saturation
and power broadening effects are more pronounced in these
spectra.

The overall shape of these spectra can be qualitatively
described using the ICE shakeup model [7,9]. The simplest
case corresponds to the photoexcitation of a 3snd 1D2 initial
Rydberg state to a single (3p1/2n′d j )J core-excited Rydberg
series coupled to a single continuum (3s1/2εd j )J . Within the
independent electron approximation, the two-electron wave
functions of the initial and final states are expressed as
products of the inner- and Rydberg-electron wave functions.
Moreover, it is assumed that the dipole matrix elements
〈εl|μ2|nd〉 with l = 1, 3 corresponding to the direct photoion-
ization of the Rydberg electron are negligible compared to
the dipole matrix element 〈3p1/2|μ1|3s1/2〉 corresponding to
the core-excitation transition. μ1 and μ2 are the transition
dipole moments associated with the first and second electrons,
respectively. The photoionization cross section of the 3snd
Rydberg states can therefore be approximated by

σICE(ω) � 4π2ω

c
|〈3p1/2|μ1|3s1/2〉|2

× |〈n∗′d|n∗d〉|2A3p1/2n′d j (ω), (12)

where ω is the angular frequency of the light, n∗ and n∗′ are
the effective principal quantum numbers of the initial and final
states, respectively, and A3p1/2n′d j is the spectral density of the
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FIG. 3. Experimental 3s1/2 − 3p1/2 (left column) and
3s1/2 − 3p3/2 (right column) core-excitation spectra from the
3s31d, 3s39d, 3s60d , and 3s80d Rydberg states of Mg. The red
lines displayed for n = 39 represent the square of the ICE overlap
integral [see Eq. (13) and text]. The left and right graphs shown in
the upper row correspond to the regions labeled 1 and 1′ in Fig. 1,
respectively. Those in the second row from the top correspond to
the regions labeled 2 and 2′. The graphs in the lowest two rows
correspond to the regions labeled 3 (left column) and 3′ (right
column).

core-excited Rydberg series. The term 〈3p1/2|μ1|3s1/2〉 can be
taken, in good approximation, as the dipole matrix element of
the 3s1/2 − 3p1/2 transition in the bare ion. It is independent
of the photon energy h̄ω. The term | 〈n∗′d|n∗d〉 |2 corresponds
to the shakeup of the Rydberg electron upon core excitation,
and represents the square of the overlap between the initial
and final Rydberg-electron wave functions. This overlap can
be written to a good approximation as [52,53]

|〈n∗′l|n∗l〉|2 � 4(n∗′n∗)4

n∗3(n∗′ + n∗)2
sinc2(n∗′ − n∗), (13)

where sinc is the normalized cardinal sine function. Equation
(13) is shown for the case of n = 39 in Fig. 3 and matches
the observed overall intensity distribution, particularly in the
wings, which show a regular sequence of peaks with decreas-
ing intensities as one moves away from the central region.
The overlap integral has its maximum when the difference
�n∗ = n∗′ − n∗ between the initial and final effective prin-
cipal quantum numbers of the Rydberg electron is zero, and
vanishes when �n∗ has nonzero integer values. The side

bands reach their maximal values when �n∗ is half-integer
and their amplitudes decrease with increasing �n∗ values. The
spectral density of the autoionizing series, A3p1/2n′d j , varies
rapidly with the energy and is responsible for the detailed
structure of the spectra. In the case of isolated Rydberg res-
onances, the spectral density would correspond to a series of
Lorentzian-shaped lines with central positions given by Ryd-
berg’s formula. Deviations from this simple case, as observed
in Fig. 3, are caused by the presence of multiple Rydberg
series and ionization continua and their mutual interactions.

In the absence of perturbations, the autoionization rate of
core-excited Rydberg states scales as (n∗′)−3 [22], a conse-
quence of the reduced overlap between the core- and Rydberg-
electron wave functions. The widths of individual resonances
in the spectra thus decrease as n increases. The energy width
of the overlap integral (13) also scales as 1/n3, resulting in a
smaller energy spread of the central spectral structure. For ex-
ample, its width is �10 cm−1 at n = 31 and reduces to about
0.6 cm−1 at n = 80. Because of the finite laser bandwidth, the
entire spectral structure coalesces into a single line centered
around the ion-core transition frequency, as expected from the
rapid decoupling of the Rydberg electron from the ionic core
when n increases. At very high n values, the autoionization
rate of core-excited Rydberg states becomes comparable to,
or even lower than, the fluorescence rate of the 3p state, in
which case the width of the line corresponds to the natural
line width of the ionic core transition [14,31].

B. Energies and widths of core-excited Rydberg states

We now turn to the quantitative analysis of the core-
excitation spectra using the theoretical approach detailed in
Sec. III. The calculated energies and widths of (3p jc nd j )J

core-excited Rydberg states with total angular momenta J =
1 and 3 are shown in Fig. 4. They correspond to the real
part and twice the imaginary part of the eigenvalues of the
complex-rotated Hamiltonian, respectively. Other series with
the same values of J but different values of the orbital angular
momentum of the Rydberg electron were also calculated,
but are not shown for clarity. The assignments of the eigen-
states to particular channels are carried out by inspecting
the CI expansion coefficients. They can be ambiguous when
eigenstates have almost equal contributions from different
channels, which is typically the case in the energy ranges
where channel interactions are dominant.

For J = 3, one series (3p1/2nd5/2) converges to the 3p1/2

ionization threshold, marked by the left full vertical line in
Fig. 4, and two series (3p3/2nd3/2, 3p3/2nd5/2) converge to
the 3p3/2 threshold, marked by the right full vertical line.
The calculated thresholds are shifted to lower energies relative
to the physical thresholds because of the truncation of the
r2 values in the calculation, which prevents the treatment of
Rydberg states with n larger than � 90. The shift relative to
the measured threshold [17] is thus of the order of the binding
energy of the 3p jc 90d j state, i.e., approximately −1/(2 ×
902) hartree. Above these effective thresholds lie complex-
rotated continuum states, marked by the orange circles. Sim-
ilar considerations apply for J = 1, with the main difference
that the (3p1/2nd5/2) series is replaced by the (3p1/2nd3/2) one.
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FIG. 4. Calculated energies and widths of core-excited
(3pjc ndj )J Rydberg states for J = 1 and 3 (black circles). The
rotated continuum states are indicated by the orange circles. The
vertical lines indicate the positions of the calculated Mg+(3p1/2)
and Mg+(3p3/2) ionization thresholds (see text). The full red lines
show the (n∗)−3 scaling of the autoionization rates of the (3p3/2ndj )J

Rydberg series above the 3p1/2 threshold. Their extrapolation below
threshold is shown by the dashed red lines. The dotted red lines
show the overall (n∗)−3 evolution of the autoionization rates of the
(3p1/2ndj )J series.

Two different regimes are observable in Fig. 4. Above
the 3p1/2 threshold, the two Rydberg series converging to
the 3p3/2 threshold exhibit regular, unperturbed progressions.
Their energies follow Rydberg’s formula and the associated
quantum defects can be obtained (modulo 1) from a fit with
Eq. (9) using Ritz’s expansion of the quantum defects up to
the second order [22]:

δ(n) = δ0 − δ2

(n − δ0)2
. (14)

The results of the fit are given in Table I for all calculated Ry-
dberg series with J = 1–3 converging to the 3p3/2 threshold.
The autoionization widths of these series scale as (n∗)−3, as
shown by the full red curves in Fig. 4. The scaling factor γ ,
called the scaled autoionization width, is obtained from a fit
based on the equation

�n = γ

[n − δ(n)]3 , (15)

and the calculated widths, and is also given in Table I.
Below the 3p1/2 threshold, the Rydberg series do not

exhibit a regular behavior because of interactions between
series converging to the 3p1/2 and 3p3/2 thresholds. Series
having the same J value but different values of lc, jc, l ,
and j are coupled by the Coulomb repulsion between the
two electrons, i.e., by the 1/r12 operator in Eq. (1). The
extent of this coupling depends on the angular momenta and

TABLE I. Quantum defects δ0 and δ2 and scaled autoionization
rates (γ ) of the Rydberg series with J = 1–3 converging to the 3p3/2

threshold (see text for details).

Series δ0 δ2 γ /cm−1

(3p3/2ns1/2)1 0.58 0.24 27949.49
(3p3/2ns1/2)2 0.63 −0.02 1639.78
(3p3/2np1/2)1 0.11 1.43 572.32
(3p3/2np1/2)2 0.14 1.35 33683.72
(3p3/2np3/2)1 0.22 0.62 4893.71
(3p3/2np3/2)2 0.12 1.28 11013.11
(3p3/2np3/2)3 0.22 0.74 6162.29
(3p3/2nd3/2)1 0.17 1.54 1295.85
(3p3/2nd3/2)2 0.18 1.46 2733.12
(3p3/2nd3/2)3 0.04 4.73 101900.38
(3p3/2nd5/2)1 0.99 0.56 25985.07
(3p3/2nd5/2)2 0.31 0.42 7401.74
(3p3/2nd5/2)3 0.22 1.29 16343.80
(3p3/2n f5/2)1 0.99 0.19 1493.88
(3p3/2n f5/2)2 0.06 2.13 5125.69
(3p3/2n f5/2)3 0.09 1.87 3565.04
(3p3/2n f7/2)2 0.99 0.19 1132.15
(3p3/2n f7/2)3 0.05 2.05 5823.28
(3p3/2ng7/2)2 0.99 0.06 123.83
(3p3/2ng7/2)3 0.02 2.15 1021.09
(3p3/2ng9/2)3 0.99 0.06 110.73
(3p3/2nh9/2)3 0.99 −0.01 3.50

on the details of the wave functions at small r values. The
interactions occur over the whole range of energies shown
in Fig. 4. This behavior is in contrast with that observed
in the heavier alkaline-earth-metal elements, for which the
perturbations are often more localized [2,14], and is the result
of the smaller fine-structure splitting of the 3p1/2 and 3p3/2

thresholds (91.57 cm−1 [17]), which implies a larger density
of 3p3/2nd j states below the 3p1/2 threshold.

A more detailed analysis of the series perturbations re-
quires the inspection of the CI coefficients. For J = 1, the vast
majority of the 3p1/2nd3/2 states are mixed with members of
the 3p3/2nd5/2 series throughout the energy range shown in
Fig. 4. This mixing is so extensive that no state belonging
predominantly to the 3p3/2nd5/2 series can be identified in the
range from −0.3903 hartree to the 3p1/2 threshold. Mixing of
the 3p1/2nd3/2 series with the 3p3/2nd3/2 series is localized
to only a few 3p1/2nd3/2 states, indicating a much weaker
series interaction. The CI coefficients also indicate a mixing
between the 3p1/2nd3/2 and 3p3/2ns1/2 series, although less
extensive than with the 3p3/2nd5/2 series. The perturbations
observed in the part of the spectrum below the 3p1/2 threshold
arise from the same interactions as those responsible for the
autoionization into 3p1/2εl j continua above this threshold.
Consequently, the widths of the 3p3/2nd5/2 series, which
reflect below the 3p1/2 threshold the rate of autoionization
into the 3s1/2εl j continua, abruptly increase by about an order
of magnitude when the 3p1/2 threshold is crossed and the
3p1/2εl j continua become energetically accessible. The strong
3p1/2nd3/2 − 3p3/2nd5/2 interaction is therefore responsible
for the fast spin-orbit autoionization of the latter states. In con-
trast, the 3p3/2nd3/2 series, which does not interact strongly
with the 3p1/2nd3/2 series below threshold, does not exhibit
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a similar increase of the autoionization width. Indeed, the
autoionization rates of 3p3/2nd3/2 states just below the 3p1/2

threshold are close to the rates predicted by Eq. (15) with a
scaled rate determined from the properties of this Rydberg
series above threshold (see dashed red line in Fig. 4). We
therefore conclude that the autoionization of 3p3/2nd3/2 states
into the 3p1/2εl j continua is slower than into the 3s1/2εl j

ones. For J = 3 the situation is reversed, and the 3p1/2nd5/2

series couples strongly to the 3p3/2nd3/2 series, whereas the
interaction with the 3p3/2nd5/2 series is weaker. The opening
of the continua above the 3p1/2 threshold thus leads to a very
large increase of the autoionization widths of the members of
the 3p3/2nd3/2 series, which are characterized by the largest
of all calculated scaled widths (see Table I).

The autoionization widths of J = 3 states are also signifi-
cantly larger than those of J = 1 states, as already noticed and
explained by Schinn et al. with the help of a simple hydro-
genic model [16]. Because of parity conservation, (3p jc nd j )1

states located below the 3p1/2 threshold can only decay into
(3s1/2εp1/2,3/2)1 continua, while (3p jc nd j )3 states can only
do so into 3s1/2ε f5/2,7/2 continua. Schinn et al. showed that
hydrogenic Rydberg nd wave functions associated with a
3p core have a stronger overlap with ε f continuum wave
functions associated with the 3s core than with εp ones. This
behavior results from the difference in energy between the 3s
and 3p core states, and the different centrifugal barriers of the
p and f channels [16].

The energies and widths of (3p jc nd j )J=1,3 states thus
provide insight into the structure and decay dynamics of
core-excited Rydberg states. In particular, we identified
a dominant interaction between the (3p1/2ndJ−1/2)J and
(3p3/2nd3−J/2)J series that induces strong perturbations below
the 3p1/2 threshold over a broad range of n values and an
abrupt and large increase of the autoionization widths of the
(3p3/2nd3−J/2)J series above the 3p1/2 threshold.

C. Theoretical and experimental core-excitation spectra

The experimental spectrum of the 3s1/2 − 3p1/2 core tran-
sition recorded from the 3s31d 1D2 Rydberg state is com-
pared in Fig. 5 with the theoretical spectrum calculated us-
ing Eq. (11). This spectral range corresponds to the region
labeled 1 in Fig. 1. The overall agreement between the two
spectra is excellent over the whole wave-number range: the
resonance positions agree to better than 0.1 cm−1 and the
widths of the broadest resonances in the calculated spectrum
perfectly match those observed experimentally. The widths
of the narrowest resonances appear slightly underestimated
by the calculation, which is primarily a result of saturation
and power broadening, which are not accounted for in the
calculation. The effects of saturation and power broadening
are also noticeable in the relative intensities: whereas the
sharpest lines appear more intense in the calculated spectrum
than in the experimental spectrum, their integrated intensities
are almost identical. We attribute the remaining small dis-
crepancies between the experimental and calculated spectra to
small drifts of the Mg-atom density, inaccuracies in the model
potential, and the neglect of dynamical interactions with the
Mg2+ core.

FIG. 5. Experimental (top) and calculated (bottom) 3s1/2 − 3p1/2

core-excitation spectra from the 3s31d 1D2 Rydberg state. The verti-
cal line shows the position of the 3s1/2 − 3p1/2 transition in the bare
ion. The calculated positions of (3p1/2ndj )J resonances are shown in
the assignment bar in the lower panel.

This excellent agreement enables one to unambiguously
attribute every peak in the photoionization spectrum to a core-
excited Rydberg state. This is achieved by decomposing the
photoionization cross section into contributions correspond-
ing to J = 1, 2, and 3, as shown in Fig. 6. The cross section
for J = 1 exhibits a number of narrow resonances with ener-
gies and widths corresponding to those of 3p1/2nd3/2 states.
Series perturbations are apparent in the irregular intensity
distribution and intervals between successive members of the
series. The cross section for J = 2 consists of a series of
pairs of lines, the lower one being significantly broader than
the upper one, and which can be attributed to the 3p1/2nd3/2

and 3p1/2nd5/2 series, respectively. The Rydberg progressions
appear less perturbed than for J = 1. Resonances marked
by an arrow are 3p3/2nd j perturber states that gain intensity
through channel interactions.

The cross section for J = 3 exhibits the most complex
patterns. The widths of most peaks are significantly larger
than for J = 1 because of the increased autoionization rates
of J = 3 states (see Fig. 4 and Sec. IV B). The broadest
resonances, indicated by the open circles, can be assigned to
the 3p1/2nd5/2 series. Sharp resonances are also observed in
the cross section and are marked by triangles in Fig. 6. They
correspond to 3pjc ng j resonances, which exhibit Beutler-Fano
profiles instead of the Lorentzian profiles expected in ICE
spectra. An example of such resonances is shown in the inset
of Fig. 6 and corresponds to a Fano q parameter of −0.35.
Because the direct photoionization of the Rydberg nd electron
is negligible, the interferences responsible for these profiles
must result from the interactions between the 3pjc nd j and
3p jc ng j discrete states and the 3sε f j continua. Although they
appear sharp in the theoretical cross section, the lines asso-
ciated with 3p jc ng j resonances are much narrower than the
laser bandwidth and have very small integrated line strengths.
They are therefore not observed in the experimental spectrum
in Fig. 5. The resonances in the J = 3 cross section marked
with arrows in Fig. 6 correspond to 3p3/2nd j perturber states.
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FIG. 6. Theoretical 3s1/2 − 3p1/2 core-excitation cross sections
from the 3s31d 1D2 Rydberg state. The top panel shows the total
cross section, while the lower ones show the partial cross sections to
final states with total angular momenta J = 1, 2, and 3, respectively.
The gray, dotted lines in the second and third panels show the same
cross sections as the full lines but on an enlarged vertical scale and
with a vertical offset for clarity. In these panels, the assignment
of resonances to given Rydberg series is shown by the horizontal
assignment bar. Vertical arrows indicate the positions of the strongest
perturber states. Empty circles in the lower panel (J = 3) show the
positions of 3p1/2nd5/2 resonances. Full triangles indicate resonances
associated with 3pjc ngj states. One of these resonances is marked
with an inverted triangle and is shown in the inset on an enlarged
horizontal scale.

The present theoretical approach provides absolute values
of the core-excitation cross section which do not rely on
the ICE approximations discussed in Sec. IV A and formu-
las analogous to Eq. (12). Absolute cross sections have not
been reported in the literature before, presumably because
of the absence of absolute experimental measurements. The
core-excitation cross section from the 3s31d Rydberg state,
shown in Fig. 6, is more than five orders of magnitude larger
than that of the photoionization of ground-state atoms in
the same range of final, core-excited Rydberg states. Indeed,
we estimate from Ref. [54] that the latter cross section lies
below 10−22 m2. This large difference can be explained by the

FIG. 7. Experimental (top) and calculated (bottom) 3s1/2 − 3p3/2

core-excitation spectra from the 3s31d 1D2 Rydberg state. The full
vertical line shows the position of the 3s1/2 − 3p3/2 ionic transition.
The dashed vertical line indicates the position of the 3p1/2 threshold.
The values of principal quantum numbers relative to that threshold
are indicated on the scale located on the upper horizontal axis. The
positions of (3p3/2nd5/2)1 and (np3/2nd3/2)3 resonances, determined
from the quantum defects given in Table I, are shown in the assign-
ment bar in the lower panel.

fact that the excitation of core-excited Rydberg states from
the ground state involves the simultaneous excitation of two
electrons, one of which goes to a high-lying Rydberg state,
whereas the ICE process involves the excitation of a single
electron through a strong, low-lying electronic transition of
the ion core. The overall magnitude of the core-excitation
cross section does not vary significantly as n increases, high-
lighting the fact that the strength of the excitation is a property
of the ion core.

The experimental and theoretical spectra of the 3s1/2 −
3p3/2 core transition recorded from the 3s31d state are
shown in Fig. 7. They correspond to the region labeled 1′
in Fig. 1. The agreement between theory and experiment is
again excellent, with the exception of the resonances on the
high-energy side of the spectrum, which appear weaker in
the calculated spectrum than in the experimental spectrum.
The spectra consist of a few broad resonances attributed to
3p3/2nd j states with effective principal quantum numbers in
the range from 27 to 35, on top of which a large number of
narrow resonances are superimposed. These latter resonances
can be attributed to high-lying members of the 3p1/2nd j series
converging to the 3p1/2 threshold, and to several (3p1/2ns1/2)1

perturbers. The effective principal quantum numbers associ-
ated with these states are in the range from �45 to �95, as
indicated along the upper horizontal axis of Fig. 7. In the
absence of channel interactions, the excitation from the 3s31d
state to 3p1/2nd j states with, e.g., n∗ � 65 is very unlikely
because the efficiency of the shakeup of the Rydberg electron
decreases rapidly with the effective principal quantum number
difference �n∗ = n∗′ − n∗, as discussed in Sec. IV A. Indeed,
the overlap integral given by Eq. (13) is smaller by a factor
of 8 × 10−5 for �n∗ � 34 compared to its value for �n∗ �
0. The presence of 3p1/2nd j resonances in the spectra is
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therefore the result of the strong interactions between series
converging to the 3p1/2 and 3p3/2 thresholds. For n∗ values
larger than �95, individual members of the 3p1/2nd j series
are no longer resolved experimentally. Our calculations only
describe Rydberg states up to n � 90, as explained in Sec. III,
and states with higher energies are calculated as continuum
states. The discrete Rydberg series thus turn into quasicon-
tinua. Resonances above the 3p1/2 threshold, indicated by the
dashed vertical line in Fig. 7, exhibit shapes similar to those of
resonances located just below threshold, where the high-lying
Rydberg series are unresolved: the interaction of 3p3/2nd j

states with the 3p1/2nd j′ quasicontinua is indeed identical to
their interaction with true 3p1/2εd j′ continua.

Similar spectra showing the interaction of low-lying Ry-
dberg states with high-lying members of another series have
been recorded and analyzed earlier in Sr [55] and Ba [56–58].
In such cases, the principal quantum number of the nc p3/2nl
Rydberg state is lower (n � 10) than in the present case and
so are those of the perturber series (3p1/2nl with n � 10–30).
Schinn et al. [16] have calculated a qualitatively similar
spectrum for the photoionization of Mg(3s30d), however,
the narrow structures associated with 3p1/2nd j states could
not be resolved in their experimental spectra. The mixing of
low-n, rapidly autoionizing 3p3/2nd j states with high-lying
3p1/2n′d j′ , with much smaller autoionization rates, stabilizes
the former states. If n′ is sufficiently large, the autoionization
rate becomes comparable to the fluorescence rate of the core
electron (2.60 × 108 s−1 [17]) and the core-excited states
radiatively decay to singly excited Rydberg states [31]. Such
a stabilization of autoionizing states was investigated in Ba by
Story et al. [59] and Ereifej and Story [60]. This phenomenon
is analogous to that leading to intensity perturbations observed
in pulsed-field-ionization zero-kinetic-energy photoelectron
spectra of, e.g., the N2 molecule [61].

Figure 8 compares the measured and calculated 3s1/2 −
3p1/2 core-excitation spectra from the 3s39d 1D2 Rydberg

FIG. 8. Experimental (top) and calculated (bottom) 3s1/2 − 3p1/2

core-excitation spectra from the 3s39d 1D2 Rydberg state. The ver-
tical line shows the position of the 3s1/2 − 3p1/2 ionic transition.
The calculated positions of (3p1/2ndj )J resonances are shown in the
assignment bar in the lower panel.

FIG. 9. Experimental (top) and calculated (bottom) photoioniza-
tion spectra of the 3s39d 1D2 Rydberg state in the vicinity of the
3s1/2 − 3p3/2 core resonance. The vertical line shows the position
of the 3s1/2 − 3p3/2 ionic transition. The calculated positions of
(3p3/2nd5/2)1 and (np3/2nd3/2 )3 resonances are shown in the assign-
ment bar in the lower panel. They are degenerate on the scale of the
figure. Two vertical lines in the lower panel indicate the calculated
positions of the (3p3/239d5/2)2 and (3p3/239d5/2)3 resonances in the
central spectral feature.

state, corresponding to the region labeled 2 in Fig. 1. The
theoretical spectrum is in excellent agreement with the experi-
mental one, and even the weakest features are well reproduced
by the calculation. The only difference concerns the ampli-
tudes of the two resonances around 35 667 cm−1, which are
inverted in the calculated spectrum. The main characteristics
of the spectra are similar to those already discussed for the
3s31d state.

Spectra of the 3s1/2 − 3p3/2 core transition from the 3s39d
state are shown in Fig. 9 and correspond to the region
labeled 2′ in Fig. 1. All resonances in these spectra are
located energetically above the 3p1/2 threshold, and the mul-
tiple sharp structures associated with the coupling to high-n
3p1/2n′d j′ states in the case of the 3s31d state (see Fig. 7)
have now turned into a smooth profile resulting from au-
toionization into 3p1/2εd j′ continua. The spectra consist of
a series of broad lines on top of which sharper structures
can be discerned. The broad resonances can be attributed
to (3p3/2nd3/2)3 states, which rapidly and predominantly au-
toionize into the 3p1/2εd5/2 continuum. The 1.72-cm−1 width
of the (3p3/239d3/2)3 state is of the order of half the spacing
between adjacent Rydberg states at n = 39 (3.57 cm−1), so
that the spectral density of (3p3/2nd3/2)3 states is essentially
flat. Consequently, the shape of the broad features in the
spectra is not governed by the detailed profile of the individual
resonances but rather by the sinc2-type shape of the overlap
integral itself (see discussion in Sec. IV A). Dips, such as
the one observed on the right of the isolated ion-core res-
onance (vertical line in Fig. 9), correspond to the positions
of (3p3/2nd5/2)3 resonances. The narrow resonance on its
left, marked by another vertical line, can be unambiguously
assigned to a (3p3/2nd5/2)2 resonance, and made it necessary
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FIG. 10. Experimental (top) and calculated (bottom) photoion-
ization spectra of the 3s80d 1D2 Rydberg state in the vicinity of the
3s1/2 − 3p1/2 core resonance. The vertical line shows the position
of the 3s1/2 − 3p1/2 ionic transition. The calculated positions of
(3p1/2ndj )J resonances are shown in the assignment bar in the lower
panel.

to add a small J = 2 component to the total cross section (see
Sec. III). The other resonances can be attributed to (3p3/2nd j )1

resonances, as indicated along the assignment bar.
The spectra of the 3s1/2 − 3p1/2 and 3s1/2 − 3p3/2 ion-core

transitions recorded from the 3s80d Rydberg state are shown
in Figs. 10 and 11. They correspond to the regions labeled
3 and 3′ in Fig. 1. The overall agreement between theory
and experiment is good, although the shape of the central
peak is not as well reproduced as in regions 1, 1′, 2 and
2′. In the experiment, residual stray fields have induced a
small Stark mixing of high-lying Rydberg states that modified
the autoionization dynamics of core-excited Rydberg states

FIG. 11. Experimental (top) and calculated (bottom) photoion-
ization spectra of the 3s80d 1D2 Rydberg state in the vicinity of the
3s1/2 − 3p3/2 core resonance. The vertical line shows the position
of the 3s1/2 − 3p3/2 ionic transition. The calculated positions of
(3p3/2ndj )J are shown in the assignment bar in the lower panel.

as explained in Ref. [31]. The influence of residual power
broadening on the shape of these narrow spectra is also more
pronounced. In the calculations, the description of Rydberg
states with principal quantum numbers as large as n � 80 is
challenging, and small inaccuracies in the positions of the
resonances also affect the overall shape of the spectrum.

Resonances associated with the core-excited Rydberg se-
ries are not well resolved in Figs. 10 and 11, and bundle
into a single feature for each value of the principal quantum
number n. Consequently, the widths of the different lines are
much larger than the autoionization widths of most states and
are limited by spectral congestion and the laser bandwidth.
Without convolution by the experimental line-shape function,
the theoretical cross section in the 3s1/2 − 3p3/2 region (not
shown) is almost identical to that for the 3s39d Rydberg state.

V. DISCUSSION AND CONCLUSIONS

The spectra of the 3s1/2 − 3p jc ( jc = 1/2, 3/2) ion-core
transitions of Mg recorded from a broad range of 3snd 1D2

Rydberg states reveal a rich behavior and complex patterns
of resonances. To fully characterize the relevant processes,
large-scale calculations of the spectra have been carried out
using a configuration-interaction approach combined with the
exterior-complex-scaling method. Experiments and calcula-
tions were performed in the regions below the 3p1/2 ionization
threshold, where the (3p jc nd j )J resonances decay by autoion-
ization in the (3s1/2εl j )J continua, and between the 3p1/2 and
3p3/2 thresholds, where spin-orbit autoionization also affects
the dynamics of the (3p3/2nd j )J Rydberg series. The overall
excellent agreement between theory and experiment vali-
dates the configuration-interaction exterior-complex-scaling
approach to treat core-excited Rydberg states. The calcula-
tions faithfully reproduce the positions, widths, shapes, and
relative amplitudes of the resonances up to principal quan-
tum numbers much beyond 50. Series interactions, which
are ubiquitous for Rydberg series below the 3p1/2 threshold,
are quantitatively reproduced, which indicates that electron-
electron correlations are correctly accounted for. Inclusion
of the spin-orbit interaction, usually neglected in analogous
calculations in helium [10–13], does not cause additional
difficulties when j j coupling is used.

The autoionization of the 3p3/2nd j states of Mg above
the 3p1/2 threshold is similar to the autoionization of the
nc p5(2P1/2)nd Rydberg states of rare gases: both processes
result in the emission of a Rydberg d electron into the
continua above the lower spin-orbit component (np5 2P3/2 or
3p 2P1/2) of the corresponding ion. There are, however, two
differences: (i) in the rare gases, the 2P3/2 ionization threshold
lies lower in energy than the 2P1/2 threshold, whereas the
contrary is true for Mg; (ii) core-excited Rydberg states of Mg
can also autoionize into 3s1/2nl j continua, whereas the 2P3/2

threshold of the rare gases is the lowest ionization threshold.
However, we showed that for some series of Mg the cou-
pling of 3p3/2nd j states to 3p1/2εd j′ continua represents the
dominant interaction. The spin-orbit autoionization in the rare
gases, leaving the ion in the 2P3/2 ground state, is considered
as an example of very efficient autoionization [62,63]. The
scaled autoionization rate of the (3p3/2nd3/2)3 series of Mg
(101 900.38 cm−1) also falls in this category, as it is larger by
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a factor of 3 compared to the largest scaled rate measured in
the rare gases [64]. The lifetime associated with this rate (27
ps for n = 80) is even smaller than the classical orbit period
of the Rydberg electron (78 ps for n = 80). Such large rates
have also been observed in heavier alkaline-earth-metal atoms
(see Refs. [55,65] for examples in Sr).

In line with previous studies [2], the present results also
show that the autoionization rates of core-excited Rydberg
states strongly depend not only the principal and orbital
angular momenta of the Rydberg electron, but also on its total
angular momentum j and on the total angular momentum J of
the system. For example, the scaled autoionization width of
(3p3/2np1/2)1 states (γ = 572.32 cm−1) is twice smaller than
that of the (3p3/2ng7/2)3 ones (γ = 1021.09 cm−1), although
the orbital angular momentum of the outer electron in the lat-
ter case is significantly larger. For experiments requiring long-
lived core-excited Rydberg states, such as the applications in
quantum optics discussed in the Introduction, it is therefore
relevant to carefully consider not only n and l , but also j and
J . Selecting a particular j value may be difficult because in
most cases resonances associated with different values of l
and j overlap. Nonetheless, the value of J can be selected and
changed by, e.g., modifying the polarization of the excitation
lasers or the excitation scheme to the initial, singly excited
Rydberg states. The latter possibility may involve exciting the
Rydberg states no longer from the ground state of the atom
but from a metastable state, such as the nsnp 3P0,1,2 states of
the alkaline-earth-metal atoms (n = 2 to 6 from Be to Ba).

Finally, we demonstrated that the present theoretical ap-
proach to treat core-excited Rydberg states represents an
alternative to the R-matrix MQDT method widely used in pre-
vious works, and provides complementary information. The
approach yields, among others, the eigenvectors of the two-
electron Hamiltonian, and provides the energies and widths
of resonances even in regions where these strongly overlap. It
does not rely on the approximations inherent to MQDT, such
as assuming that the Rydberg electron experiences only the
Coulomb potential of the ion core at large radial distances,
and includes channels that were previously neglected [15,16],
in particular, the 3p jc ng j channels. These channels give rise
to resonances with asymmetric Beutler-Fano profiles that
had neither been calculated nor observed before. The results
of our calculations are overall in good agreement with the
experimental and R-matrix-MQDT-based results of Dai et al.
and Schinn et al. [15,16], and confirm from first principles the
validity of the ICE approximations at high n values.
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