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Sensitivity of the isotope shift to the distribution of nuclear charge density
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It is usually assumed that the field isotope shift (FIS) is completely determined by the change of the averaged
squared values of the nuclear charge radius 〈r2〉. Relativistic corrections modify the expression for FIS, which is
actually described by the change of 〈r2γ 〉, where γ = √

1 − Z2α2. In the present paper we consider corrections
to FIS which are due to the nuclear deformation and due to the predicted reduced charge density in the middle of
the superheavy nuclei produced by a very strong proton repulsion (hole in the nuclear center). Specifically, we
investigate effects which cannot be completely reduced to the change of 〈r2〉 or 〈r2γ 〉.

DOI: 10.1103/PhysRevA.100.032511

I. INTRODUCTION

Isotope shift (IS) phenomena in heavy atoms are an impor-
tant way of probing various scenarios in nuclear physics and
can aid the search for new physics beyond the standard model.
Nuclear theory predicts the existence of long-lived isotopes
for elements with Z � 104 (see, e.g., [1,2]), in particular
isotopes with a magic neutron number N = 184. However,
producing these neutron-rich isotopes in laboratories by col-
liding lighter atoms is currently impossible. The Coulomb
repulsion for nuclei grows as Z2; in order to compensate for
this with the attractive strong force, the neutron number N
must grow faster than Z . Consequently, an isotope from the
island of stability with N = 184 cannot be produced from the
collision of a pair of lighter isotopes with smaller N/Z ratios.

In contrast to laboratories, various astrophysical events
such as supernovae explosions, neutron stars, and neutron
star–black hole/neutron star mergers generate high neutron
fluxes and may create environments favorable for the pro-
duction of neutron-rich heavy elements. For example, a new
mechanism of such kind due to the capture of the neutron star
material by a primordial black hole has been suggested in [3].
Furthermore, neutron star–neutron star mergers are predicted
to generate optimal environments for the production of heavy
atoms [4,5].

As a consequence, astrophysical data may be the best place
to observe superheavy metastable elements. It is possible
that optical lines of elements up to Z = 99 have already
been identified in the spectra of Przybylski’s star [6]. These
elements include heavy, short-lived isotopes which may be
products of the decay of long-lifetime nuclei near the island
of stability [7].

IS calculations for superheavy elements (SHEs) can help
trace the hypothetical island of stability in existing astrophys-
ical data. It may be possible to predict a spectral line of a
neutron-rich isotope ν ′ based on the experimental spectrum
of a neutron-poor isotope ν and calculations of IS δν as ν ′ =
ν + δν. The results can then be used to search for the long-
lifetime neutron-rich elements in complicated astrophysical
spectra such as that of Przybylski’s star.

Spectroscopic measurements of IS may also be relevant to
the search for strange matter. Strange nuclei consist of up,
down, and strange quarks (see [8], and references therein). A
strange-matter nuclei of charge Z would have a very different
radius in comparison to any regular isotope. Calculations of
IS can be used to predict the effects of this change in radius
on atomic spectra.

Calculations of IS allows one to estimate the King-plot
nonlinearity of a given element. New long-range forces such
as Yukawa-type interactions between electrons and nucleus
can lead to nonlinearities in a King plot for a series of
isotopes [9]. It is useful to understand other possible sources
of nonlinearities in the IS in order to constrain new physics
beyond the standard model.

It should be noted that relativistic corrections produce an
important difference in the dependence of the field shift on
the nuclear radius r. The traditional expression for field shift is
known as Fiδ〈r2〉 where Fi is an electronic structure factor and
δ〈r2〉 is a nuclear parameter. It is usually assumed that electron
factor Fi is the same for all isotopes. In fact, it is only true
when relativistic effects are sufficiently small to be neglected.
An alternative formula allowing separation of nuclear and
electron variables in the relativistic case should be written as
F̃iδ〈r2γ 〉, where γ = √

1 − Z2α2, α is the fine-structure con-
stant. The electronic factor F̃i is to be calculated. An analytical
estimate of F̃i has been done in Ref. [10] (see also [11–14]),
and relativistic many-body calculations for Z = 102–109 have
been done in Refs. [15–17]. The traditional formula for the
field shift Fiδ〈r2〉 still can be used for neighboring isotopes
where change in Fi is small and can be neglected. The formula
is useful for finding the change in nuclear root mean square
(RMS) radius from the IS measurements.

Due to the relativistic effects in heavy atoms, the field
shift of the p1/2 orbital is comparable to that of the s1/2: The
ratio is ∼(1 − γ )/(1 + γ ) [10]. The Zα expansion gives the
ratio ∼Z2α2/4 but for Z = 137, γ ≈ 0 and for the superheavy
elements the ratio tends to 1. For j > 1/2 the direct mean-field
single-particle field shift is small. However, the mean-field
rearrangement effect (the correction to the atomic potential
δV due to the perturbation of the s and p1/2 orbitals by the
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field-shift operator) produces the same dependence of field
shift on nuclear radius for all orbitals: F̃iδ〈r2γ 〉.

The difference between the nonrelativistic 〈r2〉 and rela-
tivistic 〈r2γ 〉 expressions may be explained by the different
dependence of the nonrelativistic and relativistic wave func-
tions near the origin. Another relativistic effect is due to the
variation of the electron density ρe inside the nucleus which
for the s and p1/2 orbitals is approximately presented by the
following formula [10]:

ρe(r) ≈ ρe(0)

[
1 − Z2α2

2

(
r

c

)2]
(1)

where c is the nuclear radius. The r-dependent term gives us
an additional sensitivity of IS to the nuclear charge distribu-
tion beyond the change of 〈r2〉.

In this work we study the effect of the change in nuclear
charge distribution on the field isotope shift. We consider four
types of charge distribution variation: (a) A hole in the origin,
where nuclear density is small in the origin and increases to
the periphery; (b) nuclear quadrupole deformation; (c) change
of the skin thickness; and (d) change in nuclear RMS radius.
The questions we try to answer include the following: (a)
Can isotope measurements be used to study nuclear structure
beyond the change of nuclear RMS radius? (b) What is
the best way of using isotope shift calculations to predict
the spectra of neutron-rich SHEs with the aim to reach the
hypothetical island of stability? (c) Can nuclear deformation
lead to nonlinearity of the King plot?

We choose the E120+ ion for numerical analysis. It is
sufficiently heavy for the relativistic effects to be pronounced.
On the other hand, the ion has relatively simple electron
structure (one external electron above closed shells) so that
all important points can be illustrated without getting into the
trouble of complicated many-body calculations. We use the
results of nuclear calculations [18] to get the parameters of
nuclear deformation and nuclear RMS radius. We consider
only even isotopes because nuclear calculations for them are
more reliable. The work [18] considers a range of nuclear
models which favor spherical nuclear shape at Z = 120 and
N = 172. We use this spherical nucleus as the starting point
in our study.

II. CALCULATIONS

We use an approach similar to the one in Refs. [19,20].
Electron potential V for valence orbitals is found by solv-
ing relativistic Hartree-Fock (RHF) equations for a closed-
shell core

(ĤHF − εc)ψc = 0, (2)

where c numerates states in the core from 1s to 7p1/2 and
7p3/2. States of valence electron (Brueckner orbitals) are
obtained by solving the RHF-like equations for the valence
orbitals

(ĤHF + λ
(2) − εv )ψBr
v = 0. (3)

Here 
 is the correlation potential responsible for core-
valence correlations [21], and index “2” indicates second
order of the many-body perturbation theory. 
 is defined in
such a way that the correlation correction to the energy εv

FIG. 1. Variations of nuclear density. Solid line: Fermi distri-
bution (5); dashed line: Modified distribution with a hole in the
origin, formula (6) with k = 0.5; dotted line: Fermi distribution with
reduced skin thickness [parameter t in (5)] by 14.5% to simulate the
effect of the hole; long dashed line: Fermi distribution with increased
skin thickness by 30.5% to simulate the effect of quadrupole defor-
mation, formula (7) with β = −0.4.

is given by δεv = 〈ψv|
|ψv〉 (see, e.g., [21] for details). We
calculate 
 ab initio, limiting ourselves to the lowest order
of the perturbation theory. λ is a scaling parameter introduced
to simulate the effect of higher-order correlations. Its value
(λ = 0.75) is chosen to fit the result of all-order calculations
of Refs. [19,20].

IS is calculated using the so-called random phase approxi-
mation (RPA; see, e.g., [21]), which can be described as linear
response of self-consistent atomic field to a small perturba-
tion. In our case the perturbation is the change in nuclear
potential δVN due to a change in nuclear charge distribution.
The RPA equations are first solved for the core

(ĤHF − εc)δψc = −(δVN + δVcore), (4)

where δψc is the correction to the core orbitals due to the
effect of δVN , and δVcore is the correction to the electron po-
tential of core electrons due to the changes in all core orbitals.
IS for states of a valence electron is found as 〈ψBr

v |δVN +
δVcore|ψBr

v 〉.
We use Fermi nuclear charge distribution (solid line in

Fig. 1)

ρ(r) f = ρ0

1 + exp 4 ln 3(r − c)/t
, (5)

where c is nuclear radius, t is skin thickness, and ρ0 is
the normalization constant,

∫
ρ(r) f dV = Z . Nuclear charge

distribution with a hole in the origin is given by (dashed line
in Fig. 1)

ρ(r)h = ρ(r) f

[
1 + k

(
r

c

)2]
. (6)

032511-2



SENSITIVITY OF THE ISOTOPE SHIFT TO THE … PHYSICAL REVIEW A 100, 032511 (2019)

TABLE I. Nuclear parameters for the range of even isotopes from
292E120 to 306E120 isotopes taken from [18].

A β
√

〈r2〉 (fm)

292 0.0 6.220
294 −0.174 6.264
296 −0.205 6.294
298 −0.218 6.330
300 −0.221 6.358
302 −0.261 6.297
304 −0.290 6.484
306 −0.376 6.503

The normalization constant ρ0 is adjusted to keep correct
normalization. Nuclear quadrupole deformation is considered
by replacing constant nuclear radius c in (5) by varying
parameter c(θ ),

c(θ ) = c[1 + βY20(θ )], (7)

and calculating the spherical average by integrating over θ . It
is known that this is approximately equivalent to the increase
in skin thickness [22,23]

t2 ≈ t2
0 + (4 ln 3)2(3/4π3)c2β2. (8)

We also consider the change of nuclear radius. We use the
292E120 isotope as a reference one and we take nuclear
parameters from nuclear calculations [18].

III. RESULTS

Table I lists the isotopes of SHE E120 used in this study
with nuclear parameters taken from [18]. The results are
presented in Tables II and III and Fig. 3. In all cases the IS for
s and p1/2 states is dominated by the 〈φBr

a |δVN |φBr
a 〉 term (see

Table II); IS for states with j > 1/2 is dominated by the core
polarization (CP) term 〈φBr

a |δVcore|φBr
a 〉. The largest contribu-

tions to the CP come from the core s states as shown in Fig. 2.
Therefore, the effect of change in nuclear charge distribution
is very similar for all states except the p1/2 states.

v

ns

ms

v

FIG. 2. Dominating contribution to the isotope shift of the
single-electron states v with total angular momentum j > 1/2
(p3/2, d3/2, d5/2, etc.). The cross stands for δVN , the change of nuclear
potential due to change in nuclear charge distribution.

TABLE II. Isotope shift for specific states of E120+(in
10−3 cm−1) due to a change in nuclear charge distribution. Reference
IS is the IS between 292E120 and 294E120 calculated (〈ψBr

a |δVN +
δVcore|ψBr

a 〉) with the nuclear parameters from Table I. “Hole” is
the shift due to the difference between pure Fermi distribution (5)
and the distribution with the hole in the origin, formula (6) with
k = 0.5. The same IS is produced by reducing the skin thickness
t in (5) by 14.5%. “Deformation” is the shift due to quadrupole
deformation, formula (7) with β = −0.4. The same IS is produced
by increasing the skin thickness t in (5) by 30.5%. Note that while
changing the hole parameter k or the deformation parameter β we
are also changing nuclear radius parameter c to keep the rms radius
unchanged. “Change of

√
〈r2〉” is the IS due to change of nuclear

RMS radius in pure Fermi distribution (5) from 6.220 to 6.211
fm. “Br” stands for IS given by 〈ψBr

a |δVN |ψBr
a 〉; “Br+CP” includes

core polarization, 〈ψBr
a |δVN + δVcore|ψBr

a 〉. Note that corresponding
matrix elements may be interpreted as isotope shift corrections to the
ionization potential for an electron on a given orbital.

Reference Hole Deformation Change of
√

〈r2〉
State IS Br Br+CP Br Br+CP Br Br+CP

8s 10134 743 813 −1986 −2172 −1988 −2172
9s 2377 182 191 −486 −510 −486 −510
8p1/2 1705 130 131 −347 −351 −359 −365
8p3/2 −485 ∼10−2 −38 ∼10−1 103 ∼10−2 104
7d3/2 −1350 ∼10−3 −106 ∼10−3 284 ∼10−3 289
7d5/2 −606 ∼10−8 −48 ∼10−7 128 ∼10−8 130

A. Hole in nuclear charge distribution
and change of the nuclear skin thickness

A hole (or, more accurately, central depression) in nu-
clear density for E120 was considered in Refs. [24–26]. Its
importance is related to the theoretical prediction of magic
numbers for protons and neutrons. We study the effect of
making a hole in nuclear charge distribution by comparing
the energies of the 292E120+ ion in which nuclear charge
distribution is pure Fermi distribution (5) to the energies of the
ion in which nuclear density is modified according to (6) (see
also Fig. 1). We use k = 0.5 while keeping the RMS radius
fixed. The results are presented in Table II. We also present in
this table reference IS which is the shift between 292E120 and
294E120 calculated with the nuclear parameters from Table I
as a matrix element 〈ψBr

a |δVN + δVcore|ψBr
a 〉. The ratio of the

energy shifts due to a hole to the reference IS is about 8%.

TABLE III. Isotope shift between 292E120 and 294E120 (in cm−1)
for the frequencies of the 8s-8p and 9s-8p transitions in E120+. Case
A corresponds to nuclear parameters in Table I. Case B is a model
case in which β = 0 for both isotopes and a change in RMS radius is
chosen to fit the shift of s states.

Transition A B A-B

8s-8p1/2 8.42911 8.43187 −0.0028
8s-8p3/2 10.6185 10.6183 0.0002
9s-8p1/2 0.67423 0.67528 −0.0011
9s-8p3/2 2.86118 2.86109 0.0001
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This means that the effect is significant and deserves further
study.

It turns out that a hole in the nuclear charge distribution
is numerically equivalent to decreasing the value of the skin
thickness [parameter t in ((5)]. The value k = 0.5 corresponds
to the 14.5% decrease in the value of t . In both cases the effect
is practically the same for all considered states.

B. Nuclear quadrupole deformation
and change of nuclear radius

Next we study the effect of nuclear quadrupole deforma-
tion. We consider a model situation by comparing two nuclei
with the same RMS radius but one has no deformation, and
another has a deformation with β = −0.4 in (7). This value
of β comes from nuclear calculations for the 316E120 isotope
[18]. The effect of quadrupole deformation is equivalent to
increased skin thickness (see Fig. 1). Calculations show that
for β = −0.4 equivalent increase in skin thickness t is 30.5%
in good agreement with (8). The shift in energy is significant,
∼2 cm−1 for s states (see Table II) or ∼20% of the reference
IS for all considered states. This leads to a question whether
IS can be used to study nuclear deformation. Therefore, we
check whether nuclear deformation can be distinguished from
the change of nuclear RMS radius. The two last columns of
Table II show the effect of the change in nuclear RMS radius
in which the parameters were chosen to produce the same IS
for the 8s state as in the case of quadrupole deformation. We
see that the shift is the same for all states except the 8p1/2

state. The difference for the 8p1/2 state is 4% or 0.014 cm−1.
This is large enough to be detected in spectroscopic measure-
ments. However, this is a model case. Let us now consider
a more realistic case of isotope shift between two isotopes
292E120 and 294E120 in which nuclear parameters are taken
from nuclear calculations [18]. We consider isotope shift for
frequencies of electric dipole transitions in E120+ for isotopes
in Table I. IS for the a → b transition is given by δνab =
〈ψBr

b |δVN + δcore|ψBr
b 〉 − 〈ψBr

a |δVN + δVcore|ψBr
a 〉. The results

are presented as case A in Table III. In case B we perform
model calculations to check whether IS can be reduced to
the change in RMS radius. The answer is negative. We see
that if we chose the change in RMS radius to fit the shift
of s and p3/2 states (they behave the same way; see above),
then the shift for the p1/2 state is slightly different leading
to different IS in the ns-mp1/2 transitions. The difference is
∼0.003 cm−1 for the 8s-8p1/2 transition, which is probably
large enough to be detected. This means that nuclear defor-
mation can be studied by comparing IS in the s-p1/2 and
s-p3/2 transitions. Both these ISs cannot be fitted by changing
just one nuclear parameter, e.g., RMS radius. A change in
nuclear deformation (β) is also needed. Note that this might
be the only way to study nuclear deformation for even-even
isotopes by means of atomic spectroscopy. In odd isotopes
one can also measure electric quadrupole hyperfine structure.
Note also that since three types of nuclear deformations (hole
in the origin, quadrupole deformation, and change of thick-
ness) are numerically equivalent in terms of producing similar
IS, what is said above about nuclear deformation is also true
about having a hole in nuclear charge distribution; i.e., it can
be studied by comparing IS in the s-p1/2 and s-p3/2 transitions.

FIG. 3. Fractional deviation of the isotope shift constants from
their average values in cases of spherical and deformed nuclei. Solid
lines are for the field constant F ; long dashed lines are for the
modified field shift constant F̃ . Lines corresponding to spherically
symmetric nuclei marked with “o”; lines corresponding to deformed
nuclei markded with “0.”

C. Isotope shift for large change of neutron numbers

It was suggested in Ref. [7] to use isotope shift calculations
to predict transition frequencies in SHEs from a hypothet-
ical island of stability. These metastable SHEs differ from
isotope-poor SHEs produced in laboratories by a large number
of neutrons (large �N). This should be taken into account
in the IS calculations. The calculations reported above use
the RPA method, which assumes that the change in nuclear
potential δVN is a small perturbation and ignores nonlinear
in δVN contributions. In SHEs with large �N nonlinear in
δVN contributions are likely to be important and should not
be thrown away. The most obvious way to do calculations
properly is to calculate energy levels for each isotope and then
take the difference. This does not work for light atoms because
the IS is small and obtaining it as a difference of large almost
equal numbers leads to numerical instabilities. Fortunately,
IS in SHE is sufficiently large to ensure stable results. Even
for neighboring isotopes taking the difference between two
RHF calculations produces results which are very close to the
RPA calculations. For large �N , the calculations based on the
difference between two isotopes are preferable because they
include nonlinear contributions.

It is customary to present FIS as a formula in which
electron and nuclear variables are separated. The standard
formula reads

FIS = Fδ〈r2〉. (9)

It is assumed that the electron structure factor F does not
depend on nuclear variables. This formula works very well
in light atoms and is widely used even for atoms close to the
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end of the known periodic table (e.g., for No, Z = 102, [15]).
It was shown in Ref. [10] that relativistic corrections lead to a
different formula

FIS = F̃δ〈r2γ 〉, (10)

where γ =
√

1 − (αZ )2. New electron structure constant F̃
does not depend on nuclei. The formula was obtained by
considering spherical nuclei with uniform change distribution.
Below we study the performance of both formulas (9) and
(10) for deformed nuclei. We calculate isotope shifts for the
8s-8p1/2 and 8s-8p3/2 transitions for all even isotopes of
E120+ from A = 294 to A = 306. We take nuclear parameters
β and RMS radius from Ref. [18] (see Table I). We also
consider a model case in which all considered nuclei are
assumed to be spherically symmetric (β = 0). IS is calculated
for pairs of neighboring isotopes using the RPA method as
described above. The constants F and F̃ are found using
(9) and (10). The calculations repeated for both transitions
for seven pairs of isotopes. In the end we have 14 values
of isotope shift and 14 values of F and F̃ . We found that
FIS(8s-8p1/2)/FIS(8s-8p3/2) ≈ const for all considered iso-
topes. This means almost exact cancellation of a nuclear
factor, as if F or F̃ in (9) or (10) does not depend on an
isotope. However, the nuclear factor must be different from
δ〈r2〉 or δ〈r2γ 〉, since neither formula (9) nor (10) works
well. Figure 3 shows variations of F and F̃ from isotope to
isotope in terms of their deviation from the average values,
e.g., δ(F/F )i = (Fi − 〈F 〉)/〈F 〉, where 〈F 〉 = ∑

Fi/7. The
value of F in (9) tends to drift in one direction leading to
large variations for large difference in neutron numbers. This
is similar for both cases, symmetrical and deformed nuclei.
In contrast, formula (10) works very well for spherical nuclei,
showing only about 0.01% variation for F̃ in the considered
interval. However, the formula does not work so well for
deformed nuclei. The value for F̃ jumps up and down by
several percent from one isotope to another. This is probably
because the value of 〈r2γ 〉 depends on two nuclear parameters,
nuclear deformation parameter β and nuclear RMS radius,
making its behavior irregular.

Note that the difference in the value of F for neighboring
isotopes usually does not exceed 1% for both spherical and
deformed nuclei. With this accuracy formula (9) can be used
for neighboring isotopes to extract the change of nuclear
RMS radius from isotope shift measurements (see, e.g., [15]).
Keeping in mind that the value of F depends on the isotope,
the calculations should be performed for one of the isotopes
of interest (or for both, taking then an average value).

Since neither of the formulas (9) or (10) works well for
deformed nuclei there is a question whether there is any
alternative to them. We suggest a two-dimensional fit of the
calculated IS on the β, R plane, where R =

√
〈r2〉 is the

nuclear RMS radius. High accuracy of fitting can be achieved
by quadratic fit in both coordinates,

δνi = axi + byi + cxiyi + dx2
i + ey2

i . (11)

Here x = βi − β0, y = Ri − R0, where index i numerates
isotopes, 0 corresponds to a reference isotope, and isotope
shift (11) is the change of frequency of an atomic transition
between isotopes i and 0. Note that we do not need the results

TABLE IV. Parameters of formula (11) for isotope shifts in the
8s-8p and 9s-8p transitions in E120+.

Transition a b c d e

8s-8p1/2 0.0752 −197.8919 −0.9775 11.6472 2.7319
8s-8p3/2 0.0991 −253.3191 −1.2516 14.7876 3.1999
9s-8p1/2 −0.0063 12.6461 0.0711 −0.8339 −0.3028
9s-8p3/2 −0.0302 68.0734 0.3453 −3.9746 −0.7707

of nuclear calculations to do the fitting. We only need to know
a reasonable range of change of x and y in (11) for isotopes
of interest. We calculate δνi for nine points in the selected
range, x = 0, (βmax − βmin)/2, (βmax − βmin); y = 0, (Rmax −
Rmin)/2, Rmax − Rmin. Since it is always a possibility to have
a spherically symmetric nucleus in the considered range of
isotopes, it is reasonable to have β = 0 within the range.
Having δνi for nine points we then find the values of the
a, b, c, d, e parameters in (11) by least-square fitting. The
results for four transitions in E120+ are presented in Table IV.
The range of change of β and R was βmin = −0.4, βmax = 0,
Rmin = 6.22 fm, Rmax = 6.62 fm. The accuracy of the fitting
IS by (11) in our case is ∼0.1%. In the case of a large change
of nuclear parameter from one isotope to another the accuracy
for IS given by (11) can be lower.

Having formula (11) is useful because different nuclear
calculations produce significantly different nuclear parame-
ters. Using formula (11) allows one to obtain the value of IS
for any values of β and R within the considered range without
performing new atomic calculations. Note that the parame-
ters β and R can even go outside of the considered range,
but the accuracy of the predicted IS in this case would be
lower.

IV. CONCLUSIONS

We studied the effects of nuclear deformations on the field
isotope shift in SHEs. We demonstrated that making a hole
in the nuclear charge distribution and having quadrupole de-
formation can be reduced to changing nuclear skin thickness.
On the other hand, the change in skin thickness is not totally
equivalent to the change of nuclear RMS radius. There is a
small difference in energy shift of the p1/2 states compared
to states of other symmetries. With sufficiently accurate mea-
surements of the IS this difference can probably be used to
study nuclear deformations in even nuclei.

The total effect of the nuclear hole on the isotope shift is
up to ∼8%; the effect of the deformation is up to ∼20%.

We demonstrated that known formulas for the separation
of nuclear and electron variables do not work for heavy
deformed nuclei. However, in the considered examples the
ratio of isotope shifts for two atomic transitions remained
isotope independent. Therefore, the linearity of the King plot
is not broken.
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