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The Schrödinger equation for the 2S state and 2P state of the lithiumlike ion O5+ is solved by using the
Rayleigh-Ritz variational method in Hylleraas coordinates. The leading-order relativistic and QED corrections
are calculated perturbatively and higher-order corrections are estimated approximately. The transition frequen-
cies between the 2S1/2 and 2PJ (J = 1/2, 3/2) states, as well as the fine-structure splitting between the 2P1/2 and
2P3/2 states, are determined and compared with experimental results.
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I. INTRODUCTION

For light atomic systems, such as Z � 5 with Z the nuclear
charge number, the energy levels can be calculated to very
high precision in the framework of the nonrelativistic quantum
electrodynamics (NRQED) [1]. In this method, the energy
level of an atomic system can be formally expressed as
(in atomic units throughout, unless otherwise stated)

E = E0 + α2E2 + α3E3 + α4E4 + α5E5 + · · · , (1)

where E0 denotes the nonrelativistic energy, α2E2 the leading-
order relativistic correction, α3E3 the leading-order QED cor-
rection, and so on. For two- and three-electron atomic systems
[1–3], E0 can be calculated to sufficiently high accuracy
by solving the Schrödinger equation using the variational
method in Hylleraas coordinates. For four- and five-electron
atomic systems, the most accurate nonrelativistic energies
are determined variationally using explicitly correlated Gaus-
sian (ECG) functions [4–7]. The leading-order relativistic
and QED corrections of orders α2 and α3 can be evaluated
perturbatively based on the nonrelativistic solutions.

For heavy atoms or ions, say Z � 30, due to large relativis-
tic effects, the NRQED method is no longer adequate. The
relativistic effects have to be taken into consideration from
the beginning. Many theoretical methods have been developed
for treating these systems, such as the relativistic many-body
perturbation (RMBP) theory [8,9] and its variant the coupled
cluster (CC) method [10,11], the relativistic configuration
interaction (RCI) method [12], and the multiconfiguration
Dirac-Fock (MCDF) method [13]. From now on, we will call
all these methods the relativistic many-body (RMB) theory for
convenience. At present, the accuracy of the RMB theory is
mainly limited by the slow convergence of electron correlation
effect and by the inadequate treatment of QED effect.

For the case of intermediate Z , for example Z ∼ 14, the
two above-mentioned kinds of approaches are feasible but
with relatively lower accuracy. For the NRQED theory, the
magnitude of high-order relativistic and QED corrections will

increase fast as Z increases. These high-order corrections are
very difficult to evaluate for a general state of an atomic
system with more than one electron. Take the lithium atom
as an example. The order α4 corrections have only been
calculated rigorously for the fine-structure splitting of the 2P
state up to now [14,15]. For the RMB theory, the relatively
strong electron correlation effect with Z ∼ 14 is one of the
main factors limiting the accuracy of the theory. Drake has
developed a unified computational scheme that is valid over
the whole range of nuclear charge [16], but this method has so
far only been applied to two-electron atomic systems.

In this work, we will study the lithiumlike ion O5+ (Z = 8)
using NRQED and compare our results with other theoretical
and experimental values. The main motivation of this work is
to supply reliable theoretical transition frequencies between
the 2S1/2 and 2PJ (J = 1/2, 3/2) states of O5+ for the ongo-
ing experiment on the precision measurement of O5+ at the
Institute of Modern Physics, Chinese Academy of Sciences
[17].

The lithiumlike ion O5+ (Z = 8) is an interesting system
to which the high precision calculation of energy levels is
challenging for both the NRQED theory and the RMB theory.
Some nonrelativistic properties of a few low-lying states of
this system were calculated by King [18,19] and by Godefroid
and co-workers [20]. The transition frequencies between the
2S1/2 and 2P1/2 states were calculated by Cheng and co-
workers using the MCDF theory [21] and by Johnson and
co-workers using the RMBP theory [9]. The QED corrections
to the 2S and 2P states were calculated approximately by
McKenzie and Drake [22]. Recently, this frequency was re-
calculated by Yerokhin and co-workers using the RCI method
[23]. In addition to O5+, the 2S and 2P states of many other
lithiumlike ions with middle or higher Z have also been
explored by many authors under the framework of QED, such
as Yerokhin et al. [24], Kozhedub et al. [25], and Sapirstein
and Cheng [26]. In the present work, we will calculate the
energies of the 2S and 2PJ states using the NRQED method.
The nonrelativistic energies and leading-order relativistic and
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TABLE I. Convergence study of the nonrelativistic energies for the 1s22s 2S and 1s22p 2P states of O5+ with infinite nuclear mass. The
last row is the energy for 16O5+ with finite nuclear mass. In atomic units.

� No. of terms (2S/2P) 2S 2P

7 910/670 −64.228 542 043 971 34 −63.790 739 211 831 34
8 1 580/1 016 −64.228 542 078 742 87 −63.790 739 509 987 01
9 2 620/1 870 −64.228 542 082 324 97 −63.790 739 573 598 86
10 3 910/3 300 −64.228 542 082 951 26 −63.790 739 579 454 65
11 6 039/5 600 −64.228 542 083 010 45 −63.790 739 580 419 39
12 9 056/9 170 −64.228 542 083 019 19 −63.790 739 580 538 34
13 13 248/14 532 −64.228 542 083 020 50 −63.790 739 580 555 76
Extrap. ∞ −64.228 542 083 020 7(2) −63.790 739 580 558(3)
King [18] 561 −64.228 540
16O5+ ∞ −64.226 302 024 344 4(2) −63.788 612 585 607(3)

QED corrections will be calculated precisely, and the α4-
and α5-order corrections will be estimated. We will see that
our transition frequencies between the 2S1/2 and 2PJ (J =
1/2, 3/2) states are consistent with the experimental results
[27]. We will also see that the fine-structure splitting between
the 2P1/2 and 2P3/2 states also agrees with the experimental
result [27].

The physical constants used here are as follows. The fine-
structure constant is α = 1/137.035 999 139(31) [28], the
Rydberg constant is R∞ = 10 973 731.568 508(65) m−1 [28],
and the atomic mass of 16O is 15 994 914.619 566 μu [29].

II. NONRELATIVISTIC WAVE FUNCTIONS
AND ENERGIES

After separating out the center-of-mass motion, the non-
relativistic energy eigenvalue problem for a three-electron
atomic system is [30]

H0�0 = E0�0, (2)

where

H0 = −1

2

3∑
i=1

∇2
i − Z

3∑
i=1

1

ri
+

3∑
i< j

1

ri j
− μ

M

3∑
i< j

∇i · ∇ j,

(3)

in units of 2RM with RM = (1 − μ

M )R∞, μ is the reduced mass
of electron, and M is the nuclear mass.

We use the Rayleigh-Ritz variational method to solve
Eq. (2). The variational wave function is expanded in terms
of the following Hylleraas-type basis functions:

{Aφ(r1, r2, r3)}, (4)

where

φ(r1, r2, r3) = r j1
1 r j2

2 r j3
3 r j12

12 r j23
23 r j31

31 e−αr1−βr2−γ r3

×YLM
(�1�2 )�12,�3

(r1, r2, r3)χ1, (5)

and

YLM
(�1�2 )�12,�3

(r1, r2, r3)= r�1
1 r�2

2 r�3
3

∑
mi

〈�1m1; �2m2|�1�2; �12m12〉

× 〈�12m12; �3m3|�12�3; LM〉Y�1m1 (r1)

×Y�2m2 (r2)Y�3m3 (r3) (6)

is the vector-coupled product of spherical harmonics for the
three electrons to form a state of total angular momentum L
and z component M. Also in the above, χ1 is the spin-wave
function and A is the three-particle antisymmetrizer. With
some truncations to avoid near linear dependence, all the
terms in Eq. (4) are included in the basis set such that

j1 + j2 + j3 + j12 + j23 + j31 � �, (7)

where � is an integer. For more details about the construction
of variational wave functions, see Ref. [31].

Table I lists the nonrelativistic energies of the 2S and 2P
states of O5+ for different sizes of basis sets. Comparing
to the case of lithium [3], we see that the nonrelativistic
energies converge very fast due to relatively weak Coulomb
interaction between electrons. We stop our calculation at the
basis size of 13 248 for the 2S state and 14 532 for the 2P state.
The nonrelativistic energies of the 2S and 2P states reach,
respectively, a relative accuracy of 10−15 and of 10−14, which
is sufficient for comparison with the available experimental
values.

III. LEADING-ORDER RELATIVISTIC CORRECTIONS

The leading relativistic correction of order α2, including
the relativistic recoil corrections of order (μ/M )α2, is calcu-
lated according to


Erel = 〈�0|Hrel|�0〉, (8)

where �0 is the nonrelativistic wave function for the state of
interest and Hrel is the total leading-order relativistic correc-
tion operator, which can be written in the form [32]

Hrel = B1 + B2 + B3z + B3e + B5

−πα2
3∑

i< j

(
1 + 8

3
si · s j

)
δ(ri j )

+ 1

2
Zπα2

3∑
i=1

δ(ri ) + me

M
(
̃2 + 
̃3z )

+ γ

(
2B3z + 4

3
B3e + 2

3
B(1)

3e + 2B5

)
+ γ

me

M

̃3z, (9)
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TABLE II. Expectation values of the relativistic correction operators for the 1s22s 2S and 1s22p 2P states of O5+ with infinite nuclear mass.
In atomic units.

� B1 104B2
∑

i δ(ri )
∑

i< j δ(ri j ) 
̃2

1s22s 2S
7 −0.258 743 899 15 −2.442 270 991 311.668 973 1 16.947 183 090 −0.425 084 144 9
8 −0.258 743 863 71 −2.442 243 248 311.669 016 9 16.947 173 632 −0.425 084 246 0
9 −0.258 743 847 15 −2.442 237 916 311.669 025 6 16.947 171 571 −0.425 084 266 6
10 −0.258 743 844 67 −2.442 236 848 311.669 031 7 16.947 171 476 −0.425 084 282 0
11 −0.258 743 841 74 −2.442 236 690 311.669 031 5 16.947 171 412 −0.425 084 281 5
12 −0.258 743 841 74 −2.442 236 664 311.669 031 6 16.947 171 413 −0.425 084 281 8
13 −0.258 743 841 61 −2.442 236 655 311.669 031 7 16.947 171 414 −0.425 084 282 0
Extrap. −0.258 743 841 7(1) −2.442 236 651(2) 311.669 031 9(2) 16.947 171 417(3) −0.425 084 282 4(4)

1s22p 2P
7 −0.246 680 517 91 1.034 763 016 298.199 722 7 16.012 948 15 −0.397 038 287 8
8 −0.246 680 322 29 1.034 874 751 298.199 771 4 16.012 909 68 −0.397 038 321 0
9 −0.246 680 320 58 1.034 894 269 298.199 800 2 16.012 893 00 −0.397 038 385 9
10 −0.246 680 287 94 1.034 901 327 298.199 811 2 16.012 890 27 −0.397 038 412 3
11 −0.246 680 290 75 1.034 901 704 298.199 812 7 16.012 889 48 −0.397 038 416 2
12 −0.246 680 287 18 1.034 901 991 298.199 812 8 16.012 889 44 −0.397 038 420 0
13 −0.246 680 287 40 1.034 902 015 298.199 813 2 16.012 889 48 −0.397 038 421 1
Extrap. −0.246 680 287 4(1) 1.034 902 018(2) 298.199 814(1) 16.012 889 46(2) −0.397 038 421 5(4)

where

B1 = −α2

8

(∇4
1 + ∇4

2 + ∇4
3

)
, (10)

B2 = α2

2

3∑
i< j

[
1

ri j
∇i · ∇ j + 1

r3
i j

ri j · (ri j · ∇i )∇ j

]
, (11)

B3z = Zα2

2

3∑
i=1

1

r3
i

ri × pi · si, (12)

B3e = α2

2

3∑
i �= j

1

r3
i j

r ji × pi · (si + 2s j ), (13)

B5 = α2
3∑

i> j

[
1

r3
i j

(si · s j ) − 3

r5
i j

(ri j · si )(ri j · s j )

]
, (14)


̃2 = iZα2

2

3∑
j=1

[
1

r j
p · ∇ j + 1

r3
j

r j · (r j · p)∇ j

]
, (15)


̃3z = Zα2
3∑

i=1

1

r3
i

ri × p · si, (16)

B(1)
3e = α2

2

3∑
i �= j

1

r3
i j

r ji × pi · (si − s j ), (17)

and

p = p1 + p2 + p3, (18)

γ ≈ α

2π
+ (−0.32847)

( α

π

)2
. (19)

For a spin doublet state, the operator
−πα2 ∑3

i< j (1 + 8
3 si · s j )δ(ri j ) can be simplified into

πα2 ∑3
i< j δ(ri j ) and the expectation value of the spin-spin

term B5 vanishes. The terms proportional to me/M

are the nuclear relativistic recoil corrections and the
terms proportional to γ are the spin-dependent part of
the electron anomalous magnetic-moment corrections.
The spin-independent part of the electron anomalous
magnetic-moment corrections is included in the QED
corrections discussed in the next section. For more details
about the relativistic corrections, see Ref. [33]. Some special
numerical methods have been developed by Yan and Drake
[34] to deal with the singular integrals encountered in the
calculations of the relativistic correction operators. Tables II
and III list the expectation values of the relativistic operators.
From their convergence patterns against the size of basis set,
one can see that a relative accuracies of 10−10 and 10−9 for
the spin-independent and the spin-dependent operators have
been obtained.

IV. LEADING-ORDER QED CORRECTIONS

For few-electron atomic systems, the leading-order QED
corrections to the energy levels can be expressed in the form
[35,36]

EQED = EL,1 + EM,1 + ER,1 + EL,2, (20)

where EL,1 denotes the mass-independent part of the QED
corrections to the electron-nucleus interaction, the so-called
Kabir-Salpeter term [37], EM,1 contains the QED corrections
due to the mass scaling and the mass polarization, ER,1 is the
recoil correction, and EL,2 is the QED correction due to the
interaction between two electrons [38,39]. Using the notation
〈∑i δ(ri )〉 = 〈∑i δ(ri )〉(0) + (μ/M )〈∑i δ(ri )〉(1) + · · · , these
QED terms can be written as

EL,1 = 4Zα3
〈∑

i δ(ri )
〉(0)

3

{
ln(Zα)−2 − β(1s2nL 2L) + 19

30

+ (3παZ ) 0.765 405 577
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TABLE III. Expectation values of the spin-dependent relativistic correction operators for the 2P1/2 state of O5+ with infinite nuclear mass.
In atomic units.

� B3z × 103 B3e × 104 B(1)
3e × 104 
̃3z × 103

7 −2.333 838 378 7.258 929 00 3.600 787 49 1.920 696 88
8 −2.333 839 450 7.259 022 68 3.600 776 63 1.920 759 03
9 −2.333 841 649 7.259 135 42 3.600 776 87 1.920 832 86
10 −2.333 841 652 7.259 152 62 3.600 775 99 1.920 821 13
11 −2.333 841 812 7.259 158 42 3.600 775 83 1.920 816 81
12 −2.333 841 798 7.259 158 98 3.600 775 44 1.920 817 35
13 −2.333 841 792 7.259 158 89 3.600 775 34 1.920 817 61
Extrap. −2.333 841 78(2) 7.259 158 90(5) 3.600 775 31(3) 1.920 817 8(2)

+ α

π
[0.404 206 − (3αZ/4)21.556 85]

+ (Zα)2

[
− 3

4
ln2(Zα)−2 + C61(1s2nL 2L) ln(Zα)−2

+C60(1s2nL 2L)

]}
, (21)

EM,1 = μ
〈 ∑

i δ(ri )
〉(1)

M
〈 ∑

i δ(ri )
〉(0) EL,1

+ 4Zα3μ
〈 ∑

i δ(ri )
〉(0)

3M
[1 − 
βMP(1s2nL 2L)], (22)

and

ER,1 = 4Z2α3μ
〈 ∑

i δ(ri )
〉(0)

3M

[
1

4
ln(Zα)−2 − 2β(1s2nL 2L)

− 1

12
− 7

4
a(1s2nL 2L) − 3

4
(πα)1.364 49

+ 3

4
πZαD50(1s2nL 2L) + 1

2
α2Z ln2(Zα)−2

]
, (23)

and they are the three-electron generalization of the hy-
drogenic Lamb shift [40]. The quantity β(1s2nL 2L) ≡
ln(k0/Z2R∞) is the three-electron Bethe logarithm with k0

measured in Z2R∞, and the two terms in 1 − 
βMP(1s2nL 2L)
are due, respectively, to the mass scaling and mass polariza-
tion corrections to β(1s2nL 2L). The term a(1s2nL 2L), first
derived by Pachucki [41], is defined by

a(1s2nL 2L) = 2Q(0)
1〈∑

i δ(ri )
〉(0) + 2 ln Z − 3, (24)

where

Q(0)
1 = 1

4π
lim
ε→0

∑
i

〈
r−3

i (ε) + 4π (γeu + ln ε)δ(ri )
〉
, (25)

with γeu being Euler’s constant and ε the radius of a sphere
about ri = 0 that is excluded from the integration. The state-
dependent coefficients C61(1s2nL 2L), C60(1s2nL 2L), and
D50(1s2nL 2L) are all estimated from the generic formula [42]

X (1s2nL 2L) = 2X (1s) + X (nL)/n3

2 + δL,0/n3
. (26)

The electron-electron QED shift EL,2 can similarly be sepa-
rated into the mass-independent and the mass-dependent parts

according to

EL,2 = E (0)
L,2 + μ

M
E (1)

L,2 + · · · , (27)

where [38,39]

E (0)
L,2 = α3

(
14

3
ln α + 164

15

) ∑
i> j

〈δ(ri j )〉(0) − 14

3
α3Q(0),

(28)

and

E (1)
L,2 = α3

(
14

3
ln α + 164

15

) ∑
i> j

〈δ(ri j )〉(1)

−14

3
α3

⎛
⎝Q(1) +

∑
i> j

〈δ(ri j )〉(0)

⎞
⎠. (29)

Following our notation, the Q(0) term for infinite mass is given
by

Q(0) = 1

4π
lim
ε→0

∑
i> j

〈
r−3

i j (ε) + 4π (γ + ln ε)δ(ri j )
〉
, (30)

and the Q(1) term is the correction due to the effects of mass
polarization and mass scaling.

The QED formulas discussed above completely account
for the O(α3) corrections. However they only take the dom-
inate parts of the O(α4) and O(α5) corrections into consid-
eration [1]. A complete calculation of O(α4) corrections for
a general state of a few-electron system is very difficult and
so far it has only been done for two-electron atomic systems
[43,44]. For a three-electron atomic system, the O(α4) correc-
tions have only been calculated for the fine-structure splitting
of the 2P state [14,15]. We do not intend to calculate the O(α4)
corrections rigorously in this work; however, we will give
an estimation for them and also an estimation for the O(α5)
corrections based on the above formulas. Following Puchalski
and co-workers [1], the uncertainty due to the omission of
some relatively small corrections is taken to be 10% for the
O(α4) corrections and 25% for the O(α5) corrections.

For the evaluation of the QED corrections, besides the
δ(ri ) and δ(ri j ) terms already calculated in the leading-order
relativistic corrections, we have to calculate the expectation
values of the operators Q(0)

1 , Q(0), and Q(1), as well as the
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TABLE IV. Expectation values of the QED correction operators
Q(0)

1 , Q(0), and Q(1) for the 1s22s 2S and 1s22p 2P states of O5+. In
atomic units.

� Q(0)
1 Q(0) Q(1)

1s22s 2S
7 −214.103 485 −2.912 83 6.404 959
8 −214.105 740 −2.910 86 6.410 108
9 −214.106 024 −2.910 22 6.410 680
10 −214.106 610 −2.909 95 6.410 805
11 −214.106 593 −2.909 88 6.410 695
12 −214.106 623 −2.909 88 6.410 779
13 −214.106 632 −2.909 87 6.410 771
Extrap. −214.106 637(5) −2.909 89(2) 6.410 77(7)

1s22p 2P
7 −203.408 24 −1.881 581 6.497 3
8 −203.409 38 −1.876 619 6.503 6
9 −203.410 72 −1.875 741 6.515 6
10 −203.411 53 −1.874 616 6.511 1
11 −203.411 57 −1.874 639 6.511 4
12 −203.411 66 −1.874 540 6.511 2
13 −203.411 70 −1.874 532 6.511 1
Extrap. −203.411 76(6) −1.874 53(1) 6.511 0(3)

three-electron Bethe logarithm defined by

β(1s2nL 2L)

=
∑

m |〈0|p1+p2 + p3|m〉|2(Em−E0) ln |2Z−2(Em−E0)|∑
m |〈0|p1 + p2 + p3|m〉|2(Em − E0)

.

(31)

The numerical techniques to deal with the singular integrals
encountered in the calculations of expectation values of Q(0)

1
and Q(0) have been developed by Yan [45]. The Bethe loga-
rithm is calculated by using the Drake-Goldman method [46].
The problem of slow convergence of some integrals involved
in the Drake-Goldman method was solved by Li et al. [47].
The expectation values of Q(0)

1 , Q(0), and Q(1) for the 2S
and 2P states of O5+ are listed in Table IV, and the Bethe
logarithms are listed in Table V.

The corrections to energy levels due to the finite distribu-
tion of nuclear charge is also considered, which can be written
as


Enuc = 2πZ (rc/a0)2

3

〈∑
i

δ(ri )

〉
, (32)

where rc is the root-mean-square radius of the nuclear charge
distribution and a0 is the Bohr radius. For 16O, we use rc =
2.7013(55) fm [48].

V. RESULTS AND DISCUSSION

Combining the nonrelativistic energies with the leading-
order relativistic and QED corrections, we finally obtain
the frequencies for the transitions 2S1/2 − 2P1/2 and 2S1/2 −
2P3/2, as well as the fine-structure splitting between the 2P1/2

and 2P3/2 states, as presented in Tables VI and VII. From
Table VI, one can see that the contributions due to the non-
relativistic energies, the leading-order relativistic corrections,
the leading-order QED corrections, and the finite nuclear

TABLE V. Bethe logarithms for the 1s22s 2S and 1s22p 2P states
of O5+, expressed in the form β = β (0) + (μ/M )
βMP + ln(μ/me).
N1 denotes the number of basis functions for the state of interest,
and N2 the number of basis functions for the intermediate states. For
the 1s22p 2P state, there are three types of intermediate states with
different symmetries [46].

N1 N2 β (0) 
βMP

1s22s 2S
6039 347 2.888 889 9 0.143 640
6039 682 2.967 753 1 0.145 384
6039 1013 2.975 368 3 0.145 089
6039 1590 2.976 225 7 0.144 923
6039 2583 2.976 339 1 0.144 873
6039 4247 2.976 357 6 0.144 854
6039 6947 2.976 362 2 0.144 866
∞ 2.976 364(2) 0.144 86(1)

1s22p 2P
5600 337+220+238 2.727 783 0.152 812
5600 457+294+357 2.929 135 0.143 748
5600 713+470+612 2.973 221 0.140 973
5600 1215+842+1113 2.980 567 0.139 852
5600 2133+1560+2030 2.981 808 0.139 737
5600 3722+2854+3618 2.981 994 0.140 645
5600 6347+5059+6242 2.982 024 0.139 799
∞ 2.982 030(6) 0.140 2(5)

mass corrections are all calculated to an accuracy better than
10−6 eV. The dominant contributions to the uncertainties of
the transition frequencies come from the O(α4) and O(α5) rel-
ativistic and QED effects. The final transition frequencies de-
termined in this work are 11.948 77(10) eV for 2S1/2 − 2P1/2

and 12.014 56(10) eV for 2S1/2 − 2P3/2, which are in good
accord with the experimental results [27] 11.948 98(12) eV
and 12.014 69(12) eV, and are also consistent with the theoret-
ical results 11.948 2(16) eV and 12.013 8(16) eV calculated
recently by Yerokhin et al. [23] using the RCI method.

For the fine-structure splitting between the 2P1/2 and 2P3/2

states, the dominant contribution comes from the O(α2) spin-
dependent relativistic corrections. The α3 contribution is due
to the electron anomalous magnetic moment. The final value
of the fine-structure splitting is 530.646 48(1) cm−1, which is
consistent with the experimental result [27] 531(1) cm−1 and
also consistent with the theoretical value 531(4) cm−1 calcu-
lated by Johnson et al. [9] using the RMBP theory and the
theoretical value 529(10) cm−1 calculated by Yerokhin et al.
[23] using the RCI method. However, the uncertainty of our
result is just the uncertainty of the leading-order relativistic
corrections that is not the final uncertainty of the fine-structure
splitting. For assigning a more realistic uncertainty, we use
the quantum-defect method to estimate the O(α4) contribution
to the fine-structure splitting. We consider the O5+ ion in
the 1s22p 2P state as a heliumlike O6+ core in the 1s2 1S
state plus an outer electron in the hydrogenic 2p orbit. The
nonrelativistic energy of the system is separated into two
parts,

E0 = Ecore + E2p, (33)

where E0 = −63.790 739 a.u. is the nonrelativistic energy of
the O5+ ion, Ecore = −59.156 596 a.u. is the nonrelativistic

032505-5



L. M. WANG AND Z.-C. YAN PHYSICAL REVIEW A 100, 032505 (2019)

TABLE VI. Contributions to the transition frequencies of 2S1/2 − 2P1/2 and 2S1/2 − 2P3/2 in 16O5+, in eV.

Term 2S1/2 − 2P1/2 2S1/2 − 2P3/2

ENR 11.913 212 895 015(25) 11.913 212 895 015(25)
μ/M −0.003 076 610 370(2) −0.003 076 610 370(2)
(μ/M )2 −0.000 000 010 367(1) −0.000 000 010 367(1)
α2 0.044 456 904(4) 0.110 087 74(4)
(μ/M )α2 0.000 004 259 62(3) 0.000 001 191 43(4)
α3 −0.005 304 2(2) −0.005 140 2(2)
(μ/M )α3 0.000 001 870(2) 0.000 001 866(4)
α4 −0.000 64(6) −0.000 64(6)
α5 0.000 13(4) 0.000 13(4)
(μ/M )(α4 + α5) 0.000 000 10(2) 0.000 000 10(2)
Nuclear size −0.000 016 00(7) −0.000 016 00(7)
Total (theory) 11.948 77(10) 12.014 56(10)
Johnson et al. (theory) [9] 11.955 05(27)a 12.021 01(35)a

11.948 98b

Yerokhin et al. (theory) [23] 11.948 2(16) 12.013 8(16)
Edlen (experiment) [27] 11.948 98(12) 12.014 69(12)

aResults calculated using the RMBP method without QED corrections.
bRMBP results from Ref. [9] supplemented by the QED corrections calculated by McKenzie and Drake [22].

energy of the core [44], and E2p is the energy of the outer
electron. From Eq. (33) we can obtain E2p = −4.634 143
a.u.. In our model, the energy of the outer electron is also
determined by the Bohr formula with an effective principal
quantum number n∗

E2p = − Z2

2n∗2 , (34)

where Z = 6. From Eq. (34) and the value of E2p, we
determine the value of the effective principal quantum
number n∗ = 1.9708. Substituting this effective principal
quantum number into the Dirac formula (in natural units)

En j = m

[
1 + (Zα)2

(
√

( j + 1/2)2 − (Zα)2 + n − ( j + 1/2))2

]−1/2

= m

{
1 − (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)

− (Zα)6

8n3

[
1

( j + 1/2)3
+ 3

n( j + 1/2)2

− 6

n2( j + 1/2)
+ 5

2n3

]
+ · · ·

}
, (35)

we obtain the leading-order α2 a.u. relativistic contribution
to the fine-structure splitting of the 2P state of O5+ to be

E (2) = 494 cm−1, which is close to the accurate value
529.348 42(1) cm−1 in Table VII. This demonstrates that
the quantum-defect method used by us is meaningful in
estimating the magnitude of the relativistic corrections to
the fine-structure splitting, at least for the leading-order
relativistic contribution. The O(α4) contribution, estimated
by using Eq. (35) and the effective quantum number n∗,
is 
E (4) ≈ 0.6 cm−1. We add this value to the subtotal
contribution and take it to be the total uncertainty of the
final fine-structure splitting. The fine-structure splitting now
becomes 531.2(6) cm−1, which agrees with the experimental
value 531(1) cm−1 [27] very well.

VI. SUMMARY

The transition frequencies between the 2S1/2 and 2PJ (J =
1/2, 3/2) states of the lithiumlike 16O5+ ion have been deter-
mined in the NRQED framework. The nonrelativistic contri-
bution and the leading-order relativistic and QED corrections
have been calculated to an accuracy of better than 10−6 eV.
The higher-order relativistic and QED contributions of O(α4)
and O(α5) have been estimated approximately. Our final
theoretical values for the transition frequencies are consistent
with the experimental results [27]. In order to improve the
accuracy of our theoretical results, it is necessary to perform
the O(α4) and even O(α5) corrections rigorously, which is a
very challenging task. The fine-structure splitting between the
2P1/2 and 2P3/2 states has also been calculated and our result
agrees with the experimental value [27].
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