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Virtual Delbrück scattering and the Lamb shift in light hydrogenlike atoms
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We return to the problem of evaluation of the light-by-light contribution to the energy levels of the hydrogen
atom. We find an additional contribution directly related to the Delbrück scattering amplitude. The new correction
is larger than the previously included light-by-light terms at order α2(Zα)6 ln(Zα) me. We consider the effective
potential in position space using an effective field theory approach and evaluate light-by-light corrections to the
energy levels of states with nonzero orbital momentum as well as to the weighted difference of s states. We
also determine the large distance asymptotic behavior of the effective potential induced by the light-by-light
scattering in muonic atoms.
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I. INTRODUCTION

Energy levels of hydrogen are one of the best-studied
observables. Experiments can measure transition frequencies
between different energy levels with astonishing accuracy
[1,2] placing them at the frontier of precision physics. Theory
of the hydrogen spectrum is also full of beautiful and nontriv-
ial results. This increasing precision, as well as the renowned
proton radius puzzle [3–5], demands further scrutiny of the
hydrogen spectrum; and in particular, the higher-order radia-
tive corrections must be carefully investigated and systemati-
cally evaluated.

Radiative corrections to the energy level �E (ns) can be
parametrized as double expansion in the fine structure con-
stant α and velocity of the electron v ∼ Zα, where Z is the
atomic number of the nucleus. The coefficients of expansion
in α are defined through

�E (ns) = α(Zα)4me

πn3

×
(

F (1) + α

π
F (2) +

(
α

π

)2

F (3) + · · ·
)

. (1)
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We neglect here recoil corrections, i.e., we take the limit of
infinite nucleus mass, mN → ∞. In this approximation, the
nucleus is regarded as a pointlike source of a static Coulomb
potential. For hydrogen and other light atoms, the coefficients
F (k) can be further expanded in powers of Zα. In this work,
we shall focus on the second-order corrections that are con-
ventionally parametrized as

F (2)(Zα)=B40 + (Zα)B50 + (Zα)2(B63 ln3[(Zα)−2]

+B62 ln2[(Zα)−2]+B61 ln[(Zα)−2]+B60)+· · · ,

(2)

where the Bab coefficients depend on the state of hydrogen.
For a review of different terms in the expansion and theory
of hydrogen spectrum, see [6–9]. Values of many known
parameters can be found in [10] and in recently published
works [11,12].

In a newly published letter [13], results became available
for coefficients1 B60, B61, and C50, which reduced the overall
uncertainty of the two- and three-loop nonrecoil corrections to
the 1s Lamb shift by a factor of 3. Here we provide details of
our computation for the coefficient B61 and include additional
results relevant for states with higher angular momentum and
also for muonic atoms.

1Coefficients Cab are defined analogously to Bab coefficients, i.e.,
F (3)(Zα) = C40 + (Zα)C50 + · · · .
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Two-loop quantum electrodynamics (QED) effects can be
divided into different classes of diagrams. The pure self-
energy diagrams constitute one such group. For these, in addi-
tion to analytical results [14–18], there exist numerical results
for the self-energy corrections evaluated for Z � 10 [19–21].
A class of diagrams with closed electron loops is also known
numerically [22], but only in the free-loop approximation,
i.e., when the external Coulomb field is not included in the
propagator of the electron inside the loop. In particular, this
means that the light-by-light diagrams are not included in the
numerical study.

In this paper, we concentrate on the contribution due
to the Compton scattering on the nucleus, also known as
Delbrück scattering [23], that is a part of the light-by-light
(LbL) correction. Previously, the effect of Delbrück scattering
was investigated for the bound electron g factor [24,25], but
its contribution to the Lamb shift has not been considered
thus far. LbL scattering is a nonlinear effect in quantum
electrodynamics, and it arises from diagrams with a closed
electron loop with four photon attachments.

Our main result is a contribution to the logarithmic coeffi-
cient B61 in Eq. (2), which was omitted in [12,14,15]. We also
verify a previous, partial result [12] (see also [26]) on the LbL
radiative correction to the energy spectrum and extend it to
states with nonzero orbital momentum. Evaluation of various
loop integrals that appear in our computations was performed
with the help of computer programs: FIRE [27], FIESTA [28],
and PACKAGEX [29].

To begin with, we briefly discuss the framework of our
computations. Second, we consider the effective potential
in position space that is subsequently used to evaluate cor-
rections to the energy levels of hydrogenlike ions. Finally,
we compute the large distance asymptotic behavior of the
effective potential in muonic atoms. Throughout this paper,
we use natural units h̄ = c = 1 and the fine structure constant
α = e2

4π
.

II. EFFECTIVE FIELD THEORY APPROACH

To evaluate the contribution of LbL scattering diagrams,
we use an effective field theory (EFT) framework. This
method exploits scale separation to disentangle long- and
short-distance corrections. High-energy modes are integrated-
out, and the short-distance physics is encoded in the matching
coefficients of the low-energy operators. The nonrelativistic
EFT approach also allows for a systematic expansion in a
small parameter, the velocity of the electron in the hydrogen-
like ion.

Studies of nonrelativistic bound states require a two-step
approach, owing to the presence of two low-energy scales,
electron momentum ∼me v and energy ∼me v2. First, QED
is matched on the low-energy EFT known as nonrelativistic
QED (NRQED) [30] (see also [31–33]), which contains both
soft, potential and ultrasoft modes. Full NRQED Lagrangian
up to terms 1/m4

e can be found in [34]; here we shall only
give operators relevant to the LbL diagrams. To achieve
homogeneous power counting in electron velocity, the soft
and potential photon modes must be integrated out together
with the soft electron modes and the resulting theory is known
as potential nonrelativistic QED (PNRQED) [35–37] (for an

FIG. 1. LbL scattering contribution to the hydrogen energy spec-
trum. The thick line represents the nucleus in the zero-recoil approx-
imation; the thin line is the electron. In this paper, we target the case
where the upper loop is soft, while the remaining two loops are hard.

alternative procedure, see [38] or [39]). PNRQED contains
potential electron modes and ultrasoft photons.

The light-by-light contribution to the hydrogen spectrum
was previously considered in [18,40–43]. In that case, all the
loop momenta are hard (k ∼ me) and the diagram shown in
Fig. 1 contributes to the matching coefficient of a local four-
fermion operator

L NRQED ⊃ d2 ψ†
e ψeN†N, (3)

where ψe (N) is the nonrelativistic electron (nucleus) field
and d2 is a Wilson coefficient; symbol ⊃ is used here to
denote that an operator on the right side is a part of the full
NRQED Lagrangian. This operator is suppressed by m−2

e , and
the induced correction to the Dirac energy levels contributes
to the B50 term.

The case when the momentum in the upper loop is hard,
while the lower one is soft k ∼ me v, was considered before
in [12]. In this instance, the diagram on the right in Fig. 2
contributes to the matching coefficients of operators2

L NRQED ⊃ ψ†
e [C′

A1(B2 − E2) − C′
A2E2]ψe, (4)

where E (B) is the electric (magnetic) field that contains soft,
potential and ultrasoft modes. C′

A1 and C′
A2 are Wilson coeffi-

cients whose sum was evaluated in [12]. The above operator
is suppressed by m−3

e . Different mass scaling explains why
this correction modifies coefficient B61 as opposed to the pure
hard loop correction that starts one order lower in the Zα

expansion.
In this paper, we concentrate on the case when the upper

loop is soft, and the lower ones are hard. Naively, one could
expect that in this case the Wilson coefficients of operators

L NRQED ⊃ N†[CA1(B2 − E2) − CA2E2]N, (5)

2Note that this form is a direct consequence of QED gauge invari-
ance. We may rewrite Eq. (4) as

L NRQED ⊃ ψ†
e

[
C′

A1

2
FμνFμν + C′

A2uμuνFμσ Fνσ

]
ψe,

where four-vector u is defined below Eq. (6). In this form, the gauge
invariance is manifest.
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(a) (b)

FIG. 2. Examples of two-loop LbL QED diagram contributions
to the Compton amplitude necessary to obtain matching coefficients
of operators in (a) Eq. (5) and (b) Eq. (4).

which are bilinear in the nucleus field, are suppressed by
inverse powers of the nucleus mass. This, however, is not
the case, as the leading contribution is obtained from the
region of the loop momenta of the order of electron mass. The
nonrecoil limit used for the nucleus makes the diagrams in
Fig. 2 asymmetric, forcing the loop integral in the Delbrück
amplitude to be effectively three-dimensional, while the loop
integral encapsulating the upper electron line in Fig. 2(b)
is still four-dimensional with a full relativistic electron
propagator.

The matching coefficients CA1 and CA2 can easily be in-
ferred from the on-shell Delbrück scattering amplitude in the
low-energy limit. Denoting the momenta of external photons
as k1 and k2, we find the amplitude3 [Fig. 2(b)] in the limit
k1 ∼ k2 � me � mN (see also [24,44–46])

T μν (k1, k2) = e2 (Zα)2

m3
e

{
C1

(
gμνk1k2 − kμ

2 kν
1

) + C2
[
w2gμν

−w
(
uμkν

1 + kμ
2 uν

) + k1k2uμuν
]}

, (6)

where we introduced uμ = (1, 0, 0, 0) and w is the photon
energy w = uk1 = uk2. We assume that the k1 momentum is
incoming and the k2 momentum is outgoing. The coefficients
Ci are

C1 = 7
1152 ,

C2 = − 73
2304 , (7)

and we have the following relation

CAi = e2 (Zα)2

2m3
e

Ci, i = 1, 2. (8)

Having obtained the relevant matching coefficients of the
NRQED Lagrangian, we perform the second matching step
and integrate out the soft and potential photon modes. The
resulting effective PNRQED interaction Lagrangian LPOT is
a nonlocal four-fermion operator whose Wilson coefficient
VLbL(r) depends on r as |r|−4

LPOT(x) = −
∫

d3r[ψ†
e ψe](x + r)VLbL(r)[N†N](x). (9)

3A similar result was obtained before in Ref. [24], where a different
convention was used (in particular, the that reference uses α = e2).
We note that the final result of the computation expressed entirely in
terms of α does not depend on the relation between α and e.

FIG. 3. One-loop matching diagrams of operators in Eq. (5) (left
diagram) and Eq. (4) (right diagram) represented by grey squares, on
the effective potential in Eq. (9) defined in PNRQED.

Evaluating the two diagrams in Fig. 3 we find contributions
to the matching coefficient of the potential interaction

V (i)
LbL(r) = C (i)

LbL

(
α

π

)2 (Zα)2

4m3
er4

, (10)

with r = |r|. The left diagram gives

C (a)
LbL = 2π2(C1 + C2) = −59π2

1152
. (11)

The contribution from the second diagram, previously evalu-
ated in [12], is

C (b)
LbL = 43

36
− 133

864
π2. (12)

We find the total long-distance LbL potential, i.e., for typical
atomic distances much larger than the Compton wavelength
of the electron, r ∼ 1/(Zα me) � 1/me, to be

VLbL(r) = CLbL

(
α

π

)2 (Zα)2

4m3
er4

, (13)

with

CLbL = C (a)
LbL + C (b)

LbL = 43

36
− 709π2

3456
. (14)

The new contribution C (a)
LbL is more than 1.5 times larger than

the previously evaluated C (b)
LbL.

III. CORRECTIONS TO THE ENERGY LEVELS

Having computed the potential, we evaluate corrections to
the energy levels using standard quantum-mechanical pertur-
bation theory. The matrix element of the r−4 potential in the ns
state is logarithmically enhanced and therefore it contributes
to the B61 coefficient. We find

〈
1

r4

〉
ns

= 4
(Zα)4

n3
m4

e ln(Zα)2 + · · · , (15)

where dots indicate terms without logarithmic enhancement
and 〈〉ns denotes a dimensionally regularized matrix element
in the ns state. This means that the coefficient CLbL is related
to the B61 as follows:

BLbL
61 (ns) = −CLbL. (16)
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Besides, there is a divergent contribution4 related to the B60

term, see e.g. [12,14]. As was discussed in [12], this diver-
gence cancels after diagrams with one additional photon con-
necting the electron and nucleus lines are included. The total
logarithmic B61 LbL correction decreases the 1s-2s energy
split by 720 Hz, out of which 440 Hz is due to Delbrück
scattering.

Interestingly, the sign of the LbL contribution to the B61

term is opposite to the contribution of the corresponding
diagram to the B50 term. As an aside, we explain this fact by
a simple, yet not a very formal argument based on the short-
distance behavior of the hydrogen wave function. Although
we do not have a proof of this fact, we expect that the LbL
kernel is a well-behaved function whose sign is determined by
the first term in the low-momentum expansion. In coordinate
space, the corrections are proportional to∫

d3r
|Rns(r)|2

r4
, (17)

where Rnl (r) is the radial part of the nonrelativistic hydrogen
wave function in the nl state. For s states, the expansion of the
wave function around the origin is

Rns(r) = Rn0(0)(1 − Zαmer + · · · ). (18)

The first term in the expansion is power divergent when in-
serted into (17) and gives rise to the B50 term. The second term
is n independent and logarithmically divergent. It produces the
B61 correction with the opposite sign to the B50 term. Both
logarithmic corrections due to V (a)

LbL and V (b)
LbL are comparable

in their magnitude. Moreover, the size of the logarithmic LbL
correction can be estimated, following Eq. (18), as

B(a)
61 ∼ B(b)

61 ∼ −B50 me r0

for some r0 of the order of the Compton wavelength of the
electron. This argument also explains why both contributions
(a) and (b) in Eq. (11) and (12) are similar in size.

In [47,48] it was observed that all hard contributions to
the matrix element (in our case: the divergence related to B50

and logarithmically divergent part of B60) cancel in a specific
difference of any two ns-state energy levels weighted by n3,

�(n) = E (1s) − n3 E (ns). (19)

Thus we also find the LbL correction to the difference of
B60(ns) and B60(1s) coefficients

B60(1s) − B60(ns)

= −2CLbL

[
Hn − ln n − 2

3
− 1

2n
+ 1

6n2

]
, (20)

where Hn = ∑n
k=1

1
k are harmonic numbers. Evaluation of

the weighted difference �(n) requires a regularization of
the integral appearing in the computation of the expectation
value. This can be achieved, for example, by changing the

4The powerlike divergent integrals vanish in dimensional regu-
larization. They are related to a short-distance δ potential which
contributes to the B50 term, see Eq. (3). Here we discuss only the
logarithmically divergent integral associated with the B60 part.

TABLE I. Contribution to the B60 coefficients due to LbL cor-
rection. In the last column we present the LbL contribution to the
difference of the B coefficients, B60(1s) − B60(ns).

n B60(np) B60(nd ) B60(1s) − B60(ns)

2 −0.069193 0.11317
3 −0.076881 −0.0030752 −0.13301
4 −0.079571 −0.0034596 −0.13984
6 −0.081493 −0.0037342 −0.14469
8 −0.082166 −0.0038303 −0.14638
12 −0.082647 −0.0038989 −0.14758

dimensionality of the space. Once the results for B60(1s) and
B60(ns) are combined, the regulator dependence cancels, and
the result is finite.

In Table I, we present numerical results for the differ-
ence in Eq. (20) for several precisely measured hydrogen
and deuterium (Z = 1) states, relevant for the determina-
tion of the proton radius rp. In the past, only the 2s-2p
transition was measured precisely. Nowadays, thanks to the
measurement of optical transition frequencies of the main
structure, many other transitions between energy levels can
be measured [1,49–56]. Evaluation of the proton radius based
on spectroscopic data relies on precise experimental data
for several hydrogen and deuterium transitions [57–60]. The
spectroscopic measurements are compatible with the value
of the proton radius determined from the elastic electron-
proton scattering data [61]. However, the measurement of the
proton radius based on muonic hydrogen [62], which has an
essentially lowest uncertainty, shows a substantial discrepancy
with electron-based evaluation, thus motivating continuous
progress in precise studies of the hydrogen spectrum from
both the theoretical and experimental sides. In particular, the
computations of the Lamb shift demand further scrutiny.

Since we obtained the complete LbL part of the B61

coefficient, we can also determine the LbL contribution to
B60(nl ), l �= 0. The same 1/r4 potential gives rise to the
correction, but the nonrelativistic wave function of states with
l �= 0 vanishes at the origin and thus suppresses the UV
behavior leading to convergent matrix elements. The required
integrals of the wave function multiplied by the r−4 potential
can be evaluated for arbitrary n and l [63] using a standard
representation of the hydrogen wave function with associated
Laguerre polynomials. The results do not depend on the total
angular momentum j and we find

B60(nl ) = CLbL(1s)
n3

Zαme

∫ ∞

0

dr

r2

|Rnl (r)|2
|R1s(0)|2

= CLbL
3n2 − l2 − l

l (8l4 + 20l3 + 10l2 − 5l − 3)n2
. (21)

For example, for the p (l = 1) and d (l = 2) states we find

B60(np) = CLbL
3n2 − 2

30n2
,

B60(nd ) = CLbL
n2 − 2

210n2
. (22)
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FIG. 4. LbL loop evaluated with the electron in the external field.
Unlike in the previous diagrams, here we use a double line to indicate
that instead of the free electron propagator, we use Coulomb Green’s
function.

Numerical results for the corrections to the B coefficients are
shown in Table I.

Finally, we want to argue that our results (20) and (21)
constitute the complete LbL contribution up to higher-order
corrections in Zα. First, let us consider the case when only
the closed electron loop is hard. In this case, we should match
the LbL loop on the Euler-Heisenberg Lagrangian [64], which
is suppressed by m−4

e ; thus, we expect this contribution to
energy levels starts at the O(α2(Zα)7me). Next, we should
consider an ultrasoft contribution, i.e., a case when the pho-
ton momentum scales like me v2 and the electron propaga-
tor has to be replaced by the Coulomb Green’s function.
Note, however, that in PNRQED, the ultrasoft interaction
ψ†

e (t, x) e x · �E (t, 0) ψe(t, x) is velocity suppressed, and thus
the ultrasoft contribution is also of the higher order in Zα.
Indeed, the leading LbL correction is related to the B50 co-
efficient, and it is convergent; therefore, any low-momentum
input is suppressed by Zα, as we see in the example of B61

contributions. The hard loops present in our diagrams are also
convergent, thus if we replace one of them with a soft or
an ultrasoft contribution, the result will be further suppressed
by Zα.

The fact that our result constitutes the full LbL correction is
preeminently nontrivial for the B60(1s) − B60(ns) difference.
As a cross-check of our argument based on the power counting
in PNRQED, we also examined the full NRQED diagram with
the Coulomb electron propagator G(r, r′, E )

G(r, r′, E )=〈r| i

E −H +iε
|r′〉=

∑
n

i
ψn(r)ψ∗

n (r′)
E −En+iε

, (23)

where ψn(r) are energy eigenstates in position representa-
tion, Hψn(r) = Enψn(r). The corresponding QED diagram
is shown in Fig. 4. If we take E ∼ Zα me, we can neglect
the nonrelativistic Hamiltonian H in the denominator of (23),
and the resultant expression is equivalent to our computation
with the free-electron propagator owing to the completeness
of states relation. A similar argument was applied before in
[65,66] to evaluate the LbL contribution for the muonic atoms.
On the other hand, if we assume that E ∼ (Zα)2 me, then
we need to include subleading terms in the energy expansion

0 5 10 15 20 25

0.005

0.010

0.015

0.020

0.025

0.030

x = mer

x4Veff (x)

FIG. 5. Potential for muonic atoms. We define dimensionless
effective potential Veff (x) through −α2(Zα)2meVeff (x) = V (μ)

LbL(r) and
x = mer. Solid line is our analytic result (25), x4Veff (x) → 0.02561.
Points are the result of numerical computation of the potential,
keeping the full dependence on the electron mass.

of the LbL loop, while still maintaining vanishing total en-
ergy transfer to the nucleus. These terms generate additional
suppression, and so this region does not contribute to the
B60 term.

IV. MUONIC HYDROGEN

Our result is not directly applicable to muonic hydrogen.
The reason is that the Bohr radius in light muonic atoms
1/rμ ∼ Zα mμ is of the order of the Compton wavelength of
the electron rμ ∼ 1/me. Accordingly, the full dependence on
the electron mass must be retained in the potential region for
muonic hydrogen and other muonic atoms with low values of
Z . We devoted a separate paper to this objective [67]. Here
we derive only the large distance asymptotic behavior of the
effective potential for the muonic atom, for which we can
obtain an analytic result.

As r → ∞, it is permitted to apply a setup similar to the
one used in the hydrogen case. The hierarchy of relevant
scales in this case is

mN � mμ � me � 1

r
. (24)

In consequence, both nucleus and muon propagators should be
expanded in the inverse powers of the heavy masses and thus
the contribution related to the diagram in Fig. 2(b) is equal to
the contribution from Fig. 2(a) for muonic atoms in the large
distance limit. We find the effective LbL potential applicable
to muonic atoms for r � 1/me

V (μ)
LbL(r) −−−→

r→∞ 2C (a)
LbL

(
α

π

)2 (Zα)2

4m3
er4

. (25)

We checked our asymptotic result by comparing it with the
result of a direct numerical computation that keeps full de-
pendence on the electron mass. The result is presented in
Fig. 5; we find a good agreement between these two methods.
It is worth pointing out that our analytic computation is
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complementary to the numerical result, as the numerical ac-
curacy decreases with r.

V. CONCLUSIONS

We evaluated the contribution to the Lamb shift in light
hydrogenlike atoms due to the Delbrück amplitude, and we
found an additional contribution to the coefficient B61. In-
cluding previously computed LbL corrections, the total LbL
correction is

BLbL
61 (ns) = 0.830 309 . . . . (26)

The LbL logarithms were omitted before in [22] and [14], and
partially included in [9] after publication of [12]. Our result
indicates that the uncertainty assigned to missing LbL contri-
bution in [22] and also in [9] was most likely underestimated.
The detailed and most up-to-date discussion of uncertainty of
the overall α8me contribution can be found in [13].

We also corrected the weighted difference �(n) and eval-
uated the LbL corrections to states with l �= 0 for general n
and l . In this instance, there is no logarithmic enhancement
of the correction. We gave specific numerical results for the
transitions that are most accurately measured. It is interesting

to note that both LbL corrections have the same sign that is
opposite to the LbL part of B50.

The LbL corrections were also analyzed for the muonic
atoms. In this case, we used the Delbrück amplitude to de-
termine the asymptotic behavior of the potential in the large
distance limit r → ∞. The obtained result agrees with numer-
ical evaluation and improves the accuracy of the potential at
large values of r.

Our computations were performed in a modern framework
based on nonrelativistic EFT with potential interactions. This
framework offers systematic power counting and a clear sep-
aration of short- and long-distance effects. We hope that this
approach will become more popular in the future, allowing the
cross-check of existing results and evaluation of higher-order
corrections.
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