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The direct variational determination of the two-electron reduced-density matrix (2-RDM) corresponding to
an atomic or molecular system is usually carried out in a basis of real-valued atom-centered Gaussian basis
functions, under the assumption that the 2-RDM is a real-valued quantity. However, for systems that possess
orbital angular momentum symmetry, the description of states with a well-defined, nonzero z projection of the
orbital angular momentum requires a computational framework generalized to include either complex basis
functions or a complex-valued 2-RDM. We consider a semidefinite program suitable for the direct optimization
of a complex-valued 2-RDM and explore the role of orbital angular momentum constraints in systems that
possess the relevant symmetries. For atomic systems, constraints on the expectation values of the square and z
projection of the orbital angular momentum operator allow one to optimize 2-RDMs for multiple orbital angular
momentum states. Similarly, in linear molecules, orbital angular momentum projection constraints enable the
description of multiple electronic states and, moreover, the application of such constraints is essential for a
qualitatively correct description of the electronic structure. For example, in the case of molecular oxygen, we
demonstrate that orbital angular momentum constraints are necessary to recover the correct energy ordering of
the lowest-energy singlet and triplet states near the equilibrium geometry. However, care must still be taken in
the description of the dissociation limit, because the 2-RDM-based approach is not size consistent, and the size-
consistency error varies dramatically, depending on the z projections of the spin and orbital angular momenta.
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I. INTRODUCTION

It has long been understood that the direct variational
determination of the elements of the two-electron reduced-
density matrix (2-RDM) is a desirable prospect [1–3]. The
2-RDM affords a much more compact representation of the
electronic structure than is offered by the N-electron wave
function and, yet, it contains sufficient information to exactly
specify the electronic energy for any many-electron system.
Hence, the wave function can, in principle, be supplanted
by the 2-RDM in variational calculations, provided that the
space of 2-RDMs over which the optimization is performed
is restricted to contain only those that derive from antisym-
metrized N-electron wave functions. Such 2-RDMs are said
to be N-representable [4]. One of the strengths of 2-RDM-
based methods is that they are naturally multiconfigurational
and can thus be applied to multireference or strongly cor-
related electronic-structure problems. Indeed, variational 2-
RDM (v2RDM) approaches [5–19] that enforce necessary en-
semble N-representability conditions [14,20,21] can be used
to realize a polynomially scaling approximation [22,23] to
complete active space self-consistent field (CASSCF) the-
ory [24–27] that is applicable to active spaces composed of
as many as 64 electrons in 64 orbitals [28], which is well
beyond the limits of what can be considered when using a
full-configuration-interaction-driven CASSCF algorithm. The
v2RDM-driven CASSCF approach has been applied to a vari-
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ety of challenging chemical systems, including one- and two-
dimensional graphene nanoribbons [28,29], nitrogenase co-
factor (FeMoco) [30], cadmium telluride polymers [31], and
transition-metal complexes with noninnocent ligands [32,33].

Such nice properties notwithstanding, v2RDM approaches
suffer from a number of well-known issues that limit their
application to general quantum chemical problems. For ex-
ample, the methods sometimes dissociate molecules into frac-
tionally charged species [34–36]. The source of this error
is the lack of a derivative discontinuity in the energy when
considering fractionally charged atoms; the same issue arises
within density functional theory (DFT) [37]. Second, the
direct application of the v2RDM approach to excited states is
an outstanding problem. Spin-symmetry constraints give one
access to multiple (lowest-energy) spin states but, even then,
one cannot reliably compare states that have the same total
spin angular momentum but different z projections, as known
N-representability conditions do not constrain the 2-RDMs
representing these states equally [38]. The next logical step
would be the application of spatial symmetry constraints to
differentiate electronic states. However, this strategy cannot
be easily realized within the v2RDM framework because
the irreducible representation of the state is an N-electron
property, the evaluation of which requires knowledge of the
N-electron reduced-density matrix.

This work aims to at least partially address this last defi-
ciency of the v2RDM approach. In systems possessing well-
defined orbital angular momentum symmetry (i.e., atoms and
linear molecules), the application of appropriate orbital an-
gular momentum constraints allows for the direct description
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of multiple electronic states with different spatial symme-
tries. In a basis of real-valued atom-centered Gaussian basis
functions, the application of v2RDM techniques to atomic
states with nonzero magnitude and z projection of the orbital
angular momentum requires the consideration of complex-
valued reduced-density matrices (RDMs). While atomic states
with nonzero magnitude and zero z projection of the or-
bital angular momentum can be described with real-valued
RDMs, we show that the quality of the energy is inferior
to that corresponding to nonzero z-projection states. This
behavior is reminiscent of that observed for different spin-
angular-momentum–projection states in Ref. [38]. For linear
molecular systems, we demonstrate that angular-momentum
constraints and complex RDMs can be necessary for even a
qualitatively correct description of the electronic structure;
for example, in a correlation-consistent polarized valence
double-zeta (cc-pVDZ) [39] basis set, a real-valued v2RDM
computation incorrectly predicts that the lowest-energy state
of molecular oxygen is a singlet.

This paper is organized as follows: Section II outlines
the general procedure for the direct determination of the
2-RDM under ensemble N-representability conditions and
describes how one can incorporate orbital angular momentum
constraints into the optimization. Section III then provides
some of the technical details of our computations. We explore
the role of orbital angular momentum constraints in atomic
and linear molecular systems in Sec. IV, and some concluding
remarks are provided in Sec. V.

II. THEORY

A. The variational optimization of the two-electron
reduced-density matrix

The electronic energy of a many-electron system is a
linear functional of the one-electron reduced-density matrix
(1-RDM) and the 2-RDM:

E = 1

2

∑
pqrs

(2Dpαqα

rαsα
+ 2D

pαqβ

rαsβ
+ 2D

pβ qα

rβ sα
+ 2D

pβ qβ

rβ sβ

)
(pr|qs)

+
∑

pq

(
1Dpα

qα
+ 1Dpβ

qβ

)
hpq. (1)

Here, (pr|qs) represents a two-electron repulsion integral, hpq

represents the sum of the one-electron kinetic energy and
electron-nuclear potential-energy integrals, and the summa-
tion indices run over all spatial orbitals. The 1-RDM and
2-RDM can be expressed in second-quantized notation as

1Dpσ

qσ
= 〈�|â†

pσ
âqσ

|�〉, (2)

and

2Dpσ qτ

rσ sτ
= 〈�|â†

pσ
â†

qτ
âsτ

ârσ
|�〉, (3)

respectively, where â† (â) represents a fermionic creation (an-
nihilation) operator, and, throughout this work, Greek labels
(with the exception of ξ ) represent either α or β spin. The 1-
and 2-RDM can be determined directly via the minimization
of Eq. (1) with respect to variations in their elements, provided
that the optimization is constrained such that it considers

only those reduced-density matrices (RDMs) that are deriv-
able from an ensemble of antisymmetrized N-electron wave
functions. In practical computations, we can only reasonably
enforce approximate N-representability conditions, and the
resulting energy is thus a lower-bound to the exact [full
configuration interaction (CI)] energy within the relevant basis
set. In this work, we consider the two-particle (“PQG”) N-
representability constraints of Garrod and Percus [20].

Because we are concerned with nonrelativistic Hamiltoni-
ans, we also enforce constraints on the spin structure of the
1- and 2-RDM. For example, the total spin of the system is
related to an off-diagonal trace of the 2-RDM [40,41],∑

pq

2Dpαqβ

qα pβ
= 1

2
(Nα + Nβ ) + M2

S − S(S + 1), (4)

where S and MS represent the total spin and spin-projection
quantum numbers, respectively. In addition, in all computa-
tions presented herein, the RDMs are constrained to represent
maximal spin-projection states, as it has been demonstrated
that such states are better described than other spin-projection
states by v2RDM methods [38]. Maximal spin-projection
states must satisfy

Ŝ+|�〉 = 0, (5)

where Ŝ+ represents a spin-angular-momentum raising oper-
ator. Equation (5) implies a weaker set of constraints of the
form [38]

∀ rβ, sα : 〈�|â†
rβ

âsα
Ŝ+|�〉 = 0, (6)

which can be expressed in terms of the one-particle one-hole
RDM (2G)

∀ rβ, sα :
∑

p

2Grβ sα

pβ pα
= 0, (7)

whose elements are given by

2Gpσ qτ

rλsμ
= 〈�|â†

pσ
âqτ

â†
sμ

ârλ
|�〉. (8)

Similarly, the adjoint of the raising operator acting on the bra
space also annihilates the state, giving rise to a complementary
set of constraints:

∀ rβ, sα :
∑

p

2Gpβ pα

rβ sα
= 0. (9)

Note that Eq. (9) will automatically be satisfied if the RDMs
are Hermitian and Eq. (7) is satisfied.

The direct variational optimization of the 1- and 2-RDM
subject to the constraints outlined above constitutes a semidef-
inite programming (SDP) problem. We solve this problem
by using a modified boundary-point SDP algorithm [42–44]
similar to that described in Ref. [23]. As discussed below,
the introduction of orbital angular momentum constraints
requires that the boundary-point algorithm be generalized to
treat complex RDMs.

B. Orbital angular momentum constraints

Consider the Hamiltonian for an atomic many-electron sys-
tem. At the nonrelativistic limit, the operators corresponding
to the square of the orbital angular momentum (L̂2) and its
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projection onto the z axis (L̂z) commute with this Hamiltonian.
Hence, RDMs corresponding to good orbital angular mo-
mentum states should satisfy additional equality constraints,
including

〈�|L̂2|�〉 = L(L + 1), (10)

and

〈�|L̂z|�〉 = ML, (11)

where L and ML represent the total orbital angular momentum
and orbital angular momentum projection quantum numbers,
respectively. These constraints can be expressed in terms of
the elements of the 1- and 2-RDM as∑

ξ=x,y,z

(∑
στ

∑
pqrs

2Dpσ rτ

qσ sτ
[Lξ ]p

q[Lξ ]r
s +

∑
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[
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]p

q

)

= L(L + 1), (12)

and ∑
σ

∑
pq

1Dpσ

qσ
[Lz]

p
q = ML. (13)

Here, [Lξ ]p
q represents a matrix element of the ξ component

of the angular-momentum operator L̂ξ , and [L2
ξ ]p

q represents a
matrix element of the one-electron component of the square of
the ξ component of the angular-momentum operator L̂2

ξ , i.e.,
the second term on the right-hand side of

L̂2
ξ =

∑
i �= j

L̂ξ (i)L̂ξ ( j) +
∑

i

L̂ξ (i)L̂ξ (i), (14)

where the labels i and j refer to electron coordinates.
A 1-RDM that satisfies Eq. (13) is not guaranteed to

represent a wave function that is an eigenfunction of L̂z.
Accordingly, we also consider a constraint on the variance
in L̂z, (	Lz )2 = 〈L̂2

z 〉 − 〈L̂z〉2, which can be evaluated with
knowledge of the 2-RDM as

(	Lz )2 =
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στ

∑
pqrs

2Dpσ rτ

qσ sτ
[Lz]

p
q[Lz]

r
s

+
∑

σ

∑
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qσ

[
L2

z

]p

q − M2
L . (15)

Here, we have assumed that the 1-RDM satisfies Eq. (13)
and, thus, 〈L̂z〉2 = M2

L . Similar arguments could be made for
RDMs that satisfy Eq. (12), so a constraint on the variance of
L̂2, (	L2)2 = 〈L̂4〉 − 〈L̂2〉2, might also be desirable. However,
the evaluation of this quantity requires knowledge of the
four-particle RDM, so this constraint will not be considered
in this work. We also note that we could consider additional
projection constraints of the form

∀ pσ , qσ : 〈�|â†
pσ

âqσ
L̂z|�〉 = ML

1Dpσ

qσ
, (16)

which are similar to the angular-momentum constraints ap-
plied by Rothman and Mazziotti [45] within a v2RDM-based
description of model two-dimensional quantum dots. How-
ever, in a finite one-electron basis set, such constraints are
incompatible with the variance constraint of Eq. (15) and are
thus not applied in the present work. The reader is referred
to the Appendix for a proof of the inconsistency of these
conditions.

Since the angular-momentum operator is pure imaginary,
the RDMs that enter our computations can only represent
states with nonzero ML if they are allowed to take on com-
plex values. Although the boundary-point SDP algorithm was
initially defined by using real matrices, its extension to the
optimization of complex and even quaternion matrices is a
purely technical challenge [46,47]. Realizing that the field of
complex matrices, M, is isomorphic to the field of 2 × 2 real
matrices of the form

Re(M) + iIm(M) �
[

Re(M) −Im(M)
Im(M) Re(M)

]
, (17)

one can map the complex SDP programming problem to a real
one with RDMs of twice the original dimension and, thus,
a conventional SDP algorithm can be applied. Indeed, this
strategy has been realized previously within the framework
of variational 2RDM theory in applications to molecular
conductivity [48] and RDM reconstruction for quantum to-
mography [49].

As discussed in Refs. [23,44], the boundary-point SDP
solver for the v2RDM problem is a two-step procedure. In
the first step, the dual solution to the SDP (y) is updated by
solving

AAT y = A(c − z) + t (b − Ax) (18)

using conjugate gradient techniques. Here, x represents the
primal solution vector (which maps onto the RDMs), y and
z represent dual solution vectors, c represents a vector con-
taining the one- and two-electron integrals that define the
quantum system, and A and b represent the constraint matrix
and vector, respectively, which encode the N-representability
conditions. The symbol t represents a penalty parameter. In
the second step, the primal solution x and the secondary dual
solution z are updated via the solution of an eigenvalue prob-
lem. The rate-limiting step in this algorithm is the latter one,
and its computational cost increases with the third power of
the dimension of the RDMs. As such, expanding the complex
RDMs as is done in Eq. (17) will increase the number of
floating-point operations required by the boundary-point SDP
algorithm by a factor of eight.

We have performed numerical tests to determine the rel-
ative efficiency of real symmetric (DSYEV) and complex
Hermitian (ZHEEV) eigensolvers. The wall time required to
diagonalize a complex matrix of dimension 4000 is roughly
30% of that required for the diagonalization of a real sym-
metric matrix of twice the dimension when using Intel’s MKL
library and one core of an Intel Core i7-6850K CPU. Hence,
we elect to retain the use of complex RDMs and modify
the boundary-point solver accordingly. The only substantive
change is that the number of coupled linear equations repre-
sented by Eq. (18) increases by a factor of two; one set of
equations is used to update Re(y), while the other determines
Im(y). Because the constraints we consider do not directly
couple the real and imaginary components of the RDMs, these
equations can be solved independently.

III. COMPUTATIONAL DETAILS

The boundary-point SDP solver for the complex v2RDM
problem was implemented as a plug-in to the PSI4 electronic
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TABLE I. Energy differences (eV) between ground and excited
spin and orbital angular momentum states calculated by at the
v2RDMa and full CI levels of theory. The lack of numerical data
under the “real” heading indicates that the excited state in question
is not accessible by v2RDM methods without considering angular-
momentum symmetry.

Atom Transition Real L2 Lz Full CI

Be 1S → 3P 2.75 2.75 2.75 2.75
B 2P → 4P 3.56 3.56 3.52 3.51
C 3P → 1D 0.86 1.18 1.44 1.49
C 3P → 1S 2.80 2.68 2.93
C 3P → 5S 4.11 4.10 3.98 3.93
N 4S → 2D 1.75 2.07 2.57 2.72
N 4S → 2P 2.92 3.40b 3.31
N 4S → 4P 5.46 11.24 11.24
O 3P → 1D 1.57 1.71 2.03 2.14
O 3P → 1S 4.28 3.82 4.30
F 2P → 4P 34.96 34.97 35.00b 35.00

aFor values labeled as “real,” the specification of the spin angular
momentum state is meaningful, while the specification of the orbital
angular momentum state is not.
bLoose convergence criteria were employed (εgap < 5.6 × 10−4

hartree and εerror < 4.4 × 10−6).

structure package [50]. Optimized RDMs obtained from this
plug-in satisfied the PQG N-representability conditions and
the spin-angular-momentum constraints outlined in Sec. II.
Energies from v2RDM computations were compared with
those from full CI and multireference CI (MRCISD + Q)
computations performed with the PSI4 and ORCA [51] pack-
ages, respectively. All orbitals were considered active within
all v2RDM and full CI computations, while the reference
computations for MRCISD + Q considered only full valence
active spaces. All computations on atomic systems employed
the cc-pVDZ basis set, while linear molecular systems were
described by the STO-3G [52], Dunning-Hay double zeta
(D95V) [53], 6-31G* [54–56], and cc-pVDZ basis sets; the
reader is referred to Sec. IV B for additional details.

For atomic systems, the v2RDM procedure was consid-
ered converged when εerror < 1.0 × 10−5 and εgap < 1.0 ×
10−4 hartree, with the exception of two cases identified in
Table I for which the convergence were achieved at least at
εerror < 4.4 × 10−6 and εgap < 5.6 × 10−4 hartree. Here, εerror

refers to the maximum of the primal error (||Ax − b||) and
dual error (||AT y − c + z||), and the gap between the primal
and dual energies εgap is defined as |xT c − bT y|. For linear
molecular systems, the v2RDM procedure was considered
converged when εerror < 1.0 × 10−4 and εgap < 1.0 × 10−4

hartree, with the exception of several calculations used to
produce Figs. 3 and 6. The most challenging calculation
could only be converged to εerror < 1.4 × 10−5 and εgap <

2.0 × 10−3 hartree, and six other calculations were converged
to at least εerror < 9.0 × 10−6 and εgap < 9.3 × 10−4 hartree.
The reader is referred to the Supplemental Material [57] for
additional details.

All v2RDM computations exploited the block structure
of the RDMs resulting from spin and abelian point-group
symmetry considerations, but it should be noted that the point

TABLE II. Designation of the v2RDM computations on atomic
systems according to the complexity of the RDMs and the orbital
angular momentum constraints enforced.

Designation RDM complexity Constraints enforced

Real Real
Complex Complex
L2 Complex 〈L̂2〉
Lz Complex 〈L̂2〉, 〈L̂z〉
(	Lz )2 Complex 〈L̂2〉, 〈L̂z〉, (	Lz )2

group was chosen in each case such all operators belonged to
the totally symmetric irreducible representation. Hence, com-
putations in which we constrained the expectation values of L̂z

were performed within the C2h point group, and computations
in which we constrained the expectation value of L̂2 were
performed within the Ci point group.

The orbital angular momentum constraints outlined in
Sec. II B involve molecular integrals that do not usually arise
in quantum chemical energy calculations. The molecular in-
tegrals over the orbital angular momentum operator, L̂z, were
obtained from the standard molecular integral library in PSI4.
On the other hand, the integrals over the square of the angular-
momentum operator are not implemented in this package. We
evaluated integrals of the form [L2

ξ ]p
q = 〈χp|L̂2

ξ |χq〉 numeri-
cally, where ξ ∈ {x, y, z}, and χp represents an atomic basis
function. Numerical integrals were evaluated on the same
quadrature grids employed with DFT computations in PSI4.
We use the Lebedev-Trueutler (75,302) grid, which is the
default grid for all DFT computations in PSI4.

IV. RESULTS AND DISCUSSION

In this section, we numerically evaluate the effects of or-
bital angular momentum constraints in v2RDM computations
on systems with well-defined orbital angular momentum sym-
metry. Table II provides the designations used to describe the
constraints applied in calculations on atomic systems, as well
as the complexity of the RDMs. Note that the consideration
of L̂2 symmetry does not require the use of complex RDMs,
but L2 computations were performed by using our complex-
valued v2RDM algorithm nonetheless.

A. Atomic systems

Figure 1 illustrates the errors in the ground-state energies
of second-row atoms computed at the v2RDM level of theory,
relative to energies obtained from full CI computations. First,
as a technical note, the error incurred when using complex-
and real-valued RDMs is nearly indistinguishable on this
scale, which suggests that our complex-valued boundary-
point SDP algorithm is implemented correctly. Second, we
note that the error increases, in general, with the number
of electrons. This observation is consistent with the fact
that v2RDM methods with approximate N-representability
constraints are not strictly size extensive. However, in the
absence of orbital angular momentum constraints, the error
does not increase monotonically with system size; it is ex-
aggerated for states with nonzero orbital angular momentum.
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FIG. 1. Errors in ground-state energies (millihartree) of second-
row atoms computed at the v2RDM/cc-pVDZ level of theory, as
compared with results from full CI.

For these states, the application of L̂2 constraints results in
a minor improvement. On the other hand, constraints on the
expectation value of L̂z lead to a significant improvement in
accuracy. Here, these nonzero angular-momentum states are
taken to have the maximal orbital angular momentum, which
results in complex-valued RDMs. The subsequent application
of variance constraints [(	Lz )2 = 0] leads to essentially no
improvement in the description of these maximal orbital an-
gular momentum projection states.

Clearly, orbital angular momentum constraints play an im-
portant role in the v2RDM-based description of ground states
with nonzero total angular momentum. The data in Fig. 1
indicate that, in some cases (boron, carbon, and oxygen),
the application of such constraints reduces the error in the
v2RDM energy by more than a factor of two. Moreover,
angular-momentum constraints also allow us to directly opti-
mize 2-RDMs for excited states that are not otherwise accessi-
ble by v2RDM methods. Table I illustrates energy differences
between excited spin and orbital angular momentum states
and the ground electronic states for all second-row atoms,
except lithium and neon. Note that all results tabulated under
the heading “Lz” correspond to the maximum orbital angular
momentum projection. First, we consider those states that are
accessible without angular-momentum constraints (all cases
in Table I for which numerical values are given under the
heading “real”). For the beryllium atom, the 1S → 3P transi-
tion is equally well described by all combinations of angular-
momentum constraints considered. On the other hand, the
description of every other transition energy is improved by the
consideration of angular-momentum constraints, sometimes
dramatically so. In particular, the consideration of L̂2 sym-
metry improves the almost 1 eV error in the description of the
4S → 2D transition in nitrogen by 0.32 eV. The subsequent
application of the constraint on 〈L̂z〉 reduces the error to only
0.15 eV.

Now consider those cases in Table I where no numerical
values are given under the heading “real”; the excited states
in question are inaccessible to the v2RDM approach unless
angular-momentum constraints are imposed. In one case, the
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FIG. 2. The v2RDM energy (hartree) for different Lz projection
states corresponding to the 3P and 1D terms of the carbon and oxygen
atoms.

4S →4P transition in nitrogen, a constraint on the expectation
value of L̂2 yields a terrible estimate of the excitation energy;
it is too low by 5.78 eV. However, subsequent application
of the constraint on 〈L̂z〉 yields an excitation energy that
agrees with that from the full CI to within less than 0.01 eV.
We also observe that the application of the L̂z constraint
improves over the consideration of the L̂2 constraint alone for
the 4S → 2P transition in nitrogen, although the improvement
is less dramatic in this case. On the other hand, it appears
that the application of the L̂2 constraint alone gives superior
results to the application of both L̂2 and L̂z constraints in
the cases of the 3P → 1S transitions in carbon and oxygen.
We believe this behavior stems from an inconsistency in
the description of different S and L states in v2RDM meth-
ods in general. For example, for linear chains of hydrogen
atoms, we have found [18] that large-S states are more well-
constrained than low-S states. That effect, combined with
an apparent complementary effect regarding the relative de-
scription of large-L and small-L states, results in estimates
of the absolute energies of the 1S states that are relatively
poor, as compared with estimates of the absolute energies
of higher angular-momentum states in the same atoms (the
absolute energies for all states considered here are tabulated
in the Supporting Information). The application of L̂2 con-
straints alone (i.e., without constraints on 〈L̂z〉) overstabi-
lizes the 3P states, resulting is a fortuitous cancellation of
error in the description of the 3P → 1S transitions in carbon
and oxygen.

To this point, all computations enforcing constraints on
〈L̂z〉 considered only the maximal orbital projection state.
Here, we demonstrate that, for a given L state, different orbital
angular-momentum projections are not treated on equal foot-
ing by the v2RDM approach. Figure 2 illustrates the energy
for each ML state within the manifold of states associated
with the 3P and 1D terms of the carbon and oxygen atoms. For
comparison, the horizontal lines represent the corresponding
full CI energies for each state. Clearly, the v2RDM approach
fails to recover the proper degeneracy of different angular-
momentum projection states. Rather, the v2RDM energy is
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TABLE III. The relative energies (eV) of the 3� and 1	 states of
molecular oxygen,a with an interatomic distance of 1.208 Å.

STO-3G 3-21G cc-pVDZ

MRCISD + Q 1.042b 1.113 1.049
Real 0.914 0.424 −0.196
Lz 1.031 1.132 0.924
(	Lz )2 1.037 1.162 0.940

aFor values labeled as “real,” the specification of the spin-angular-
momentum state is meaningful, while the specification of the orbital
angular momentum state is not.
bThis value was obtained from the full CI.

a convex function of the expectation value of L̂z, with the
maximal projection states giving the best lower bound to
the full CI energy. Similar observations were made by van
Aggelen et al. [38] regarding the treatment of spin projection
states within v2RDM theory. The consideration of 〈L̂z〉 = 0
constraint does not improve the quality of the v2RDM results
over the case in which a real-valued algorithm is applied; this
result is not too surprising since any purely-real-valued 1-
RDM satisfies this constraint. What is more interesting is that
forcing the variance (	Lz )2 to vanish substantially improves
the quality of the nonmaximal orbital angular momentum
projections, most dramatically so for the 〈L̂z〉 = 0 state; such
a constraint could be applied within a real-valued v2RDM
optimization. On the other hand, variance constraints do not
appear to improve the quality of the maximal orbital angular
momentum projection states. Again, this behavior is similar
to that observed in Ref. [38] for spin-projection states. In that
work, the application of pure-state and ensemble spin condi-
tions yielded comparable results for maximal spin-projection
states.

B. Linear molecular systems

Unlike the Hamiltonian for atomic systems, the Hamilto-
nian for linear molecular systems does not commute with L̂2.
So, in this case, the only good orbital angular momentum
quantum number is  = 〈L̂z〉, which is the projection of the
orbital angular momentum on the internuclear axis (which
we have chosen to be aligned in the z direction). The results
presented above for atomic systems suggest that orbital an-
gular momentum projection constraints may play a similarly
important role in the v2RDM-based description of states with
nonzero  (e.g., �, 	, �, etc. states). Hence, in this section,
we explore the utility of constraints on L̂z and (	Lz )2 in
linear molecular systems, beginning with a simple question:
at the v2RDM level of theory, is the ground state of molecular
oxygen a singlet or a triplet?

Table III illustrates the energy gap between the 3� and 1	

states of molecular oxygen, as computed at the v2RDM, full
CI, and MRCISD + Q levels of theory, in various basis sets.
Here, a positive value for the gap indicates that the triplet is
lower in energy. Note that values labeled as “real” were gener-
ated without the consideration of orbital angular momentum
constraints, so the orbital angular momentum is technically
unspecified in these cases. In a minimal (STO-3G) basis, such
a real-valued v2RDM computation predicts a triplet-singlet

gap of 0.914 eV, which is in reasonable agreement with
that from full CI (1.042 eV). However, the v2RDM result is
surprisingly sensitive to the size of the basis set; in a 3-21G
basis, the triplet-singlet gap reduces to 0.424 eV and, in a
cc-pVDZ basis, the singlet is actually predicted to be lower in
energy than the triplet by almost 0.2 eV. Table III also provides
results from complex-valued v2RDM computations in which
we have placed constraints on the expectation value and vari-
ance of L̂z, where  = 0 for the triplet state (3�) and  = 2
for the singlet state (1	). The application of orbital angular
momentum constraints significantly improves the v2RDM re-
sults, in all basis sets. In particular, L̂z and (	L̂z )2 constraints
remedy the qualitative failure of the v2RDM approach within
the cc-pVDZ basis. In this case, the predicted triplet-singlet
gaps are 0.924 and 0.940 eV, respectively, which are both in
reasonable agreement with the value of 1.049 eV predicted by
MRCISD + Q.

In the cc-pVDZ basis set, the imposition of orbital angular
momentum constraints is clearly important for obtaining the
correct ordering of the spin angular-momentum states of
molecular oxygen. However, these constraints cannot guaran-
tee the correct ordering of orbital angular momentum states
within a given spin manifold; this trend is evident in the
energy diagrams depicted in Fig. 3. In these diagrams, the
energy levels in all cases are shifted such that the energy of
the 3� state is zero. In a minimal basis set [Fig. 3(a)], the
full CI, v2RDM [Lz], and v2RDM [(	Lz )2] approaches all
predict that the 3� is the ground state. When constraining only
the expectation value of L̂z, the v2RDM approach incorrectly
predicts that the three singlet states considered are nearly
degenerate, and the energy of the 1� state in particular is
severely underestimated. Furthermore, the energies of the 5�

and 3� states are far too low. With variance constraints, the
v2RDM approach recovers the correct ordering for all spin
and orbital angular momentum states, but the spacing between
the ground and 1� state is still underestimated by more
than 1 eV. In the D95V and cc-pVDZ basis sets [Figs. 3(b)
and 3(c), respectively], we observe similar dramatic failures
of the v2RDM approach (with constraints on the expectation
value of L̂z) to yield the correct state orderings, relative to
the orderings obtained from MRCISD + Q. In the cc-pVDZ
basis in particular, constraints on the expectation value of L̂z

alone are insufficient to yield the correct ground state; the 1�

and 1� states are both predicted to lie below the 3� state.
Fortunately, the application of variance constraints leads to the
correct prediction that the ground state of molecular oxygen is
a triplet. Nonetheless, in both the D95V and cc-pVDZ basis
sets, the singlet and triplet states are not ordered correctly
among themselves; energies of the 1�, 1�, and 3� states are
all severely underestimated. The relative energies of all of the
states considered in Fig. 3 are tabulated in the Supplemental
Material [57].

Figure 4 provides dissociation curves for the 3�, 1	, and
5� states of O2, as computed at the v2RDM and MRCISD +
Q levels of theory, within the D95V basis set. Here, the
v2RDM curves were generated under orbital angular momen-
tum constraints [〈L̂z〉 =  and (	Lz )2 = 0], as well as the
spin-angular-momentum constraints outlined in Sec. II for the
maximal spin-projection states. As observed in Table III, the
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FIG. 3. The relative energies (eV) of the spin and orbital angular momentum states of molecular oxygen described by the (a) STO-3G,
(b) D95V, and (c) cc-pVDZ basis sets. All energies are given relative to that of the 3� state.

energy gap between the 3� and 1	 states is well predicted
by the v2RDM approach at the equilibrium geometry, but
the overall shapes of the v2RDM-derived curves are not
particularly accurate. It is clear that the v2RDM approach
suffers from some serious deficiencies, particularly in the limit
of dissociation. The 3�, 1	, and 5� curves should all share
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FIG. 4. Dissociation curves for molecular oxygen, calculated
within the D95V basis set. The v2RDM computations enforced
constraints on the expectation value and variance of L̂z.

the same energy at dissociation, but they do not, regardless of
the imposition of angular-momentum constraints.

The lack of degeneracy of the 3�, 1	, and 5� states in
the limit of dissociation is similar to the behavior observed
in Ref. [38]. Those authors focused mainly on the lack of
degeneracy among different MS states, and it is clear from
that work that the maximal spin-projection states are the most
well constrained, in general (i.e., these states have the highest
energies). Here, we can draw similar conclusions regarding
the orbital angular momentum projections. In the limit of
dissociation, the ground state should have an energy equal to
twice that of a single oxygen atom in its ground state (3P).
Two such atoms could couple to form nine states with S = 0,
1, or 2 and  = 0, 1, or 2, all of which should be degenerate
at large O–O bond distances. Figure 5 illustrates the energy
of these nine states at an O–O bond length of 5.0 Å; in all
cases, the spin-projection state is chosen to be the maximal
one. The dashed line represents twice the energy of an isolated
oxygen atom in the 3P state, as described by the v2RDM
method (constraining the maximal spin- and orbital angular
momentum-projection states, but not the expectation value of
L̂2). We can draw two conclusions from these data. First, for a
given spin state, higher orbital angular momentum-projection
states are more well constrained. Second, for a given orbital
angular momentum-projection state, the highest-multiplicity
state is the most well constrained. Indeed, the highest energy
is obtained for the 5	 state; the size consistency error (EO2 −
2EO) is only 2.9 millihartrees in this case.
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FIG. 5. The energy of molecular oxygen (hartree), as described
by the D95V basis set, at an O–O distance of 5 Å. The v2RDM
computations enforced constraints on the expectation value of L̂z or
both the expectation value and variance of L̂z.

Lastly, we consider dissociation curves for the 1	 and
1� states of another linear molecular system, C2. It is well
known that a proper description of these states requires a
sophisticated treatment of electron correlation effects [58–60]
and, in the absence of orbital angular momentum constraints,
v2RDM methods can only describe whichever state lies lower
in energy. What is more problematic is that, because the
potential-energy curves for the 1� and 1	 states should cross,
a real-valued v2RDM computation may yield RDMs for dif-
ferent electronic states at different C–C bond lengths. Figure 6
illustrates v2RDM and full CI potential-energy curves for
C2 computed within the 6-31G* basis set. Full CI results
were taken from Ref. [58]. The application of orbital angular
momentum constraints facilitates the description of both states
via the v2RDM approach and, near the equilibrium geometry
for the ground state, we observe reasonable splittings between
the ground and excited states. At a C–C bond length of 1.25 Å,
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FIG. 6. Dissociation curves for the 1� and 1	 states of molecular
carbon, calculated by using the 6-31G* basis set. The v2RDM
computations enforced constraints on the expectation value and the
variance of L̂z, and the full CI results were taken from Ref. [58].

full CI predicts that the 1	 state lies 2.43 eV above the 1�

state, while the v2RDM approach predicts that these states
are separated by 2.90 eV. The relative overstabilization of
the 1� state is consistent with our observation that, for a
given spin state, higher orbital angular momentum-projection
states are more well constrained. Unfortunately, the v2RDM
method exhibits two qualitative failures for this system. First,
it predicts that the 1� state is the ground state for all C–C bond
lengths; that is, the potential-energy curves for the two states
are predicted to never cross. Second, as was observed above
for molecular oxygen, the two electronic states considered
here do not share the same dissociation limit.

V. CONCLUSIONS

In systems with well-defined orbital angular momentum
symmetry, the application of orbital angular momentum
constraints facilitates the direct variational determination of
2-RDMs for multiple electronic states. Moreover, without
such considerations, the v2RDM approach cannot qualita-
tively describe states with nonzero z projection of the orbital
angular momentum, even if the state in question is the lowest-
energy state of a given spin symmetry. Indeed, we demon-
strated that, in the absence of orbital angular momentum
constraints, the v2RDM approach incorrectly predicts that
the ground state of molecular oxygen (described by the cc-
pVDZ basis set) is a singlet. The application of appropriate
constraints, which necessitates the consideration of complex-
valued RDMs, recovers the correct spin-state ordering.

The v2RDM energy appears to be a convex function of
the expectation value of L̂z and, for a given magnitude of the
orbital angular momentum, maximal orbital angular momen-
tum projection states are the most well constrained. This result
reveals a qualitative failure of v2RDM methods: they do not
to recover the correct degeneracy for different ML states, at
least when the RDMs satisfy the ensemble N-representability
conditions considered in this work. This behavior suggests
that the conclusions of Ref. [38] regarding the description of
different spin-projection states apply to angular-momentum-
projection states in general. Moreover, should one consider
the direct optimization of 2-RDMs corresponding to differ-
ent total angular-momentum states, we expect that similarly
incorrect behavior would emerge. A natural extension of the
present approach will be the description of systems possessing
orbital angular momentum symmetry that also display signif-
icant spin-orbit coupling. For example, ground and excited
states of UO2+

2 exhibit strongly correlated electron motion as
well as similarly strong spin-orbit coupling [61–63]. However,
extreme care must be taken in such computations, as we have
demonstrated here that different orbital (and presumably total)
angular momentum states may not be described on equal
footing.
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APPENDIX: ON THE INCONSISTENCY OF PROJECTION
AND VARIANCE CONSTRAINTS ON L̂z

IN FINITE BASIS SETS

In addition to the orbital angular momentum-projection
constraints given by Eqs. (13) and (15), one could consider
additional projection constraints like those that were given by
Eq. (16). Mazziotti [64] and Rothman and Mazziotti [45] have
argued that such projection constraints are equivalent to the
variance constraints in the limit of exact N-representability
of the RDMs. Indeed, one can easily show that one implies
the other, in the limit that the one-electron basis is complete,
but, importantly, the projection constraint yields a result that
is inconsistent with the variance constraint in a finite basis set
and is thus less suitable for practical optimizations.

Starting with

〈�|â†
pσ

âqσ
L̂z|�〉 = ML

1Dpσ

qσ
, (A1)

we multiply the left- and right-hand sides of this equation by
[Lz]

p
q and sum over all orbitals, pσ and qσ , to obtain∑

στ

∑
pqrs

[Lz]
p
q[Lz]

r
s〈�|â†

pσ
âqσ

â†
rτ

âsτ
|�〉

= ML

∑
σ

∑
pq

[Lz]
p
q

1Dpσ

qσ
. (A2)

If Eq. (13) is satisfied, the right-hand side of Eq. (A2) is equal
to M2

L , and the remaining terms can be reexpressed in terms of
1D and 2D to give

∑
στ

∑
pqrs

2Dpσ rτ

qσ sτ
[Lz]

p
q[Lz]

r
s +

∑
σ

∑
pqr

1Dpσ

qσ
[Lz]

p
r [Lz]

r
q = M2

L .

(A3)

This result, when compared with the expectation value of L̂2
z ,

〈
L2

z

〉 =
∑
στ

∑
pqrs

2Dpσ rτ

qσ sτ
[Lz]

p
q[Lz]

r
s +

∑
σ

∑
pq

1Dpσ

qσ

[
L2

z

]p

q, (A4)

implies

[
L2

z

]p

q =
∑

r

[Lz]
p
r [Lz]

r
q, (A5)

which is only true in the limit of a complete one-electron
basis [65]. Hence, the projection constraint (16) is in-
consistent with the variance constraint (15) in a finite
basis.
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