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Three-loop radiative corrections to the 1s Lamb shift in hydrogen
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The three-loop contributions to the Lamb shift of the 1s state in the hydrogen atom in order α3(Zα)5m,
responsible for the second largest contribution to the uncertainty budget, have been known only partially. Here
we estimate the remaining three-loop terms of that order. The total three-loop result in order α3(Zα)5m for
the 1s Lamb shift is found to be −(3.3 ± 10.5)(α/π )3(Zα)5m, which contributes −0.11(34) kHz to the energy
of the ground state in the hydrogen atom and −3(11) kHz in the helium ion. To verify our approach we have
also estimated the known contributions in order α(Zα)5m and α2(Zα)5m. The obtained estimates are perfectly
consistent with the well established results, found previously by other authors.
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I. INTRODUCTION

Energy levels in hydrogen atom are described by quantum
electrodynamics (QED) with inclusion of nuclear-finite-size
and nuclear-structure effects. The QED contributions are the
largest ones and often the accuracy of their calculation de-
termines the overall theoretical uncertainty. In particular, the
computational QED accuracy of the complete theory of the
Lamb shift in the ground state of the hydrogen atom is limited
by our knowledge of the higher-order QED contributions
within the external-field approximation as well as of some
radiative-recoil corrections [1,2]. (The most recent CODATA’s
compilation is [1]; however, it does not contain any new
theoretical input compared to the previous one [2], while
only the earlier paper contains all the important references.)
An accurate calculation of the 1s Lamb shift in hydrogen
is crucial for a comparison with experiment in order both
to test bound-state QED (see, e.g., Ref. [3]) and to extract
the accurate values of the fundamental constants such as the
Rydberg constant (see [1] for details).

The theoretical uncertainty is dominated by the two-loop
and three-loop pure QED contributions in the external-field
approximation (see [4] for more detail). While the two-loop
contributions will be considered in detail elsewhere (see [4]),
we study here the related external-field contributions of the
order α3(Zα)5m (the three-loop ones), which are known only
partially [5] and we estimate the rest of them. The current
estimation of the uncalculated terms in this order produces
the second largest contribution to the uncertainty of the Lamb
shift of the ns states in the hydrogen atom [1,2].
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The energy levels in the external-field approximation are
parametrized up to the three-loop level as

�EL(ns) = α(Zα)4m

πn3

[
F (1) + α

π
F (2) +

(α

π

)2
F (3)

]
, (1)

where

(Zα)4 F (1)(nl ) =
∑
kp

Akp(Zα)k lnp 1

(Zα)2
, (2)

(Zα)4 F (2)(nl ) =
∑
kp

Bkp(Zα)k lnp 1

(Zα)2
, (3)

and

(Zα)4 F (3)(nl ) =
∑
kp

Ckp(Zα)k lnp 1

(Zα)2
. (4)

Sometimes, an additional factor of (mr/m)3 is kept. For the
sake of simplicity we ignore that reduced-mass factor here.
This factor is important for low-order contributions, but not
significant for higher-order terms, which we consider in this
paper. Our concern is a calculation of C50 for an ns state. As a
test calculation, we also obtain the results on A50 and B50, the
values of which are well known.

A total contribution of a certain order may involve several
gauge invariant sets of Feynman diagrams. In this case we use
the notation of (2), (3), and (4), but introduce subscripts or
superscripts to identify which individual set of contributions
is considered.

II. CONTRIBUTIONS IN ORDER αk(Zα)5m

In the scattering problem the diagrams with a different
number of external photon “legs” are of different order in
Zα. In the case of the bound-state QED the diagrams with
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FIG. 1. Characteristic diagrams for the contact potential, respon-
sible for ASE

50 (ns) (left) and AVP
50 (ns) (right).

a different number of the Coulomb photons may be of the
same order. The contributions in order αk (Zα)5m can be
presented as a product of a contact term with the exchange
by two Coulomb photons inside it [see, e.g., Fig. 1 for the
α(Zα)5m contribution] and the squared value of the nonrel-
ativistic Coulomb wave function at origin |�(r = 0)|2 (see,
e.g., Refs. [6,7]).

The “skeleton” two-photon-exchange “contribution” to the
Lamb shift in the hydrogen atom (see Fig. 2) is of the form

�Esk (ns) = (Zα)5m

n3

[
−16m3

π

∫ ∞

0

dq

q4

]
, (5)

where q = |q| and q is the three-dimensional momentum
transfer through the left photon line in Fig. 2. The momentum
transfer through the right one is −q.

We put above the quotation marks on the “contribution”,
because the expression is divergent at low q and requires sub-
tractions. However, in the case of k-loop radiative corrections,
a dimensionless factor of(α

π

)k
R(k)(q2)

is introduced and that leads to a substitution in the q integral∫
dq

q4
→

∫
dq

q4
R(q2). (6)

After the substitution the q integration is softened. The struc-
ture of the subtractions for radiative corrections is different
from a correction to a correction, and we discuss below the
subtractions in the context of the involved individual radiative
corrections.

III. METHOD OF THE ESTIMATION OF
TWO-PHOTON-EXCHANGE CONTRIBUTIONS

The purpose of this paper is to estimate three-loop two-
photon-exchange contributions, for which we develop a
method based on the evaluation of the asymptotics of the
related q integral. While explaining the method, it is helpful
to be more specific and give an example. Let us consider
the contribution of the one-loop vacuum-polarization (VP)

FIG. 2. Skeleton two-Coulomb-exchange diagram.

insertion into a Coulomb line (see the right graph in Fig. 1)

RVP(q2) = 2 q2IVP(q2),

where (see, e.g., [6])

IVP(q2) =
∫ 1

0
dv

v2(1 − v2/3)

4m2 + (1 − v2)q2
. (7)

To properly estimate the related q integral [cf. (6)], we have
to consider two asymptotics: the low-q one at q � 2m and
the high-q one at q � 2m. Once we find them, we split the
integral into two parts∫ ∞

0
dq . . . =

∫ 2m

0
dq . . . +

∫ ∞

2m
dq . . .

and estimate the low-q and high-q terms using the related
asymptotics. (From the point of view of dispersion relations
it is more natural to split the integral by 2m rather than by m
[cf. (7)].) In the case of the VP correction, the asymptotics are

RVP(q2) �
{

2
15

q2

m2 − 1
70

( q2

m2

)2
at q � 2m,

2
3 ln q2

m2 − 10
9 at q � 2m.

(8)

Before starting any practical discussion, we have to return
to the question of the convergence of the integral at low q and
a need for related subtractions. The integral in (6) is divergent
for RVP(q2) at low q. Such a divergence happens when the
radiative correction contributes not only in order αk (Zα)5m,
but also in order αk (Zα)4m. The total VP contribution does
contain such a term. In the case of the presence of the (Zα)4

contribution, the expression for the (Zα)5 term should contain
a subtraction. Usually the integral takes the form∫

dq

q4
R(q2) →

∫
dq

q4
[R(q2) − q2R′(0)]. (9)

The exception is the one-loop self-energy (SE) (see below in
the Appendix). In the case of the one-loop SE the subtraction
is more complicated because the leading term of the q2

expansion of R(q2) contains ln(m2/q2).
In QED, power counting at q � 2m for the skeleton Feyn-

man diagrams and the related radiative correction to them is
the same and the radiative corrections can have a logarithmic
enhancement only [cf. (8)]. However, the subtraction changes
the situation drastically. The asymptotics of the subtracted
integrand are now

RVP(q2) − q2R′
VP(0) �

{− 1
70

( q2

m2

)2
at q � 2m,

− 2
15

q2

m2 at q � 2m.
(10)

The subtracted radiative corrections at high q are enhanced
by a factor q2/m2 compared both to the skeleton (= 1) and
the unsubtracted radiative correction [see (8)]. In other words,
the high-q asymptotics [of the subtracted radiative correction
R(q2) − q2R′

VP(0)] is determined by the subtraction, which in
its turn is determined by the q2 term of the low-q asymptotics
of the radiative correction R(q2).

Such an asymptotic behavior is rather standard for the ra-
diative corrections. The asymptotics of the complete radiative
corrections to the integrand are determined only by the low-q
asymptotics of the (unsubtracted) radiative corrections. (In the
case of the individual gauge-invariant sets the subtraction is
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not always present; however, the leading high-q terms for such
individual contributions are subleading for the total one.)

As explained, the subtractions are due to the (Zα)4 terms.
Let us consider the one-loop VP case more accurately. The
leading VP contribution is of the order α(Zα)4m with

AVP
40 = − 4

15
.

The AVP
50 contribution according to our finding is

�EVP(ns) = −16α(Zα)5m

π2n3
m3

∫
dq

q4

×[RVP(q2) − q2R′
VP(0)]. (11)

The high-q part of the contribution therefore reads

�E>
VP(ns) = −16α(Zα)5m

π2n3
m3

∫ ∞

2m

dq

q4

[
− 2q2

15m2

]
(12)

or

AVP >
50 (ns) = − 4

π
AVP

40 (ns). (13)

The relation between the high-q part of A50(ns) and the
coefficient A40(ns) is a generic one since both are expressed
in terms of the value of IVP(0). A similar relation takes place
also for the two-loop and three-loop contributions:

B>
50(ns) = − 4

π
B40(ns),

C>
50(ns) = − 4

π
C40(ns). (14)

The bottom equation is directly used for our evaluation of
C50 below, while the upper one is suitable for the test of the
method (see the Appendix).

We do not discuss here the low-q part of the VP contribu-
tion since its calculation somewhat differs from the one used
below for C50(ns).

IV. THREE-LOOP CONTRIBUTIONS: ESTIMATION OF C50

The state-of-the-art theory of the three-loop contributions
to the Lamb shift of the ns state is the following. The leading
term is of the order α3(Zα)4m and it is known [8–10]. The
contribution in order α3(Zα)5m has been found only partially
[5]: the pure VP contributions were found as well as the
contributions of the two-photon-exchange diagrams with one
radiative photon and all possible VP insertions. The result of
[5] reads

Cknown
50 (ns) = 8.331(2). (15)

The leading higher-order three-loop logarithmic corrections,
such as C63,C62, have been also considered [11].

Following the consideration above we first have to identify
the diagrams which contribute to C40(ns). The three-loop self-
energy (SE3) ones are plotted in Fig. 3, while those for the
three-loop vacuum polarization (VP3) are depicted in Fig. 4.
We are not interested in the asymptotics of the VP3 diagrams
here since all the related three-loop VP contributions to C50,
reducible and irreducible, have been already found in [5]. We
focus here on the SE3 ones.

FIG. 3. Characteristic diagrams for the three-loop self-energy
(SE3) contribution to C40(ns).

To find the high-q contribution we rely on (14). Meanwhile,
we note that C40(ns) has been known [9,10]

CSE3
40 (ns) � 1.868 12 . . . (16)

for the total SE3 contribution, but the result for the slope of
the Dirac form factor [10] is not given for the individual sets
of the diagrams. The diagrams c and d in Fig. 3 relate to the
sets already calculated in [5]. Therefore, we have to separate
their contributions from the others.

The related α3(Zα)5m contributions are calculated in [5]
by using the two-photon-exchange technique and the inte-
grands are presented there with the explicit subtractions [see
Eqs. (57) and (66) in [5]; cf. [12]]. We have calculated the
involved subtraction terms and restored their contributions to
C40(ns). Our result is

CSE3:known
40 (ns) � 0.9715 . . . . (17)

Its sign is consistent with the sign of the related part of
Cknown

50 (ns) [5].
Combining (16) and (17) we obtain

CSE3:uknown
40 (ns) � 0.896 60 . . . (18)

and therefore for the “unknown” contributions we arrive at the
estimation

Cunknown,>
50 (ns) = −1.14, (19)

FIG. 4. Characteristic diagrams for CVP3
40 (ns): two types of irre-

ducible diagrams. [Only irreducible pure VP graphs contribute to
CVP3

40 (ns).]
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FIG. 5. Characteristic diagrams for q4 ln(m2/q2) asymptotic
term for C>

50(ns) from SE × VP2. (Only irreducible VP2 graphs
contribute.)

where we estimate the uncertainty of the calculation
as 50%.

To estimate C<
50(ns) we note that, in contrast to the VP

contributions, the SE ones often have logarithmic terms at
low q, such as ln(m2/q2). It is not easy to find the complete
q4 asymptotics of the radiative corrections at low q, but it is
possible to find its leading logarithmic term. To do that we
note that the low-q logarithms appear in a manner similar to
the leading logarithm at the one-loop self-energy (cf. [13]).

We find the leading logarithmic term in order q4 for the
three-loop radiative-correction factor R(q2). It is a single-
logarithm one. A one-loop radiative-correction factor of order
q4 is linear in logarithm, while in the case of two loops there is
a quadratic term (see below in the Appendix). One can expect
that the three-loop radiative corrections to the skeleton dia-
grams have a cube of the logarithm. That is correct; however,
a cubic term appears in order q6, while the q4 term is softer
than that in the case of two loops (cf. [11]) and has only a
logarithm.

The characteristic diagrams for the leading q4 logarithmic
contributions are presented in Fig. 5. For the sake of simplicity
the plotted diagrams in Fig. 5 contain some VP insertions;
however, that is not necessary. (The plotted diagrams are
with a combination of the one-loop SE and the two-loop
VP.) Pure SE diagrams are also important (see below). There
are two types of the q4 ln(m2/q2) contributions. The left
plot illustrates a combination of a contact potential (i.e., a
potential which behaves at low q as ∝ const, which is ∝ q2 ×
skeleton) and a logarithmic divergence in the electric form
factor [∝ q2 ln(m2/q2) × skeleton], which together produce
the logarithmic ∝ q4 ln(m2/q2) asymptotics. The right plot
also involves the contact term and overall integral for the one-
loop radiative correction. The contact term does not depend on
momentum and therefore does not change the logarithmically
divergent (at q2 = 0) integration in the vertex. It also produces
q4 ln(m2/q2).

The key detail of the calculation of the logarithmic contri-
bution to R(q2) is the presence of a two-loop contact potential.
The latter is the one responsible for B40(ns) [i.e., for the
contribution in order α2(Zα)4m]. We present the character-
istic diagrams for such a contact potential in Fig. 6. Note
that of these three contributions only one (due to the last
graph) corresponds to the corrections evaluated in [5]. The
contributions to the asymptotics of the three-loop radiative
corrections due to the two-loop contact potentials from the
two first types of the diagrams correspond to the “unknown”
part of C50(ns).

FIG. 6. Characteristic diagrams for the contact potential, respon-
sible for BSE2

40 (ns) (the left and middle diagrams) and BVP2
40 (ns) (the

right diagram).

The related low-q part of C50(ns) is

C<
50(ns) = −32

π

∫ 2m

0

dq

m

(
2

3
ln

q2

4m2

)(
−B40

4

)

= − 64

3π
B40(ns), (20)

where the set-by-set contributions to B40 are (see, e.g., [1,6])

BpureSE
40 (ns) = −9

4
ζ (3) + 3π2

2
ln 2 − 85π2

216
− 163

72
� 1.409,

BSE[VP]
40 (ns) = 5π2

216
− 7

81
� 0.1420, (21)

and the notation is clear from Fig. 6.
As mentioned, we ignore BpureVP

40 , since it is related to the
known part of C50, while here we are after the unknown one,
for which we obtain

Cunknown,<
50 (ns) = −10.53, (22)

with the uncertainty of 100% because we deal only with the
logarithmic part of the asymptotics.

Combining the high-q [from (19)] and low-q parts of the
unknown C50 contributions we find their estimation as

Cunknown
50 (ns) = −11.7(10.5) (23)

or

Ctotal
50 (ns) = −3.3(10.5), (24)

which is the eventual result of our calculations for the
α3(Zα)5m contributions to the Lamb shift of the ns state
in hydrogen. That should be compared to an estimation of
Ctotal

50 (ns) = ±30 [1].
As a test of principles of our method, we estimate in

the Appendix the values of the one-loop and two-loop two-
photon-exchange contributions A50(ns) and B50(ns), which
are well established. The achieved estimations are in good
agreement with the known results [14] and [15] (see Table I).

TABLE I. Estimation of the total contributions to A50, B50,C50

for an ns state in hydrogenlike atoms and its comparison with known
results.

Coefficient Estimation Result

A50 9.4(5.3) 9.62 [14]
B50 −19(18) −21.6 [15]
C50 −3.3(10.5)

032513-4



THREE-LOOP RADIATIVE CORRECTIONS TO THE 1s … PHYSICAL REVIEW A 100, 032513 (2019)

A success in the estimation of the well established
coefficients A50(ns), B50(ns) confirms that our estimation
of the central value and the uncertainty of C50(ns)
above is reasonable. To conclude our consideration of the
two-photon-exchange contributions and the estimation of
A50(ns), B50(ns),C50(ns), we note a few important properties
of the deduced estimations.

(i) In all the cases we investigate in this section and in
the Appendix the low-q and high-q asymptotics have the
same sign. That is an important practical condition for the
estimation of an integral through the use of its asymptotics.

(ii) The larger contributions come from the parts which
contain logarithmic terms in the asymptotics. For the B50,C50

coefficients that is the low-q part, while in the case of A50(ns)
both asymptotics have logarithms and their contributions are
comparable.

(iii) The largest value for the coefficients is that for B50(ns),
only which has a double logarithmic asymptotics.

(iv) In the case of the one-loop and two-loop calculations
the SE diagrams and, specifically, the “pure SE” ones (without
any closed electron loops) dominate. That is consistent with
the previous comments, because only they have logarithmic
asymptotics in the case of one and two loops. In the case of
three loops the diagrams with the VP loops (see Fig. 5) also
produce the logarithmic q4 terms and the pure SE contribu-
tions do not dominate.

All that tells us that the three-loop coefficients are orga-
nized somewhat differently than the one-loop and two-loop
ones. The pure SE contributions cannot strongly dominate and
the overall three-loop coefficient is smaller than the two-loop
coefficients. The estimation ±30 [1] is too conservative.

The SE and VP contributions often have different signs. As
far as only one contribution dominates [as the pure SE one for
A50(ns) and B50(ns)], that does not really matter. In the case
of three loops a massive cancellation between a “pure SE”
contribution and various VP contributions is possible. That
makes the partial result on the diagrams with the VP insertions
[5] valuable for our estimation, eliminating an uncertainty
which should be introduced otherwise.

V. CONCLUSIONS

Concluding, we performed above an estimation of the
leading unknown three-loop contribution to the Lamb shift of
the ns state in light hydrogenlike atoms. Our result for the total
α3(Zα)5m correction reads [4]

�E (50)
L (ns) = (−3.3 ± 10.5)

(α

π

)3 (Zα)5m

n3
. (25)

That should be compared to the previous rough estimation [1],
which has three times larger uncertainty. In contrast to that
estimation, ours is based on an approximate calculation.

In the frequency units the contribution found is
−0.11(34) kHz for the 1s Lamb shift in hydrogen and
deuterium and −3(11) kHz for the 1s state in the He+ ion.

The leading higher-order logarithmic correction is also
known. In contrast to [1,2], it was established that C63 = 0
[11], while the leading logarithmic term has only a double

logarithmic factor [11]

�E (62)
L (ns) � −0.36

( α

π

)3 (Zα)6m

n3
ln2 1

(Zα)2
. (26)

In the case of estimation of the uncertainty related to C63 in
[1,2], the cubic logarithmic term would be comparable to the
uncertainty in (25), being 0.2 kHz for hydrogen and 9 kHz for
the helium ion. According to [11], where such a cubic term
is eliminated, the leading double logarithmic contribution in
(26) and the uncertainty due to subleading terms are both
essentially below the current uncertainty of the α3(Zα)5m
in (25) and can be neglected. The double-logarithm term
contributes −8 Hz for hydrogen and −0.4 kHz for the helium
ion 1s Lamb shift.

The eventual three-loop contribution of order α3(Zα)5m
(and higher) to the 1s Lamb shift is therefore determined by
(25). Together with the marginal higher-order correction, it is
−0.11(34) kHz for hydrogen and deuterium and −4(11) kHz
for the helium ion. The uncertainty is approximately three
times smaller than in the previously published estimation [2].
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APPENDIX: ESTIMATION OF A50(ns) AND B50(ns)

Let us start with the estimation of the one-loop contribution
in order α(Zα)5m (cf. [16]). Using the substitution in (6) we
find for the self-energy contribution

�E (ns) = −16α(Zα)5m

π2n3
m3

∫
dq

q4

[
RSE(q2) − R(2)

SE (q2)
]
,

(A1)

and therefore

ASE
50 (ns) = −16

π
m3

∫
dq

q4

[
RSE(q2) − R(2)

SE (q2)
]
, (A2)

where R(2)
SE (q2) is the q2 part of the low-q asymptotics of

RSE(q2). It contains a logarithmic term (see below) and cannot
be present as q2R′

SE(0), similar to the VP case in Sec. III.
The radiative-correction factor RSE(q2) is considered in

[17,18] (see also [19]). The related asymptotics are

RSE(q2) − R(2)
SE (q2) �

{− 7
30

( q2

m2

)2
ln 4m2

q2 at q � 2m,

q2

m2

( − 2
3 ln q2

m2 + 5
9

)
at q � 2m,

(A3)

where for the q2 term of the low-q asymptotics of RSE(q2) we
find

R(2)
SE = − q2

m2

(
2

3
ln

m2

q2
+ 5

9

)
.
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In principle one can find a complete q4 asymptotics from
the expressions in [17,18]; however, to make the accuracy
comparable with the calculation of C50 in Sec. IV we utilize
here only its logarithmic part. We note that the q2 asymptotics
could be also found from the well known results for the
electric form factor of the electron, the infrared logarithmic
asymptotics of which are related to ASE

41 .
The result for the coefficient of interest is found as

ASE
50 (ns) = A>(ns) + A<(ns)

=
[

16m

π

∫ ∞

2m

dq

q2

(
2

3
ln

q2

4m2
− 5

9
+ 4

3
ln 2

)]

+
[

56m

15π

∫ 2m

0

dq

q2

q2

m2
ln

4m2

q2

]
= 4.3(2.1) + 4.8(4.8), (A4)

where we assign the 50% uncertainty for the calculation
with the complete q2 asymptotics and the 100% one for the
calculation with the logarithmic q4 asymptotics. Our final
estimation reads

ASE
50 (ns) = 9.1(5.2), (A5)

which is in perfect agreement with the actual value of the
coefficient [14]

ASE
50 (ns) = π

(
139
32 − 2 ln 2

) � 9.29. (A6)

A similar consideration of the complete A50(ns) coeffi-
cients (for both the SE and VP contributions) also leads to
agreement between our estimation

ASE+VP
50 (ns) = 9.4(5.3) (A7)

and the known analytic result [14]

ASE+VP
50 (ns) = π

(
427
96 − 2 ln 2

) � 9.62. (A8)

Now we have to extend the estimation procedure to
B50(ns). The high-momentum contribution is defined in (14).
To find it we have to apply the results for the α2(Zα)4m

FIG. 7. Characteristic diagrams for q4 ln2(m2/q2) asymptotics
for B<

50(ns) from SE2.

contribution, which are well known (see, e.g., [1,6]):

BSE2
40 (ns) =

(
−9

4
ζ (3) + 3

2
π2 ln 2 − 10

27
π2 − 1523

648

)
,

BVP2
40 (ns) = −82

81
. (A9)

The estimation for the high-q part of the SE2 contribution is

BSE2,>
50 (ns) � −2.0(1.0) . (A10)

The leading q4 term of the low-q asymptotics is the double
logarithmic one (see Fig. 7). Having in mind the skeleton
expression in (5), the well-known expression for the one-loop
form factor, and the expression for the q4 ln2(λ/m) term of the
two-loop vertex (see [13]), we find

B<
50(ns) = − 16

πn3

∫ 2m

0

dq

m

(
2 × 1

2
+ 1

)(
1

3
ln

q2

(2m)2

)2

� −18(18), (A11)

where for the application of the logarithmic term we assign
the uncertainty of 100%.

The final result is

BSE
50 (ns) = −20(18) (A12)

to be compared with [15]

BSE
50 (ns) = −24.269(4). (A13)

One can also find a complete result

BSE+VP
50 (ns) = −19(18), (A14)

which is also in good agreement with the known value [15]

B50(ns) = −21.558(4). (A15)
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