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Dynamical Casimir effect via four- and five-photon transitions using a strongly detuned atom
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The scenario of a single-mode cavity with harmonically modulated frequency is revisited in the presence of
strongly detuned qubit or cyclic qutrit. It is found that when the qubit frequency is close to 3ν there is a peak in
the photon generation rate via four-photon transitions for the modulation frequency 4ν, where ν is the average
cavity frequency. Effective five-photon processes can occur for the modulation frequency 5ν in the presence
of a cyclic qutrit, and the corresponding transition rates exhibit series of peaks. Closed analytical description
is derived for the unitary evolution, and numeric simulations indicate the feasibility of multiphoton dynamical
Casimir effect under weak dissipation.
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I. INTRODUCTION

The problem of photon generation from vacuum in re-
sponse to fast variations of the geometry or material properties
of some resonator has been extensively studied since the
decade of 1970 [1] and became known as the dynamical
Casimir effect (DCE) (see the reviews [2–5] for details). The
main role of the resonator is to enhance the photon creation
[6,7], as DCE also takes place in free space due to nonuniform
acceleration of mirrors or dielectric bodies [8–10]. In 2012
DCE was implemented experimentally in a microwave cavity
using a Josephson metamaterial, where the cavity effective
length was modulated by external magnetic flux [11].

The mechanism responsible for the photon generation can
be understood from the paradigm of a single-mode cavity with
an externally prescribed time-dependent frequency ω(t ). As
shown in Ref. [12], within the framework of instantaneous
mode functions and the associated dynamical Fock space, the
dynamics of the cavity field can be described by the effective
Hamiltonian Ĥ/h̄ = ω(t )â†â + iχ (t )(â†2 − â2), where â and
â† are the instantaneous annihilation and creation operators
and (in the simplest case) χ = (4ω)−1dω/dt . The resulting
dynamics resembles the well known phenomenon of paramet-
ric amplification [5], namely, photon pairs are generated from
vacuum for the harmonic perturbation ω(t ) = ν + ε sin(ηt ),
where ν is the unperturbed cavity frequency, ε is the ampli-
tude, and η = 2ν is the frequency of modulation [2]. Photon
pairs can also be generated for fractional frequencies 2ν/k
due to higher harmonics (for nonmonochromatic modulation
[13]) or kth order effects (for harmonic perturbation [14]),
where k is a positive integer. Moreover, when the cavity
field is coherently coupled to other quantum subsystems (e.g.,
multilevel atom or harmonic oscillators [15–17]) photons can
be generated (or annihilated [18,19]) for several other mod-
ulation frequencies at the cost of entangling the subsystems.
In particular, it has been recently predicted that a dispersive
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cyclic qutrit [20–24] with time-dependent energy splittings
permits the generation of photons from vacuum for η ≈ ν

and η ≈ 3ν via effective one- and three-photon transitions,
respectively [25].

In this paper it is shown that photons can also be generated
from vacuum for η ≈ 4ν and η ≈ 5ν (via effective four- and
five-photon transitions) by placing into the oscillating cavity
a strongly detuned qubit and cyclic qutrit, respectively. For
brevity, these phenomena are called four- and five-photon
dynamical Casimir effects (4DCE and 5DCE), since the sta-
tionary atom remains approximately in the ground state during
the evolution. The overall behavior does not depend on the
precise dependence of χ on ω, so for simplicity it is assumed
χ = (4ω)−1dω/dt throughout the paper. The photon creation
rates are usually very small; however, it is predicted analyt-
ically and confirmed numerically that they increase orders
of magnitude in the vicinity of certain atomic frequencies,
becoming of the order 10−3ε. The analytical description of
the unitary dynamics is derived in the dressed-states basis,
and it is shown that for a constant modulation frequency the
amount of created photons is limited due to effective Kerr
nonlinearities.

This paper is organized as follows. General analytical
description of the unitary dynamics is presented in Sec. II. In
Sec. III the case of a qubit is studied in detail, and approximate
expressions for the 4DCE transition rate are derived in differ-
ent regimes of parameters. The dressed states of the cyclic
qutrit and the resonant enhancement of 5DCE are discussed
in Sec. IV. Section V presents exact numeric results on the
system dynamics for the initial vacuum state, confirming the
analytical predictions and exemplifying typical behaviors of
4DCE and 5DCE; the influence of dissipation is also briefly
discussed for the case of a qubit in Sec. V A. Finally, the
conclusions are summarized in Sec. VI.

II. GENERAL DESCRIPTION

Consider a single cavity mode with time-dependent fre-
quency ω(t ) = ν + ε sin(ηt ) that interacts with a qutrit in the
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cyclic configuration [20–24], so that all the atomic transitions
are allowed via one-photon transitions. The Hamiltonian reads

Ĥ/h̄ = ωn̂ + iχ (â†2 − â2) +
2∑

k=1

Ek σ̂k,k

+
1∑

k=0

2∑
l>k

Gk,l (â + â†)(σ̂l,k + σ̂k,l ), (1)

where â (â†) is the cavity annihilation (creation) operator and
n̂ = â†â is the photon number operator [26]. The atomic levels
are E0 ≡ 0, E1, and E2, and the corresponding states are
denoted as |k〉 and σ̂k, j ≡ |k〉〈j|; to shorten the final expres-
sions the dipole-interaction term is abbreviated as D̂k,l ≡ (â +
â†)(σ̂l,k + σ̂k,l ). The parameters Gk,l � ω denote the coupling
strengths between the atomic states |k〉 and |l〉 mediated by the
cavity field, and we employ a shorthand notation G1 ≡ G0,1,
G2 ≡ G1,2, and G3 = G0,2. Notice that the counter-rotating
terms are included in Ĥ ; otherwise, the effects presented in
this paper disappear.

For weak modulation, ε � ν, to the first order in ε one has
χ ≈ (4ν)−1εη cos ηt . For the sake of generality the coupling
strengths are also allowed to vary with time as

Gi = gi + ε̃i sin (ηt + φi ), i = 1, 2, 3, (2)

where the phases φi are arbitrary. Such time dependence may
arise from the primary mechanism of atom-field interaction, or
be input externally [27]. For example, in the case of a station-
ary qubit (when only G1 �= 0), the standard quantization in the
Coulomb gauge [28] gives G1 ∝ √

ω, so to the first order in
ε one gets φ1 = 0 and ε̃1 = g1ε/2ν. This relationship will be
used in Sec. III to illustrate the influence of eventual variation
of Gi, although the precise forms of ε̃i and φi do not affect the
qualitative behavior.

The analytical description of the dynamics is most straight-
forward when the wave function is expanded as [25,29]

|ψ (t )〉 =
∑

n

bn(t )e−itλn exp(i〈ϕn| f̂ |ϕn〉)|ϕn〉.

λn and |ϕn〉 are the eigenfrequencies and eigenstates (dressed
states) of the unperturbed Hamiltonian Ĥ0 ≡ Ĥ [ε = χ = ε̃i =
0], where the index n increases with energy. bn is the slowly

varying probability amplitude and

f̂ ≡ εn̂
cos ηt − 1

η
− (â†2 − â2)

iεη sin ηt

4ην

+
∑
k,l>k

ε̃k,l D̂k,l
cos(ηt + φk,l ) − cos φk,l

η

is an operator that will not influence the final results under the
carried assumptions. In the low-excitation regime, ε〈n̂〉 � ν,
the time evolution is given by

ḃm ≈
∑
n<m

�∗
n;meit (
nm−η)bn −

∑
n>m

�m;ne−it (
nm−η)bn, (3)

where 
nm ≡ |λn − λm| is the transition frequency between
the states ϕn and ϕm and the corresponding transition rate is

�m;n ≡ ε

2

⎡
⎣Cm;n +

∑
k,l>k

ε̃k,l exp(iφk,l )

ε
Ak,l

m;n

⎤
⎦. (4)

Thus the general problem has been reduced to evaluation of
the matrix elements

Cm;n ≡ 〈ϕm|[n̂ + (η/4ν)(â2 − â†2)]|ϕn〉,
(5)

Ak,l
m;n ≡ 〈ϕm|D̂k,l |ϕn〉,

where Cm;n (Ak,l
m;n) is the cavity’s (atom’s) contribution. It is

worth noting that under the above approximations a different
functional dependence of χ would merely modify the pref-
actor of the second term in Cm;n; likewise, a modulation of
atomic energies [25,29] would be described by an additional
matrix element in Eq. (4).

III. FOUR-PHOTON DCE WITH A QUBIT

This section focuses on the case of a qubit with the levels
{|0〉, |1〉}. During DCE the atom should remain in the same
state (the ground state, due to unavoidable relaxation pro-
cesses), so it is necessary to operate in the strong dispersive
regime: |ν − E1| � g1

√
m for all the populated cavity Fock

states |m〉. Treating the term g1D̂0,1 in Ĥ0 via perturbation the-
ory, one obtains the following (non-normalized) eigenstates
with the atom mainly in the ground state:

|ϕ0,k〉 ≈ |0, k〉 + g1|1〉
[ √

k

ν − E1
|k − 1〉 −

√
k + 1

ν + E1
|k + 1〉

]
+ g2

1

2ν
|0〉

[√
k!/(k − 2)!

ν − E1
|k − 2〉 +

√
(k + 2)!/k!

ν + E1
|k + 2〉

]

+ g3
1

2ν
|1〉

[ √
k!/(k − 3)!

(3ν − E1)(ν − E1)
|k − 3〉 −

√
(k + 3)!/k!

(3ν + E1)(ν + E1)
|k + 3〉

]

+ g4
1

8ν2
|0〉

[ √
k!/(k − 4)!

(3ν − E1)(ν − E1)
|k − 4〉 +

√
(k + 4)!/k!

(3ν + E1)(ν + E1)
|k + 4〉

]
,

where k � 0. The corresponding eigenfrequencies read

λ0,k ≈ kν + g2
1

[
k

ν−E1
− k + 1

ν + E1

]
+ g4

1

[
k

(ν−E1)2

(
k − 1

2ν
− k

ν − E1
+ k + 1

ν + E1

)
− k + 1

(ν + E1)2

(
k + 2

2ν
+ k

ν − E1
− k + 1

ν + E1

)]
.

For the modulation frequency η ≈ 4ν the cavity’s contribution to the transition rate between the states |ϕ0,k〉 and |ϕ0,k+4〉 is

C0,k;0,k+4 ≈ 3g4
1E1

√
(k + 1)(k + 2)(k + 3)(k + 4)

ν(ν − E1)(ν + E1)(3ν − E1)(3ν + E1)
. (6)
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In the dispersive regime this term describes the 4DCE whereby photons are generated in groups of four. At first sight the
transition rate is very small, being proportional to (g1/ν)4. Fortunately, Eq. (6) diverges for E1 ≈ 3ν (due to a failure of the
above perturbative expansion), giving a hope that near such three-photon resonance [30] the transition rate might have a peak.

To evaluate the matrix elements in the vicinity of E1 ≈ 3ν one reapplies the perturbation theory choosing as perturbation
g1(âσ̂0,1 + â†σ̂1,0). Now the eigenstates with the atom predominantly in the ground state read

|ϕ0,k=0〉 ≈ |0, 0〉 + 2g1

[
s2

3ν + E1 − β2
|α−

2 〉 − c2

3ν + E1 + β2
|α+

2 〉
]

+ 8
√

3β2g2
1s2c2

(3ν + E1)2 − β2
2

[
s4

7ν + E1 − β4
|α−

4 〉 − c4

7ν + E1 + β4
|α+

4 〉
]
,

|ϕ0,k>2〉 ≈ |α−
k 〉 + 2g1

[√
k + 1ck

(
sk+2|α−

k+2〉
4ν + βk − βk+2

− ck+2|α+
k+2〉

4ν + βk + βk+2

)
− √

k − 1sk

(
sk−2|α+

k−2〉
4ν − βk − βk−2

+ ck−2|α−
k−2〉

4ν − βk + βk−2

)]

+ g2
1

[√
(k + 3)(k + 1)

8βk+2ckck+2sk+2

(4ν + βk )2 − β2
k+2

(
sk+4|α−

k+4〉
8ν + βk − βk+4

− ck+4|α+
k+4〉

8ν + βk + βk+4

)

+
(

(k + 1)s2
k+2

4ν + βk − βk+2
+ (k − 1)s2

k−2

4ν − βk − βk−2
+ (k − 1)c2

k−2

4ν − βk + βk−2
+ (k + 1)c2

k+2

4ν + βk + βk+2

)
2cksk|α+

k 〉
βk

− (1 − δk,4)
√

(k − 3)(k − 1)
8βk−2sk−2ck−2sk

(4ν − βk )2 − β2
k−2

(
sk−4|α+

k−4〉
8ν − βk − βk−4

+ ck−4|α−
k−4〉

8ν − βk + βk−4

)

− δk,4
8β2s2c2s4

7ν + E1 − β4

g2
1

√
3

(4ν − β4)2 − β2
2

|0, 0〉
]
.

Here sk = sin θk , ck = cos θk , θk = arctan[(ν − E1 + βk )/2g1

√
k], βk = [(ν − E1)2 + 4g2

1k]1/2 [18], and

|α+
k 〉 ≡ sk|0, k〉 + ck|1, k − 1〉, |α−

k 〉 ≡ ck|0, k〉 − sk|1, k − 1〉.
For η ≈ 4ν the relevant matrix elements become

C0,k;0,k+4 ≈ g4
1

4ν(ν − E1)2

√
(k + 4)!

k!

[
2

1 + 8ν/(ν − E1)

4ν − βk+4 − βk+2
− 3

ν − E1
− 2

3ν
− k

4ν

]
, (7)

A0,1
0,k;0,k+4 ≈ g3

1

4ν(ν − E1)2

√
(k + 4)!

k!

[
1 − 8ν

4ν − βk+4 − βk+2

]
. (8)

So the total transition rate, Eq. (4), becomes (for the standard dipole qubit-field interaction, as explained in Sec. II)

�0,k;0,k+4 ≈ εg4
1

8ν(ν − E1)2

√
(k + 4)!

k!

[
2

8ν/(ν − E1) − 1

4ν − βk+4 − βk+2
− 3

ν − E1
− 1

6ν
− k

4ν

]
. (9)

As will be shown in Sec. V A, these expressions are sufficient to estimate the 4DCE rate in the optimum regime of parameters,
despite a singularity at 4ν = βk+4 + βk+2. This divergence occurs due to the degeneracy of the states {|α−

k+4〉, |α+
k+2〉}, and can be

removed by using the degenerate perturbation theory with unperturbed states |α−
k+4〉 ± |α+

k+2〉, which correspond approximately
to |0, k + 4〉 ± |1, k + 1〉. At the degeneracy point there are two (non-normalized) eigenstates with the dominant contribution of
the state |0, k〉, denoted as

|ϕ±
0,k〉 ≈ |α−

k 〉 ± |α+
k−2〉 + 2g1

[√
k + 1ck

(
sk+2|α−

k+2〉
4ν + βk − βk+2

− ck+2|α+
k+2〉

4ν + βk + βk+2

)

∓√
k − 1

(
sk−2ck|α+

k 〉
2βk

± ck−2sk|α−
k−2〉

4ν − βk + βk−2

)
± δk,4

c2|0, 0〉
7ν + E1 − β4

±(1 − δk,4)
√

k − 3ck−2

(
sk−4|α+

k−4〉
8ν − βk − βk−4

+ ck−4|α−
k−4〉

8ν − βk + βk−4

)]
.
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If for a given value of E1 such degeneracy occurs for the state containing |0, k + 4〉, then the state containing |0, k〉 will certainly
be nondegenerate (since βk+4 + βk+2 �= βk + βk−2). Therefore, the relevant matrix elements become

|〈ϕ0,k|(n̂ + â2 − â†2)|ϕ±
0,k+4〉| ≈ 3g1

√
k + 1

4
√

2ν
, |〈ϕ0,k|D̂0,1|ϕ±

0,k+4〉| =
√

k + 1√
2

(10)

and the upper bound for Eq. (9) is established as |�(max)
0,k;0,k+4| ≈ 5εg1

√
k + 1/(8

√
2ν).

Therefore, the effective four-photon transition between approximate states |0, k〉 and |0, k + 4〉 can be optimized by operating
in the regime when βk+4 + βk+2 is sufficiently close but not exactly equal to 4ν. The corresponding modulation frequency must
be ηk ≡ λ0,k+4 − λ0,k , where the eigenfrequencies read approximately

λ0,k=0 ≈ −2g2
1

[
c2

2

3ν + E1 + β2
+ s2

2

3ν + E1 − β2

]
,

λ0,k>2 ≈ ν(k − 1/2) + E1

2
− 1

2
βk + 2g2

1

[
s2

k (k − 1)

(
c2

k−2

4ν − βk + βk−2
+ s2

k−2

4ν − βk − βk−2

)

−c2
k (k + 1)

(
c2

k+2

4ν + βk + βk+2
+ s2

k+2

4ν + βk − βk+2

)]
.

In the vicinity of E1 ≈ 3ν one obtains

λ0,k ≈ − g2
1

4ν
+ ν

[
1 − 3g2

1

4ν2

]
k + 1

8

g4
1

ν3
k2

and the resonant modulation frequencies become

ηk ≈ 4ν

(
1 − 3g2

1

4ν2
+ g4

1

2ν4

)
+ g4

1

ν3
k. (11)

To create four photons from the initial zero-excitation state
|0, 0〉 the modulation frequency η must satisfy the condition
|η − η0| � |�0,0;0,4|. In order to simultaneously couple the
states {|ϕ0,4〉, |ϕ0,8〉} it is also necessary |η − η4| � |�0,4;0,8|,
which near 4ν = β4 + β2 requires roughly ε/ν � 10(g1/ν)3.
For a fixed value of ε, on one hand, the small ratio g1/ν is
advantageous for multiple four-photon transitions, but, on the
other hand, it lowers the transition rate, increasing the role
of dissipation and other spurious effects. Thus it seems that
the best choice is to work with moderate values of g1/ν ∼
0.05. For instance, if g1 = 0.08ν (bordering the ultrastrong
coupling regime), then multiple four-photon transitions can
take place provided ε/ν � 5 × 10−3. Therefore, for moderate
coupling strengths and ε/ν ∼ 10−2 one expects that only
the states |0, 4〉 and |0, 8〉 will be significantly populated. In
Sec. V A this prediction will be confirmed numerically.

IV. FIVE-PHOTON DCE WITH A CYCLIC QUTRIT

Now the dressed states of the complete bare Hamilto-
nian Ĥ0 must be determined. For didactic reasons only the
cavity’s modulation is considered, since the incorporation of
other modulation mechanisms does not affect the qualitative
behavior. Far from the resonances E1 ≈ lν or E2 ≈ lν with
an integer l (the exact conditions will be found shortly) the
dressed states relevant for 5DCE are |ϕ0,k〉 = (|0, k〉 + · · · )
(see [29] for the initial terms in the perturbative expansion).
After long manipulations one finds for the cavity’s matrix

element (5)

C0,k;0,k+5 ≈
√

(k + 1)(k + 2) · · · (k + 5)
g1g2g3

ν3

3∑
i=1

(gi

ν

)2
Yi,

(12)

where Yi are some complicated dimensionless functions of all
the system parameters {gi, Ej, ν}. Therefore, for g1g2g3 �= 0
and η ≈ 5ν the cavity field can be populated from vacuum
via effective five-photon transitions, but the transition rate
∼ε(g1/ν)5 is prohibitively small. To explore the possibility of
a resonant enhancement of Cm;n one starts diagonalizing the
dominant part of the unperturbed Hamiltonian: Ĥ (dom)

0 /h̄ =
νn̂ + ∑2

k=1[Ek σ̂k,k + gk (âσ̂k,k−1 + H.c.)]. Omitting the nor-
malization constants (irrelevant for the final approximate re-
sults), for n � 2 the approximate eigenstates of Ĥ (dom)

0 read

|μ0,n〉 = |0, n〉 + g1
√

n

(
s̃2

n−1

Dn−1,−
+ c̃2

n−1

Dn−1,+

)
|1, n − 1〉

+ g1
√

ns̃n−1c̃n−1β̃n−1

Dn−1,+Dn−1,−
|2, n − 2〉, (13)

|μS,n〉 = s̃n|1, n〉 + c̃n|2, n − 1〉 − g1s̃n
√

n + 1

Dn,−
|0, n + 1〉,

|μA,n〉 = c̃n|1, n〉 − s̃n|2, n − 1〉 − g1c̃n
√

n + 1

Dn,+
|0, n + 1〉,

(14)

where s̃k = sin θ̃k , c̃k = cos θ̃k , θ̃k = tan−1[(
2 + β̃k )/(2g2√
k)], β̃k =

√

2

2 + 4g2
2k, Dk,± = ν − E1 + 
2/2 ± β̃k/2,
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and 
2 ≡ ν − (E2 − E1). The corresponding eigenfrequen-
cies read

λ̃0,n = νn + g2
1n

(
s̃2

n−1

Dn−1,−
+ c̃2

n−1

Dn−1,+

)

×
[

1 − g2
1n

(
s̃2

n−1

D2
n−1,−

+ c̃2
n−1

D2
n−1,+

)]
, (15)

λ̃S,n = νn + E1 − 
2

2
+ β̃n

2
− s̃2

ng2
1(n + 1)

Dn,−

+
(

c̃2
n

βn
+ s̃2

n

Dn,−

)
s̃2

ng4
1(n + 1)2

D2
n,−

,

λ̃A,n = νn + E1 − 
2

2
− β̃n

2
− c̃2

ng2
1(n + 1)

Dn,+

−
(

s̃2
n

βn
− c̃2

n

Dn,+

)
c̃2

ng4
1(n + 1)2

D2
n,+

. (16)

The true eigenstates of Ĥ0 can now be obtained by ap-
plying the perturbation theory with the perturbation V̂ =
Ĥ0 − Ĥ (dom)

0 . The matrix elements Cm;n between the dressed
states with the atom predominantly in the ground state |0〉
will exhibit resonant peaks when the perturbative corrections
to the eigenstate (13) have poles. This takes place when
λ̃0,n = λ̃S,n−l or λ̃0,n = λ̃A,n−l . The case l = 1 corresponds
to the standard one-photon resonance E1 ≈ ν, which is not
suitable for 5DCE due to a significant excitation of the atom.
Hence the regions of resonant enhancement of the transition
rate between the approximate states |0, 0〉 and |0, n〉 lie in
the vicinity of the constraints λ̃0,n = λ̃S,n−l or λ̃0,n = λ̃A,n−l

with l � 2. To benefit from such resonant enhancement while
maintaining the atom in the ground state it is necessary to
operate in the tail regions of the peaks, where the transition
rate decreases by roughly one order of magnitude. Hence
one can quantify the strength of 5DCE by calculating the
peak values of C0,k;0,k+5. At the exact resonances the (non-
normalized) dressed states of the Hamiltonian Ĥ0 become∣∣�(S/A)

±,n,l

〉 = |μ0,n〉 ± |μS/A,n−l〉√
2

+ ∣∣δ�(S/A)
±,n,l

〉
, (17)

where |δ�(S/A)
±,n,l〉 can be found from the nondegenerate

perturbation theory [since (〈μ0,n| − 〈μS/A,n−l |)V̂ (|μ0,n〉 +
|μS/A,n−l ) = 0]. For the resonance λ̃0,5 = λ̃S,5−l (neglecting
the small corrections in the eigenfrequencies due to V̂ ) the
maximum value of the five-photon matrix element is

C(max)
0,0;0,5 = 5g1β̃1c̃1s̃1c̃3

36ν2
for l = 2, (18)

C(max)
0,0;0,5 = g3c̃2√

2

[
s̃2

2

(
1

5ν−β̃2
− 2

5ν

)
− c̃2

2

5ν
+ 5

6ν

]
, l = 3,

(19)

C(max)
0,0;0,5 = g1s̃1√

2

[
5

6ν
− s̃2

1

5ν
− c̃2

1

5ν − β̃1

]
, l = 4. (20)

For the resonance λ̃0,5 = λ̃A,5−l one obtains

C(max)
0,0;0,5 = 5g1β̃1c̃1s̃1s̃3

36ν2
for l = 2, (21)

C(max)
0,0;0,5 = g3s̃2√

2

[
c̃2

2

(
1

5ν + β̃2
− 2

5ν

)
− s̃2

2

5ν
+ 5

6ν

]
, l = 3,

(22)

C(max)
0,0;0,5 = g1c̃1√

2

[
5

6ν
− c̃2

1

5ν
− s̃2

1

5ν + β̃1

]
, l = 4. (23)

It will be shown in the next section that these simple ex-
pressions are in excellent agreement with the exact numeric
results. In a similar manner one can obtain the maximum
values of other matrix elements, which are omitted here for
the sake of space.

Finally, it is worth mentioning that the modulation of
the cavity frequency in the presence of a cyclic qutrit also
allows for 3DCE (when η ≈ 3ν) via approximate transitions
|0, k〉 → |0, k + 3〉 (3DCE was originally predicted for the
modulation of atomic energy levels in a stationary cavity
[25]). For the photon generation from vacuum, the resonant
enhancement of the transition rate occurs in the vicinity of
λ̃0,3 = λ̃S/A,1, and the corresponding maximum values of the
matrix elements read

C(max)
0,0;0,3 = g1s̃1√

2

(
3

2ν
− s̃2

1

3ν
− c̃2

1

3ν − β̃1

)
for λ̃0,3 = λ̃S,1,

C(max)
0,0;0,3 = g1c̃1√

2

(
3

2ν
− c̃2

1

3ν
− s̃2

1

3ν + β̃1

)
for λ̃0,3 = λ̃A,1.

It is remarkable that by carefully adjusting the atomic fre-
quencies {E1, E2} in the far-detuned regime (E1 > 2ν), the
optimum transition rates of 5DCE can become comparable to
the typical 3DCE rates.

V. NUMERIC RESULTS

This section is devoted to the numeric evaluation of the
system dynamics according to the complete Hamiltonian (1)
for the initial state |0, 0〉. For simplicity it is assumed that
the atomic coupling strengths are time independent, ε̃i = 0.
This does not lessen the generality of the discussion, since the
formulas (4), (8), and (10) suggest that additional modulation
mechanisms do merely modify the transition rate. Hence the
determination of the dynamics under the sole modulation of
ω(t ) is primordial for further studies considering arbitrary
modulations of Gi(t ) (the relationship between Gi and other
parameters largely depends on the concrete implementation
of the atom-cavity system). In all the subsequent simulations
it is assumed χ = (4ω)−1dω/dt and ε = 3 × 10−2ν.

A. Four-photon DCE

First we analyze the qubit with a realistic [24] coupling
strength g1 = 0.08ν. The behavior of the two lowest matrix
elements C4 ≡ |C0,0;0,4| and C8 ≡ |C0,4;0,8| as a function of
the qubit’s frequency is shown in Figs. 1(a) and 1(b). The
exact values (solid lines) were obtained through numeric
diagonalization of the Hamiltonian Ĥ0. Blue circles stand for
the analytical formula (6) valid far from the three-photon reso-
nance E1 ≈ 3ν and the red triangles correspond to the expres-
sions (7) and (10) applicable near this resonance. Although
the perturbative approach is questionable for the assumed
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2.8 3.0 3.2 3.4
10-4

10-3

10-2
exact numeric
Eqs. (6) and (9)
Eq. (5)

C4

E1/ν

(a)

2.8 3.0 3.2 3.4

10-3

10-2

10-1
C8

(b)

E1/ν

2.90 2.92 2.94 2.96 2.98 3.00
0.4
0.6
0.8
1.0

Φ8

(c)

E1/ν

Φ4

FIG. 1. (a) Matrix element C4 as function of the qubit’s fre-
quency. Solid line represents the exact numeric evaluation; red
triangles correspond to approximate analytic expressions (7) and (10)
valid near the three-photon resonance E1 ≈ 3ν; blue circles depict
Eq. (6) valid far from E1 ≈ 3ν. (b) Matrix element C8. (c) Exact
numeric evaluation of the fidelity �m ≡ |〈0, m|ϕ0,m〉|2 for m = 4
and 8.

large ratio g1/ν, there is a good agreement between exact
and approximate results. The main quantitative discrepancy
is a slight displacement in the location of the three-photon
resonances, expected analytically for 4ν = βk+4 + βk+2.
Figure 1(c) presents the exact results for the fidelity �m ≡
|〈0, m|ϕ0,m〉|2 that measures the weight of the state |0, m〉 in
the dressed-state |ϕ0,m〉, for m = 4 and 8. As expected, in
the strong dispersive regime �m = 1/2 at the three-photon
resonances and �m ≈ 1 otherwise. This confirms that near
E1 ≈ 3ν it is possible to implement 4DCE with the vacuum
transition rate |�0,0;0,4| � 10−2εg1/ν.

Figure 2(a) illustrates the unitary dynamics for parameters
E1 = 2.968ν and η = 3.9819ν, obtained by solving numer-
ically the Schrödinger equation. 〈n〉 is the average photon
number, Pa(k) is the population of the atomic level |k〉,
and Q = [〈(
n)2〉 − 〈n〉]/〈n〉 is Mandel’s factor of the cavity
field. Several photons are generated from vacuum via effective
four-photon transitions, while the qubit remains mainly in the
ground state. At certain times the Q factor becomes negative,
implying sub-Poissonian field statistics, while at other times
it can assume large ratios, Q/〈n〉 ∼ 10. Such behavior is
easily understood by looking at the evolution of the field
in the Fock basis. The largest photon-number probabilities
p(m) = Tr[|m〉〈m|ρ̂] are displayed in Fig. 2(c), where ρ̂ is
the total density operator. Q < 0 corresponds to the system
approximately in the state |0, 8〉, while the case Q � 〈n〉
occurs when the state |0, 0〉 dominates but there are small pop-
ulations of states |0, 8〉 and |1, 1〉. The denomination “four-
photon dynamical Casimir effect” (4DCE) seems appropriate
to describe this phenomenon, since only the states |0, 4〉,
|0, 8〉, and |0, 12〉 become significantly populated, although

0 5 10 15
0

2

4

6

8

Pa(0)

Q<n>

(c)

(b)

10-4 νt

(a)

0 5 10 15
0

2

4

6

10-4 νt

<n>

Q Pa(0)

0 5 10 15
0.0

0.2

0.4

0.6

0.8

p(12)
p(1)

p(4)

10-4 νt

p(8)

FIG. 2. (a) Unitary dynamics of 4DCE for parameters E1 =
2.968ν and η = 3.9819ν. (b) Dynamics in the presence of weak
Markovian dissipation. (c) Behavior of the most populated cavity
Fock states under unitary evolution.

the population of the state |0, 12〉 is quite low due to the
effective Kerr nonlinearity [last term in Eq. (11)]. Due to the
proximity to three-photon resonance, there is also a slight
occupation of the near-degenerate state |1, 1〉, as seen from
the low-amplitude oscillations of Pa(0) and p(1).

One can grasp the main qualitative effects of weak dissi-
pation by solving numerically the phenomenological master
equation at zero temperature [31] (see Refs. [18,32] for the
discussion on its validity in similar situations)

ρ̇ = 1

ih̄
[Ĥ, ρ̂] + κL[â] + γL[σ̂0,1] + γφ

2
L[σ̂z].

Here σ̂z ≡ σ̂1,1 − σ̂0,0, L[Ô] ≡ Ôρ̂Ô† − Ô†Ôρ̂/2 − ρ̂Ô†Ô/2
is the Lindblad superoperator, κ is the cavity relaxation rate,
and γ (γφ) is the atomic relaxation (pure dephasing) rate.
Figure 2(b) illustrates the behavior of 〈n〉, Q, and Pa(0) for
feasible [33,34] dissipative parameters γ = γφ = 5 × 10−4g1

and κ = 10−4g1. The main message is that several photons
can still be generated from vacuum and for initial times the
dissipative behavior closely resembles the unitary one. For
large times the cavity relaxation leads to excitation of all
the Fock states with m � 10, so it is not surprising that the
behavior is altered drastically.

As was shown in Fig. 1, minor changes of E1 in the vicinity
of three-photon resonance strongly affect the transition rates.
This feature is illustrated in Fig. 3, where the parameters of
Fig. 2 were slightly changed to E1 = 2.99ν and η = 3. 9821ν.
The new behavior is completely different: only the states
|0, 0〉 and |0, 4〉 become significantly populated throughout
the evolution; p(8) attains at most 0.04 (making the maximum
value of 〈n〉 slightly larger than 4), and all other populations
are even smaller. The photon creation is slower than in Fig. 2;
nonetheless, the phenomenon can still occur in the presence
of weak dissipation.

B. Five-photon DCE

At last the cyclic qutrit is investigated, assuming cou-
pling strengths g1 = 6 × 10−2ν, g2 = 8 × 10−2ν, and g3 =
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FIG. 3. (a) Average photon number with and without dissipation
for parameters E1 = 2.99ν and η = 3. 9821ν. (b) Ground-state popu-
lation of the qubit, Pa(0), and the largest photon number probabilities
p(k) during unitary evolution.

4 × 10−2ν. Figure 4(a) displays the matrix elements C3 ≡
|C0,0;0,3|, C5 ≡ |C0,0;0,5|, and C10 ≡ |C0,5;0,10| as functions of
E1/ν for 
2 = 0 (for other values of 
2 the behavior is
qualitatively similar). The dressed states |ϕ0,m〉 (which contain
the largest contribution of the state |0, m〉) were obtained
via exact numeric diagonalization of the Hamiltonian Ĥ0. As
predicted in Sec. IV, the vacuum transition rate for 5DCE
(C5) is usually two orders of magnitude smaller than for
3DCE (C3). However, near certain atomic frequencies there
is a resonant enhancement of the transition rate, and 5DCE
becomes almost as strong as 3DCE. Figure 4(b) shows the
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FIG. 4. (a) Matrix elements Cm as function of E1/ν for 
2 = 0.
(b) Fidelities �m for 
2 = 0. (c) Peak values C (max)

5 as function of

2/ν, where {S/A, l} denotes the condition λ̃0,5 = λ̃S/A,5−l . Thick
(thin) lines describe the numeric (analytic) results. (d) Values of
E (res)

1 /ν (for which C5 is maximum) as function of 
2.
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FIG. 5. (a) 5DCE for parameters E1 = 3.105ν, E2 = 4.08ν, and
η = 4.9842ν. In the left panel the scale for 〈n〉 and Q is on the left
axis, while the scale for 1 − Pa(0) is on the right axis. The right panel
depicts the most populated cavity Fock states. (b) Similar analysis for
E1 = 2.2ν, E2 = 3.05ν, and η = 4. 9732ν, when at most five photons
are created.

fidelities �m for m = 3, 5, and 10. As expected, as long
as one stays far from E1 ≈ ν and slightly off the resonance
conditions λ̃0,n = λ̃S/A,n−l , the fidelities are very close to 1,
allowing for the resonant enhancement of the transition rate
without significantly exciting the atom. It is also worth noting
that the linewidths of the peaks of Cm become narrower as
E1 increases, requiring high-precision tuning of the atomic
energy levels in addition to the modulation frequency.

Figure 4(c) illustrates how the peak value C(max)
5 (associ-

ated with 5DCE from vacuum) scales with 
2/ν, where the
atomic energy E1 was adjusted according to the requirement
λ̃0,5 = λ̃S/A,5−l for l = 3 and 4, denoted by the pair of indexes
{S/A, l} [the case l = 2 is not shown since the corresponding
rate is one order of magnitude smaller, in agreement with
Eqs. (18) and (21)]. Black thick lines denote the exact numeric
results, and the thin lines correspond to Eqs. (19)–(23). The
agreement is excellent, and one can see that for the chosen pa-
rameters the optimum transition rates occur for |
2| � 0.2ν.
Finally, Fig. 4(d) illustrates the dependence of the resonant
value E (res)

1 that maximizes C5 as function of 
2/ν. Analytic
results (thin lines) correspond to Eqs. (15) and (16), and are
in excellent agreement with the exact numeric results (thick
black lines).

Actual examples of unitary dynamics are illustrated in
Fig. 5, as obtained via numeric solution of the Schrödinger
equation. In panel 5(a) the parameters are E1 = 3.105ν, E2 =
4.08ν, and η = 4. 9842ν. The plotted quantities are 〈n〉, Q,
1 − Pa(0), and the most populated cavity Fock states. Both
p(1) and p(2) are very small and have the same order of
magnitude, so the quantity p(1) + p(2) is plotted instead. In
agreement with Eq. (17), p(1) + p(2) almost coincides with
1 − Pa(0), since at the resonance the states |0, 5〉, |1, 2〉, and
|2, 1〉 are nearly degenerate. The most populated states are
|0, 5〉 and |0, 10〉, with other states |0, 5k〉 almost unpopulated
due to the mismatch between the modulation frequency η

and (λ0,5k − λ0,5k−5) for k > 2. In Fig. 5(b) similar analysis
is carried out for E1 = 2.2ν, E2 = 3.05ν, and η = 4. 9732ν.
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Now at most five photons are created from vacuum, but due
to the proximity to the resonance peak of C5 the states |1, 3〉
and |2, 2〉 also become populated, which explains why 〈n〉
never attains the value five and why Pa(1) and Pa(2) deviate
significantly from zero.

VI. CONCLUSIONS

The problem of a single-mode cavity with harmonically
modulated frequency was revisited in the presence of a qubit
or a cyclic qutrit. It was found analytically that the counter-
rotating terms in the light-matter interaction Hamiltonian al-
low for photon generation from vacuum via effective four- and
five-photon processes for qubit and cyclic qutrit, respectively,
while the atom remains approximately in the ground state.
Usually the associated transition rates are very small, but they
undergo a resonant enhancement by orders of magnitude in
the strong dispersive regime near certain atomic frequencies.

For the qubit such resonance occurs near E1 ≈ 3ν, while for
the qutrit there are six resonance conditions that depend on
both E1 and E2. Due to the effective Kerr nonlinearity, only
a limited number of photons can be generated for a constant
modulation frequency. Besides, dissipation alters drastically
the dynamics after some time due to the population of cavity
Fock states forbidden by unitary evolution. Nonetheless, for
weak dissipation and sufficiently strong modulation ampli-
tude, ε/ν � 10−3, four- and five-photon DCE could be im-
plemented experimentally for modulation frequencies η ≈ 4ν

and η ≈ 5ν, respectively.
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