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Probing the non-Planckian spectrum of thermal radiation in a micron-sized
cavity with a spin-polarized atomic beam
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It is commonly thought that thermal photons with transverse electric polarization cannot exist in a planar
metallic cavity whose size a is smaller than the thermal wavelength λT , due to the absence of modes with
λ < 2a. Computations based on a realistic model of the mirrors contradict this expectation and show that a
micron-sized metallic cavity is filled with nonresonant radiation having transverse electric polarization, following
a non-Planckian spectrum, whose average density at room temperature is orders of magnitudes larger than that
of a blackbody. We show that the spectrum of this radiation can be measured by observing the transition rates
between hyperfine ground-state sublevels 1S1/2(F, mF ) → 1S1/2(F ′, m′

F ) of D atoms passing in the gap between
the mirrors of a Au cavity. Such a measurement would also shed light on a puzzle in the field of dispersion
forces, regarding the sign and magnitude of the thermal Casimir force. Recent experiments with Au surfaces led
to contradictory results, whose interpretation is highly controversial.
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I. INTRODUCTION

The study of the spectrum of the electromagnetic (em)
fluctuations in a cavity in thermal equilibrium is at the root
of quantum mechanics. The fundamental importance of this
problem was recognized after Kirchhoff showed that the en-
ergy density of thermal radiation is a universal function of the
frequency and of the temperature, independent of the material
properties of the walls. This discovery stimulated intense
efforts to work out theoretically the analytical expression of
this universal function, which was finally found by Planck [1].

The famous theorems of Kirchhoff are valid in a large box
and at distances from the walls much larger than the wave-
length. This observation naturally leads one to wonder how
the Planck spectrum gets modified in a small cavity and/or
in proximity of its walls. The study of this important problem
was initiated by Rytov [2], the founder of the modern theory of
em fluctuations, who computed the thermal field in proximity
to a dielectric slab. Since then, Rytov’s theory turned into a
vast field of research that goes by the name of fluctuational
electrodynamics, with many diverse applications extending
from heat radiation to heat transfer, as well as to Casimir and
van der Waals forces both in and out equilibrium [3,4].

The fundamental result of fluctuational electrodynamics is
the formula for the correlator of the em field in a vacuum
region of space, surrounded by any number of dielectric bod-
ies at temperature T , which can be derived by linear-response
theory [5],

〈Êα (r, t )Êβ (r′, t ′)〉sym = h̄
∫ ∞

−∞

dω

2π
coth

(
h̄ω

2kBT

)

× Im[Eαβ (r, r′, ω)]e−iω(t−t ′ ), (1)
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where Eαβ (r, r′, ω) is the Fourier transform of the classi-
cal Green’s function of the electric field, obtained by solv-
ing the macroscopic Maxwell equations in the background
of the bodies. The correlator of the magnetic field has an
analogous form, in terms of the magnetic Green’s function
Hαβ (r, r′, ω). The subscript sym in the average symbols de-
notes symmetrized products of field operators.1 We stress that
Eq. (1) describes both zero-point (i.e., quantum) and thermal
fluctuation of the em field. The validity of Eq. (1) is only
subjected to the condition that the length scales of the relevant
fluctuations should be large compared to atomic distances in
such a way that the em material properties can be described
by macroscopic response functions.

A wealth of quantum em phenomena can be studied using
the correlator in Eq. (1). For example, starting from the
free-space Green’s function, it is easy to derive from Eq. (1)
Planck’s law and to compute the coefficient of spontaneous
emission of an atom in vacuum [6]. The most spectacular
applications of Eq. (1) are however in bounded geometries.
Consider, for example, a planar cavity consisting of two mir-
rors separated by a vacuum gap. By evaluating the difference
among the averages of the Maxwell stress tensor at a point
inside the gap and a point just outside the cavity, one can
obtain the celebrated Lifshitz formula [7] for the Casimir pres-
sure between two dielectric slabs at finite temperature, which
generalized to real media the famous formula of Casimir for
ideal mirrors at zero temperature [8]. Other classic cavity
QED problems that can studied with the help of Eq. (1)
include the Casimir-Polder interaction of an atom with one
or more material walls [9,10] and suppression of spontaneous
decay of an atom in a cavity [6,11,12]. Applications of Eq. (1)

1The correlators for different orderings of the operators can be
expressed in terms of the symmetrized one [5].
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are endless, being limited only by one’s ability to work out the
classical Green’s functions in more complex geometries.

In this paper we use fluctuational electrodynamics to study
the thermal radiation existing in a micron-sized planar metal-
lic cavity and we describe the scheme of an experiment with
spin-polarized D atoms to observe its spectrum. On general
grounds, the spectrum of the thermal radiation of a narrow
cavity is expected to deviate strongly from the Planckian form.
Our analysis shows that the properties of the obtained radia-
tion depend dramatically on whether the mirrors are modeled
as lossy or rather as dissipationless. When dissipation is
neglected, the radiation is mostly constituted (for moderately
high temperatures) by em fields with transverse magnetic
(TM) polarization, while barely any radiation with transverse
electric (TE) polarization is present. This is consistent with
one’s expectation that no photons with TE polarization can
propagate in a narrow cavity whose width a is smaller than the
thermal length λT = h̄c/kBT (λT = 6.7 μm for T = 300 K).
Surprisingly, the features of the radiation change drastically
when dissipation of the mirrors is taken into account. Compu-
tations show that a lossy cavity is indeed filled with nonres-
onant TE-polarized radiation, having a broad non-Planckian
spectrum, whose density is orders of magnitude larger than
that of a large blackbody (BB) cavity at the same temperature.
Closer inspection shows that this intense radiation consists
mainly of thermally excited magnetic fields.

The existence of thermal fluctuations of the magnetic field
in proximity to a single metallic surface has been pointed out
prior to the present work [13,14], in studies of cold atoms
trapped in magnetic quadrupole traps. Since these traps can
only hold atoms whose magnetic moment is aligned with the
magnetic field in the trap center, spin flips caused by the
magnetic noise may lead to losses of atoms from the trap.
Measurements of the escape rate from traps approaching the
surfaces of different metals [15], down to a distance of 5 μm,
are in qualitative agreement with theoretical calculations,
based on the lossy Drude model [13,14].

The consequences of magnetic noise for the thermal energy
of a cavity, which is the object of the present work, have
not been explicitly worked out before. There are very good
reasons to consider this problem as being worthy of detailed
theoretical and experimental investigations. Observing the
spectrum of the thermal radiation existing in a micron-sized
cavity would indeed provide valuable insights to help re-
solve a long-lasting puzzle in Casimir physics, concerning
the magnitude and the sign of the thermal correction to the
Casimir force between two metallic bodies. Computations
(see Sec. III) show that the thermal magnetic fields predicted
by the lossy model of the cavity lead to a tiny repulsive
force between the mirrors, which coincides with the thermal
correction to the Casimir force predicted by Lifshitz theory
[16]. The problem is that two series of precision experiments
with Au test bodies at submicron separations, carried out
by two different groups [17–23], found no evidence of the
thermal force. The data of these experiments are inconsis-
tent (up to 99% cl) with the theoretical analysis of [16].
Surprisingly, the data are instead consistent (up to 90% cl)
with Lifshitz theory, provided conduction electrons are mod-
eled as a dissipationless plasma. When the latter model is
used to compute the Casimir force, the obtained thermal

correction is attractive for all separations, and for a � λp it
is undistinguishable from that for a perfect conductor (more
details can be found in Ref. [24]). To explain the findings
of these experiments, it has been conjectured [25] that when
two conductors are brought into close proximity, saturation
effects may lead to suppression of thermal fluctuations of
the em field, which might explain why the repulsive thermal
Casimir force predicted by the Drude model has not been seen
in experiments. Agreement with the Drude model has been
reported in a single torsion-balance experiment [26], which
probed the Casimir force in the range from 700 nm up to the
large separation of 7.3 μm. The interpretation of the latter
experiment is however obscured by the fact that the Casimir
force was not measured directly but rather estimated indirectly
after subtracting from the data a much larger force (up to one
order of magnitude), supposedly originating from electrostatic
patches, by a fit procedure based on a phenomenological
model of the unknown electrostatic force. We point out that
an attempt to measure the thermal Casimir force in a plane-
parallel Al setup at separations larger than 3 μm was reported
earlier in [27], but observation of the Casimir force turned
out to be impossible due to the presence of large unexplained
forces, presumably of electrostatic origin. Finally, we note
that an experiment to probe the gradient of the Casimir force
between two parallel plates at large separations can be found
in [28].

These considerations show that it would be of great interest
to directly observe the spectrum of the thermal radiation of a
metallic cavity to make sure that the Drude model provides
the correct description. We show that this could be done using
a spin-polarized beam of D atoms passing in the gap between
the mirrors of a micron-sized cavity.

The plan of the paper is the following. In Sec. II we
compute the thermal radiation existing in a micron-sized
metallic plane-parallel cavity and work out its non-Planckian
spectrum. In Sec. III we discuss the connection between
the thermal radiation of the cavity and the thermal Casimir
force. In Sec. IV we show that the spectrum of this radiation
can be measured by observing the transition rates among
hyperfine ground-state sublevels of spin-polarized D atoms
passing between the mirrors. We summarize in Sec. IV and
present our conclusions.

II. THERMAL RADIATION IN A
PLANE-PARALLEL CAVITY

According to intuition, very few thermal photons with TE
polarization can exist in the cavity if its width a is smaller
than the thermal wavelength λT , since their wavelengths λ �
λT are just too long to fit in the narrow gap between the
mirrors. The absence of photon states with TE polarization
for λ < 2a is indeed the main reason for the suppression
of spontaneous emission by excited Cs atoms with maximal
angular momentum normal to the mirrors reported in [12].
These considerations lead one to expect that for a 	 λT

there should be very little thermal energy in the cavity, in
the form of em fields with TE polarization. Surprisingly, this
expectation appears to be incorrect. Let us see how this comes
about.
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To be definite, let us set a Cartesian coordinate system
(x, y, z) such that the z coordinate spans the axis normal to
the mirrors, which have coordinates z = 0 and z = a, respec-
tively. The (unrenormalized) energy density u(cav)

unr (z) at a point
P of coordinate z inside the cavity is equal to the average of the
time component T00(z) of the Maxwell stress-energy tensor
at P:

u(cav)
unr (z) =

∑
α

〈
Ê2

α (r, t )
〉 + 〈

B̂2
α (r, t )

〉
8π

. (2)

Using the general formula for the correlators (1), we obtain

u(cav)
unr (z) = h̄

4π

∫ ∞

0

dω

2π
coth

(
h̄ω

2kBT

)

×
∑

α

{
Im

[
E (cav)

αα (r, r, ω)
] + Im

[
H(cav)

αα (r, r, ω)
]}

.

(3)

The explicit expressions of the electric and magnetic Green’s
functions of the cavity, E (cav)

αα (r, r, ω) and H(cav)
αα (r, r, ω), re-

spectively, can be found in the Appendix. We note that in
writing Eq. (3) we took advantage of the fact that the imag-
inary parts of the Green’s functions are odd functions of the
frequency ω to express the energy as an integral over positive
frequencies only. Equation (3) is formally divergent, but it
can be easily renormalized by decomposing the hyperbolic
cotangent (times h̄/2) as

h̄

2
coth

(
h̄ω

2kBT

)
= sgn(ω)

(
h̄

2
+ h̄

exp(h̄|ω|/kBT ) − 1

)
. (4)

The h̄/2 term on the right-hand side (rhs) of Eq. (4) is
interpreted as describing the contribution of quantum zero-
point fluctuations of the em field, while the Bose-Einstein
term represents the contribution of thermally excited em
fields. After the above identity is substituted into Eq. (3),
one further notes that the representation of the cavity Green’s
function as the sum of the free-space Green’s function plus a
scattering contribution [see Eqs. (A1) and (A2)] allows one to
decompose the unrenormalized energy density u(cav)

unr (z) as the
sum of four terms

u(cav)
unr (z) = u(0)

ZP + u(sc)
ZP (z) + uBB + u(sc)(z), (5)

where

u(0)
ZP = h̄

πc3

∫ ∞

0

dω

2π
ω3,

u(sc)
ZP (z) = h̄

∫ ∞

0

dω

2π

∫
d2k⊥
(2π )2

g(ω, k⊥),

uBB = 2h̄

πc3

∫ ∞

0

dω

2π

ω3

exp(h̄ω/kBT ) − 1
, (6)

and

u(sc)(z) =
∫ ∞

0

dω

2π

2h̄

exp(h̄ω/kBT ) − 1

∫
d2k⊥
(2π )2

g(ω, k⊥).

(7)

The function g(ω, k⊥; z) is

g(ω, k⊥; z) = k2
⊥

∑
α=s,p

Re

[
1

kz

(
R(1)

α

Aα

e2ikzz + R(2)
α

Aα

e2ikz (a−z)

)

+ 2ω2

c2k2
⊥

R(1)
α R(2)

α

Aα

e2ikza

]
. (8)

Of the four terms on the rhs of Eq. (5), only the first one
u(0)

ZP is divergent, while the remaining three terms are finite.
The divergent term u(0)

ZP represents the unobservable energy of
zero-point fluctuations in free space. After disregarding this
term, one gets the following well-defined expression for the
total energy density in the gap:

u(cav)
ren (z) = u(sc)

ZP (z) + uBB + u(sc)(z). (9)

The first term u(sc)
ZP (z) on the rhs of this equation is interpreted

as representing the shift of the zero-point energy due to
scattering of virtual photons by the mirrors, while the second
term uBB coincides with Planck’s formula for the energy
density of a large blackbody cavity. Finally, the third term
u(sc)(z) provides the correction to Planck’s formula arising
from (multiple) scatterings of thermally excited photons by
the mirrors. According to the physical interpretation of the
three terms, we define the thermal energy density of the cavity
u(cav)(z) by the formula

u(cav)(z) = uBB + u(sc)(z). (10)

It is important to observe that the function g(ω, k⊥; z) involves
the Fresnel reflection coefficients R(k)

α of the mirrors, which in
turn depend on their (complex) permittivity ε(ω). One notes
at this point that the wavelengths λ � λT of thermal photons
belong to the infrared region, where metals display little
dissipation. This consideration suggests that for a realistic
modeling of the cavity, which takes into account the finite skin
depth of em fields in real metals, it is sufficient to model the
mirrors by the dissipationless plasma model of infrared optics,
according to which

ε(ω) = 1 − ω2
p/ω

2 + εcore(ω), (11)

where ωp is the plasma frequency and εcore(ω) is the contri-
bution of bound electrons. When the dissipationless model
in Eq. (11) is used, the obtained spectrum actually confirms
the initial expectation, showing that in the cavity there are
barely any thermal photons with TE polarization. For exam-
ple, at the center of a 2-μm Au cavity at 300 K the energy
density u(cav)

TE |pl associated with TE photons turns out to be
700 times smaller than the energy density uBB of a (large)
blackbody cavity at the same temperature [see the dotted line
in Fig. 2(a)].

Real metals, however, do display dissipation at all frequen-
cies, and one thus considers that a more accurate picture of the
spectrum of the cavity would be obtained by using the Drude
dielectric function for the conduction electrons

ε(ω) = 1 − ω2
p/ω(ω + iγ ) + εcore(ω), (12)

where γ is the (temperature-dependent) relaxation frequency.
The results are surprising, for one finds that dissipation does
not engender, as one would expect, just a small correction
to the energy density u(cav)(z) obtained by using the plasma
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FIG. 1. Normalized energy density u(cav)(z)/uBB inside a 2-μm
Au cavity at room temperature versus the position z (in microns).
The solid and dotted lines correspond, respectively, to lossy and dis-
sipationless mirrors. The upper dashed line is a plot of the universal
energy density in Eq. (13).

model, but instead leads to a huge increase of the energy
density. This can be seen from Fig. 1, where the energy
u(cav)(z), normalized by the BB energy uBB, is displayed for
values of z corresponding to points whose minimum distance
from the walls if larger than 50 nm. The solid and dotted
lines correspond to inclusion and to neglect of dissipation,
respectively. As we see, the energy density for dissipationless
mirrors is about twice uBB and is nearly constant for the con-
sidered values of z, while the energy density of the lossy cavity
is everywhere larger than uBB by orders of magnitudes and
increases enormously as z approaches the mirrors. We observe
that both u(cav)(z) and u(cav)(z)|pl diverge on the surface of
the mirrors. One should recall, however, that the macroscopic
theory loses its validity at points whose separation from the
mirrors is not large compared to atomic distances. It turns out
that the contribution u(cav)

TM of em fields with TM polarization
is unaffected by the inclusion of dissipation, u(cav)

TM � u(cav)
TM |pl,

and therefore the huge increase of the energy caused by
dissipation is due to modes with TE polarization. This is
explicitly shown by Fig. 2, where the energy densities of TE
modes [Fig. 2(a)] and TM modes [Fig. 2(b)] at the center
of the cavity are plotted as a function of the temperature T
(in K). In both figures the upper red and the lower blue
solid lines correspond, respectively, to lossy mirrors made
of Au or Pt, while the dotted lines correspond to neglect of
dissipation in a Au cavity and the dot-dashed lines show the
BB energy density. Figure 2(b) demonstrates that the energy
of TM modes is practically independent of the conductivity
of the plates. Figure 2(a) shows that the energy of TE modes
increases by many orders of magnitudes as one includes the
effect of dissipation.

A better insight into the origin of the large energy u(cav)
TE

can be obtained by looking at its spectrum ρ
(cav)
TE (ω),2 say,

at the center of the cavity. Plots of ρ
(cav)
TE (ω) are shown in

2The angular-frequency spectrum of the energy density (and of any
other quantity) is defined such that u(cav) = ∫ ∞

0 (dω/2π )ρ (cav)(ω).
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FIG. 2. Energy density of (a) TE and (b) TM modes at the center
of a 2-μm cavity versus temperature (in K). In both panels, the upper
and lower solid lines are for two lossy mirrors made of Au and Pt,
respectively. The lower dotted line is for a Au cavity with dissipation
neglected. The dot-dashed curve shows the energy density of a
blackbody. The upper dashed line in (a) shows the universal energy
density in Eq. (13).

Fig. 3(b) for two lossy mirrors made of Au (solid line) or Pt
(dotted line) [in Fig. 3(a) we show for comparison the Planck’s
spectrum]. The corresponding spectrum from dissipationless
mirrors is negligibly small and is not displayed in the figure.
The plot in Fig. 3 shows that u(cav)

TE has a broad spectrum
extending from zero frequency up to a maximum frequency
ω̃ � ω2

c/4πσ , where ωc = c/2a is the characteristic cavity
frequency and σ is the conductivity. In micron-sized cavities
ω̃ 	 ωT = kBT/h̄ = 3.9 × 1013 × (T/300 K) rad/s. Indeed,
for a Au cavity ω̃|Au = 6.4 × 109 × (1 μm/a)2 rad/s, while
for a Pt cavity ω̃|Pt = 4.3 × 1010 × (1 μm/a)2 rad/s. It is
interesting to note that the spectrum of ρ

(cav)
TE (ω) has a tail ex-

tending up to frequencies as large as ω = (10–100)ω̃, which
contribute significantly to the energy density u(cav)

TE . The tail
explains why the energies u(cav) of Pt and Au are not much
different (see Fig. 2), despite the factor of 6 difference in their
spectral densities for low ω visible in Fig. 3. Inspection of
the magnitudes of the in-plane wave vectors k⊥ contribut-
ing to u(cav)

TE reveals that u(cav)
TE is associated with evanescent

TE modes, consisting predominantly of magnetic fields. The
latter property is demonstrated by the coincidence of the
solid and dashed lines in Fig. 3 with the closed circles and
triangles, respectively, which show the magnetic contribution
to ρ

(cav)
TE (ω). Figure 3 shows that differently from Planck’s
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FIG. 3. (b) Spectrum of the room-temperature energy density of
TE modes at the center of a 2-μm cavity made of Au (solid line)
or Pt (dotted line) versus angular frequency ω. The closed circles
and triangles show the spectrum of the magnetic energy. The mirrors
are modeled as lossy conductors. The corresponding spectrum for
lossless mirrors is negligibly small and is not displayed in the figure.
(a) For comparison, the spectrum of a blackbody is shown at the same
temperature.

law, the spectrum ρ
(cav)
TE (ω) is not a universal function of

the frequency and of the temperature, for it depends on the
conductivity of the mirrors (and also on their thickness). Quite
remarkably, though, it can be shown that if the width a of
the cavity and the mirror thicknesses w satisfy the conditions
λp 	 a 	 λT and w � λp, where λp = c/ωp is the plasma
length (λp = 22 nm for Au), at points P in the gap whose
(minimum) distance d from the mirrors satisfies the condition
d � λp, the energy density u(cav)

TE (P) of the TE modes attains
the universal value

ũ(cav)
TE (z) = kBT

16πa3
[ζ (3, z/a) + ζ (3, 1 − z/a)], (13)

where ζ (s, a) is generalized Riemann zeta function. This
equation indicates that the fluctuations contributing to ũ(cav)

TE
are classical and that the energy of the TE modes grows
linearly with the temperature, differently from the T 4 behavior
of the BB energy uBB. A plot of ũ(cav)

TE (z) is shown by the
upper dashed line of Fig. 1 and by the (upper) dashed line
in Fig. 2(a).

Summarizing, we have shown that when the mirrors of a
cavity are modeled as lossy conductors, the cavity gets filled

with thermal magnetic fluctuations whose energy density is
larger by orders of magnitudes than that of a BB at the
same temperature (at least for moderately high temperatures).
The physical source of these magnetic fields can be traced
back to the thermal electronic noise (Johnson-Nyquist noise)
of an Ohmic conductor at finite temperature. According to
the fluctuation-dissipation theorem [29], the power spectrum
of the Johnson-Nyquist noise is in fact proportional to the
imaginary part of the permittivity ε(ω), which explains why
the phenomena described here become manifest only when
the mirrors are treated as dissipative.

III. THE PUZZLE OF THE THERMAL CASIMIR FORCE

The thermal spectrum shown in Fig. 3 has never been
tested experimentally and so it is legitimate to wonder if the
theoretical framework which led to it is right. The question
is not idle, because indirect evidence from recent Casimir
experiments raises more than a doubt. Casimir experiments
indeed probe the mechanical effects of thermal em fields on
the mirrors. We said earlier that Lifshitz computed the Casimir
pressure between two mirrors by evaluating the average of
the Maxwell stress tensor over the quantum and thermal
fluctuations of the em field in the gap between the mirrors
[7] and then subtracting its average at a point just outside
the cavity. When the Lifshitz formula is computed for two
lossy mirrors at finite temperature [16] the obtained Casimir
pressure PC(a; T ) includes automatically both the contribu-
tion P(ZP)

C (a) of zero-point fluctuations and the contribution
�PC(a; T ) of thermal fluctuations. For separations λp 	 a 	
λT , �PC(a; T ) is repulsive and has magnitude

�PC(a; T ) � kBT

8πa3
ζ (3)

[
1 − 6

λp

a
+ O

(
λp

a

)2
]
, (14)

where ζ (3) = 1.202 is Riemann zeta function. It can be
verified that �PC(a; T ) coincides with the Maxwell stress
associated with the thermal magnetic fields contributing to
u(cav)

TE , which we described earlier. The repulsive thermal force
has indeed been interpreted as the effect of the magnetic
coupling among the Johnson-Nyquist thermal currents with
the eddy currents induced by them in the opposite plate
[30,31]. The existence of a repulsive thermal correction to the
Casimir force between two lossy mirrors was noted for the
first time in [16] and gave rise to intense efforts to observe it.
As we pointed out earlier, two series of precise experiments
[17–23] found no evidence of the repulsive force in Eq. (14)
predicted by the lossy model of the mirrors and were instead
consistent with a lossless model of the mirrors.

The conundrum of the missing repulsive thermal Casimir
force raises the suspicion that the picture of thermal magnetic
noise of a lossy cavity, composing u(cav)

TE , is not entirely right.
This prompted us to investigate whether it is possible to
observe the spectrum depicted in Fig. 3 to establish which
of the lossy Drude or the lossless plasma model provides
the correct description. To provide useful information on the
thermal Casimir force, the bandwidth of the probe should fall
in the region of frequencies which contribute significantly
to the unobserved thermal Casimir force. To this end, we
computed the spectrum Tzz(ω) of the thermal Casimir pressure
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FIG. 4. Spectrum of the thermal Casimir pressure between two
Au thick mirrors at room temperature, described as lossy conductors
(a = 2 μm). The dots show the contribution from the thermally
excited magnetic field. If the mirrors are modeled as dissipationless
plasmas, the spectrum of the thermal pressure is negligibly small for
the displayed frequencies. The dashed vertical lines from left to right
correspond to the angular frequencies of the transitions between the
ground-state hyperfine sublevels of D, Na, and 87Rb, respectively.
The upper magenta and lower green horizontal bands correspond,
respectively, to the angular frequencies of the hyperfine transitions
σ3 and σ1 (see Fig. 9) between the Zeeman sublevels of the 1S1/2

state of D, for values of the external magnetic field in the interval
10 G < B < 1000 G.

�PC(a; T ). The spectrum Tzz(ω) can be obtained starting from
the representation of the Lifshitz formula as an integral over
the real frequency axis [32,33]. One finds that for a 	 λT ,
Tzz(ω) is well described by the formula

Tzz(ω) = h̄

2π

2H(sc)
⊥ (ω; z) − H(sc)

‖ (ω; z)

exp(h̄ω/kBT ) − 1
, (15)

where we set

H(sc)
⊥ (ω; z) = Im

[
H(sc)

xx (r, r, ω)
] = Im

[
H(sc)

yy (r, r, ω)
]
,

H(sc)
‖ (ω; z) = Im

[
H(sc)

zz (r, r, ω)
]
. (16)

The expressions of the scattering contributions H(sc)
αβ (r, r, ω)

to the magnetic Green’s functions Hαβ (r, r, ω) can be found
in the Appendix. Equation (15) shows explicitly the magnetic
character of the thermal force. A plot of Tzz(ω) is shown in
Fig. 4. By comparing Fig. 4 with Fig. 3, we see that in terms of
the Casimir force, the relevant frequencies are those towards
the high end of the thermal spectrum, corresponding roughly
to angular frequencies in the range from 107 to 1011 rad/s.

IV. EXPERIMENTAL SCHEME

The above considerations suggest that atomic hyperfine
transitions could be used to probe the thermal spectrum
of the cavity. There are three distinct reasons supporting
this belief. First of all, atoms are small and therefore they
do not appreciably perturb the thermal field of the cavity.
Second, since a magnetic field couples to atomic magnetic
moments, hyperfine transitions are sensitive to magnetic field
fluctuations. Third, and more importantly, the frequencies of

Au

Au

a

z

x
y

atomic beam AH

B

FIG. 5. Experimental scheme. A plane parallel Au cavity of
width a = 2 μm is placed in a uniform magnetic field B directed in
the (y, z) plane, forming an angle θ with the z axis. A spin-polarized
beam of D atoms prepared in a single Zeeman hyperfine 1S1/2(F, mF )
state traverses the cavity in the x direction. Thermally excited mag-
netic fields inside the cavity cause transitions (F, mF ) → (F ′, m′

F )
among ground-state hyperfine sublevels. Only atoms passing within
a narrow channel of width H across the center can traverse the
cavity without being deflected onto the mirrors by the Casimir-Polder
interaction. The populations of the hyperfine sublevels by the atoms
that escape the cavity are measured by the detector A.

hyperfine atomic transitions typically belong to the gigahertz
region, which coincides with the peak of the spectrum of the
thermal Casimir force of a micron-sized cavity (see Fig. 4).
We underline that the magnetic trap experiment [15] does
not provide much information on the problem of interest for
the present work, because the frequencies probed by this
experiment are in the megahertz region, which are two to
three orders of magnitude smaller than the frequencies of
interest for the thermal Casimir force. In addition to that, the
experiment involved a single metallic surface and therefore it
is not clear to what extent its results can be extrapolated to a
Casimir system of two closely spaced metallic surfaces. The
possible existence of saturation effects in a cavity makes it
desirable to observe the spectrum of the thermal em field in the
gap of a micron-sized metallic cavity. In principle, one might
consider an experimental scheme similar to that used in the
experiment in Ref. [9], based on the observation of the shift
of the hyperfine spectral lines of the atoms passing between
the mirrors, caused by the Casimir-Polder interaction of the
atoms with the fluctuating magnetic field of the cavity. Un-
fortunately, estimates of the shifts of hyperfine levels suffered
by atoms placed near a metallic surface [34] indicate that the
effect is too small to be measurable. Thus, a different approach
is needed.

The scheme of the experiment we propose is generally
similar to that of Ref. [12] and is illustrated in Fig. 5: A
room-temperature planar cavity of width a = 2 μm consisting
of two parallel Au mirrors in a high vacuum is placed in a
uniform magnetic field B, forming an angle θ with the z axis.
A monochromatic beam of spin-polarized D atoms of veloc-
ity v, initially prepared in a single Zeeman hyperfine state
1S1/2(F, mF ),3 enters the space between the mirrors, moving

3With respect to the quantization axis provided by the magnetic
field, the 2(2I + 1) nondegenerate Zeeman hyperfine sublevels are
labeled, as usual, by the quantum numbers (F, mF ) of the limiting
zero-field states [35].
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in the direction x perpendicular to the plane containing the
B field and the z axis. We set L = 1 cm the length of the
mirrors in the beam direction. If the mirrors are modeled
as lossy conductors, the strong magnetic noise in the gap
between the mirrors causes a significant number of transitions
(F, mF ) → (F ′, m′

F ) among ground-state hyperfine sublevels.
If instead dissipation is neglected, the magnetic noise gets
suppressed by many orders of magnitudes and practically no
transitions occur (apart from those caused by collisions of
the atoms with the residual gas that is present in the vacuum
chamber). A clear-cut discrimination between the two models
is in principle possible by measuring with the detector A
the populations of the hyperfine levels (F ′, m′

F ) by the D
atoms that leave the cavity. Ideally, for the test to have a
high confidence level, the atoms should spend a sufficient
time inside the cavity for many transitions to occur, under
the hypothesis that the Drude model is correct. This goal can
be achieved either by taking a longer cavity or by slowing
down the atoms. There is a caveat, however. As it was noted
already in [9,12], the atoms inside the cavity are subjected to
the Casimir-Polder (CP) attraction of the mirrors. As a result,
the atoms that pass too far from the center, where the CP
force vanishes by symmetry, end up colliding with the mirrors,
where they stick, and are thus removed from the beam. Of
course, this happens more easily for slow atoms and/or for a
long cavity and so one has to compromise. The best chances of
success are offered by heavy atoms with weak CP interaction,
a criterion that led us to the choice of D atoms. We estimated
that to have a transition probability of, say, 5%, the D atoms
should traverse the cavity with a velocity of 20 m/s. Using
available data for the polarizability of ground-state H atoms
in [36] to compute the CP potential UCP(z0) [10] of the 1S
state of D [up to a negligible correction, the hyperfine states
(F, mF ) have the same CP potential [34]], we found that for
a velocity of 20 m/s the only D atoms that escape from
the cavity are those passing in a narrow channel of width
H = 100 nm across the center (see Fig. 5). This means that
approximately 5% of the D atoms escape the cavity without
being pulled onto the mirrors by the CP force.

The radiative4 transition rate �fi from the initial state |i〉 =
(F, mF ) to the final state | f 〉 = (F ′, m′

F ) of an atom placed at
the position r0 in the gap between the mirrors can be computed
using the formalism of [6],

�fi = μif
αμfi

β

∫ ∞

−∞
dt eiωt 〈B̂α (r0, t )B̂β (r0, 0)〉, (17)

where ω = (Ei − Ef )/h̄ is the transition frequency and μif
α is

the matrix element of the atomic magnetic dipole moment
operator,

�μfi = 〈 f |[gDμN �̂I − μB(ge �̂S + �̂L)]|i〉. (18)

4In our analysis we neglect the contribution �
(coll)
fi of atomic

collisions, which depends on the residual pressure of the vacuum
chamber. The data reported in the experiment [12] show that atomic
collisions have a small effect on hyperfine transitions in a high
vacuum. The rate �

(coll)
fi could in principle be measured by using a

nonmetallic cavity of the same geometry and then subtracted from
the data collected with the Au cavity.

Here ge = 2.0023 and gD = 0.857 407 [35] are the gyromag-
netic factors of the electron and of the D nucleus, respectively,

μN and μB are the nuclear and Bohr magnetons, �̂I is the

nuclear spin (I = 1 for D), and �̂S and �̂L are, respectively,
the electron’s spin and orbital angular moment (all angular
momenta are in units of h̄). The correlation functions in
Eq. (17) are not symmetrized, differently from those that
appear in Eq. (1). The two types of correlators are however
in a simple relation to each other [5]:

〈B̂α (r, t )B̂β (r′, t ′)〉
= 〈B̂α (r, t )B̂β (r′, t ′)〉sym

+ h̄
∫ ∞

−∞

dω

2π
Im[Hαβ (r, r′, ω)]e−iω(t−t ′ ). (19)

Substituting this relation into Eq. (17) and using Eq. (1), one
obtains the following formula for the rate:

�fi = 2

h̄(1 − e−h̄ω/kBT )
μif

αμfi
βIm[Hαβ (r0, r0, ω)]. (20)

From this formula one can get the total transition rate �i =∑
f =i �fi. Substituting the imaginary part of the free-space

Green’s function Im[H(0)
αβ (r0, r0, ω)] = (2/3)(ω/c)3δαβ into

the rhs of Eq. (20), one can verify that the rates �
(free)
i outside

the cavity are extremely small. For example, for T = 300 K
and B = 10 G the rate of the highest hyperfine state (F =
3/2, mF = 3/2) is �

(free)
(3/2,3/2) = 1.1 × 10−12 s−1. The transition

rates inside the gap are obtained by substituting into the rhs
of Eq. (20) the Green’s functions of the cavity. By a simple
computation, one finds

�
(cav)
fi = 2

h̄(1 − e−h̄ω/kBT )

{
[H(cav)

⊥ (ω; z0)(1 + cos2 θ )

+ H(cav)
‖ (ω; z0) sin2 θ ]

∣∣μif
x

∣∣2 + [H(cav)
⊥ (ω; z0) sin2 θ

+ H(cav)
‖ (ω; z0) cos2 θ ]

∣∣μif
ζ

∣∣2}
, (21)

where μif
ζ = �μ if · �B/|B|. The coefficients H(cav)

⊥ (ω; z0) and

H(cav)
‖ (ω; z0) are defined in a similar manner as H(sc)

⊥ (ω; z0)

and H(sc)
‖ (ω; z0):

H(cav)
⊥ (ω; z) = Im[H(cav)

xx (r, r, ω)] = Im
[
H(cav)

yy (r, r, ω)
]
,

H(cav)
‖ (ω; z) = Im

[
H(cav)

zz (r, r, ω)
]
. (22)

The two sets of coefficients are related to each other by the
following equations:

H(cav)
⊥ (ω; z) =H(sc)

⊥ (ω; z) + 2ω3/3c3,

H(cav)
‖ (ω; z) =H(sc)

‖ (ω; z) + 2ω3/3c3. (23)

We note that the formula for �
(cav)
fi involves the same coeffi-

cients H(sc)
⊥ and H(sc)

z that enter into Tzz(ω) [see Eq. (15)]. It is
apparent from Eq. (21) that by appropriate measurements of
�

(cav)
fi it is in principle possible to determine the coefficients

H(cav)
⊥ and H(cav)

‖ and then to obtain an estimate of the density
of the thermal Casimir pressure Tzz(ω).

Figure 6 shows that the transition rates �
(cav)
i (z0) depend on

the atoms’s coordinate z0 inside the cavity, increase rapidly as
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FIG. 6. Radiative rate �
(cav)
(3/2,−1/2) in a 2-μm Au cavity at T =

300 K, as a function of the atom coordinate z0. The cavity is placed
in a 10-G magnetic field, directed along the z axis (solid line) or
along the y axis (dashed line). The Au mirrors are modeled as lossy
conductors. If dissipation is neglected, both rates become smaller
than 10−12 s−1 for all displayed values of z0.

the atoms approach the mirrors, and diverge at each mirror
surface. At first sight, it would seem that the z0 dependence
of the decay rates introduces a large uncertainty in the final
state of the atoms exiting the cavity. Fortunately, this potential
source of uncertainty is actually negligible if one recalls that
only atoms passing in the narrow channel of width H =
100 nm across the cavity center can escape it, without being
pulled onto the mirrors by the CP attraction. Since the z0

dependence of the rates �
(cav)
i (z0) is flat around the center

(see Fig. 6), the 50-nm uncertainty on the coordinate z0 of
the atoms entails an uncertainty much smaller than 1% in
the decay rates �

(cav)
fi , showing that the atoms that escape the

cavity have almost identical rates.
The radiative rates �

(cav)
i depend dramatically on the model

used for the low-frequency electric permittivity ε(ω) of the Au
mirrors. If the mirrors are described by the plasma model, the
rates turn out to be unmeasurably small and of magnitudes
similar to those in free space. For example, for T = 300 K
and with a field B = 10 G directed along the y axis, one finds
�

(cav)
(3/2,−1/2)|pl = 5 × 10−13 s−1. If the mirrors are modeled as

Drude conductors, the transition rates increase by many orders
of magnitude. In Fig. 7 we show plots of the Drude-model
radiative rates �

(cav)
i at the center of the cavity versus B (in

G). The magnetic field is directed along the z axis [Fig. 7(a)]
or along the y axis [Fig. 7(b)]. In Fig. 8 the radiative rates are
plotted as a function of the angle θ for fixed B = 20 G. In both
figures, the solid lower red, dashed, dot-dashed, dotted, long-
dashed, and the upper solid blue lines correspond, respec-
tively, to the Zeeman hyperfine levels of Fig. 9, from top to
bottom. We see that the Drude-model values of the rates differ
by more than 13 orders of magnitudes from the plasma model
ones. Since the Larmor frequencies can be tuned by varying
the strength of the magnetic field B (see Fig. 9), it is possible
in this way to scan a large part of the frequency interval that
contributes to the thermal Casimir force (see the colored bands
in Fig. 4). Figures 7 and 8 show that the hyperfine state with
the largest transition rate is (F = 3/2, mF = −1/2), which
suggests that the atoms should be prepared in this state.
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FIG. 7. Radiative rates �
(cav)
(F,mF ) at the center of a 2-μm Au cavity

for T = 300 K, as a function of B (in G). The Au mirrors are modeled
as lossy conductors. The magnetic field is directed along (a) the z axis
or (b) the y axis. The (lower) solid red, dashed, dot-dashed, dotted,
long-dashed, and (upper) solid blue lines correspond, respectively,
to the Zeeman hyperfine levels of Fig. 9, from top to bottom. If the
mirrors are modeled as dissipationless, all rates are negligibly small.
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FIG. 8. Radiative rates �
(cav)
(F,mF ) at the center of a 2-μm Au cavity

for T = 300 K, as a function of θ (in rad) for B = 20 G. The Au
mirrors are modeled as lossy conductors. The (lower) solid red,
dashed, dot-dashed, dotted, long-dashed and (upper) solid blue lines
correspond, respectively, to the Zeeman hyperfine levels of Fig. 9,
from top to bottom. If the mirrors are modeled as dissipationless, all
rates are negligibly small.
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FIG. 9. Normalized energies of the Zeeman hyperfine sublevels
of the 1S1/2 level of D, in an external magnetic field B, versus x =
B(gNμN + geμB )/W0. Here W0 = 1.354 × 10−6 eV is the hyperfine
splitting among the F = 3/2 and F = 1/2 sublevels of the 1S1/2 state
of D in zero field. The vertical arrows show the magnetic-dipole-
allowed transitions for the initial states (F = 3/2, mF = 3/2) and
(F = 3/2, mF = 1/2).

A precise determination of the probability distribution of
the atoms exiting the cavity can be obtained by solving the
master equation [37], which describes the evolution of the
probabilities (p1(t ), . . . , p2(2I+1)(t )) to find an atom in any
of the 2(2I + 1) hyperfine sublevels, during the time interval
0 < t < τ it spends in the cavity:

d pn

dt
= −pn

∑
k =n

�
(cav)
kn +

∑
k =n

�
(cav)
nk pk . (24)

By solving this equation one finds, for example, that for a
10-G field directed along the y axis, D atoms prepared in
the state (3/2,−1/2) decay into other hyperfine states with
a total probability of about 5%. The final probability distri-
bution among the states (F ′, m′

F ) is the following: p(1/2,1/2) =
0.57%, p(1/2,−1/2) = 1.07%, p(3/2−3/2) = 1.57%, p(3/2,−1/2) =
94.9%, p(3/2,1/2) = 1.84%, and p(3/2,3/2) = 0.02%.

Larger transition probabilities can be clearly achieved,
if necessary, by considering atoms of lower velocity. The
consequence in that case is however that fewer atoms will be
able to traverse the cavity without getting deflected onto the
mirrors before reaching the exit. It is not easy to tell a priori
what is the best compromise among these competing factors.

V. CONCLUSION

We have shown that a micron-sized metallic cavity is filled
with nonresonant radiation having transverse electric polar-
ization, following a non-Planckian spectrum, whose average
density at room temperature is orders of magnitudes larger
than that of a blackbody at the same temperature. Differently
from the typical T 4 dependence of the energy of a large
blackbody cavity, the energy density of a narrow cavity whose
width a is smaller than the thermal length λT displays an
almost linear dependence on the temperature. Computations
show that the existence of this radiation is strictly dependent
on the dissipative properties of real mirrors and that no
such radiation exists in an ideal cavity with no losses. The
mechanical pressure exerted by this radiation on the mirrors
coincides with the repulsive thermal correction to the Casimir
force, predicted by Lifshitz theory for two lossy plates at finite
temperature [16]. The actual existence of this thermal force
is much debated since several precision Casimir experiments
with metallic surfaces failed to observe it.

We have shown that the spectrum of this radiation can be
measured by observing the transition rates between hyperfine
ground-state sublevels 1S1/2(F, mF ) → 1S1/2(F ′, m′

F ) of D
atoms passing in the gap between the mirrors. Apart from pro-
viding a test of the extension of Planck’s law to the subwave-
length regime, such a measurement would shed much light
on the puzzle of the missing thermal Casimir force, which
remains unsolved after 20 years. The availability of optical
techniques which allow one to manipulate and observe with
exquisite precision cold atoms in well-determined Zeeman
hyperfine states [38–40] makes us hopeful that the experiment
described in this work is feasible with current apparatus.
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APPENDIX: GREEN’S FUNCTION OF A PLANAR CAVITY

In this Appendix we provide the explicit formulas for
the Green’s functions of a cavity that are needed for the
computations described in the present work.

At points r and r′ in the gap between two parallel dielectric
slabs at distance a in vacuum, the electric Green’s function
Eαβ (r, r′, ω) can be decomposed as

E (cav)
αβ (r, r′, ω) = E (0)

αβ (r, r′, ω) + E (sc)
αβ (r, r′, ω), (A1)

where E (0)
αβ (r, r′, ω) is the free-space Green’s function and

E (sc)
αβ (r, r′, ω) is a scattering contribution. The magnetic

Green’s function has an analogous decomposition

H(cav)
αβ (r, r′, ω) = H(0)

αβ (r, r′, ω) + H(sc)
αβ (r, r′, ω). (A2)
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The free-space Green’s function has the expression

E (0)(r, r′, ω) = H(0)(r, r′, ω) =
[

(3R̂ ⊗ R̂ − 1)

(
1

R3
− i ω

cR2

)
+ (1 − R̂ ⊗ R̂)

ω2

c2R
− 4π

3
δ(R)1

]
eiωR/c, (A3)

where R = r − r′. Note that the imaginary part of the free-space Green’s function is nonsingular for r → r′:

lim
r→r′

Im[E (0)(r, r′, ω)] = lim
r→r′

Im[H(0)(r, r′, ω)] = 2ω3

3c3
1. (A4)

In the limit r → r′, the scattering part of the Green’s tensor E (sc)
αβ (r, r′, ω) attains a finite limit and its nonvanishing components

are

E (sc)
xx (r, r, ω) = E (sc)

yy (r, r, ω)

= 4π i
∫

d2k⊥
(2π )2

kz

[(
R(1)

p R(2)
p

Ap
+ ω2

c2k2
z

R(1)
s R(2)

s

As

)
e2ikza + 1

2

(
ω2

c2k2
z

R(1)
s

As
− R(1)

p

Ap

)
e2ikzz

+ 1

2

(
ω2

c2k2
z

R(2)
s

As
− R(2)

p

Ap

)
e2ikz (a−z)

]
(A5)

and

E (sc)
zz (r, r, ω) = 4π i

∫
d2k⊥
(2π )2

k2
⊥

kz

(
R(1)

p R(2)
p

Ap
e2ikza + R(1)

p

2Ap
e2ikzz + R(2)

p

2Ap
e2ikz (a−z)

)
, (A6)

where k⊥ is the in-plane wave vector, kz =
√

ω2/c2 − k2
⊥, the indices s and p denote TE and TM polarizations, respectively, R(k)

α

is the reflection coefficient of the kth mirror for polarization α = s, p, and Aα = 1 − R(1)
α R(2)

α e2ikza. The corresponding formulas
for the magnetic Green’s tensor H(sc)

αβ (r, r, ω) can be obtained from those of the electric Green’s tensor, by interchanging the
reflection coefficients R(k)

s ↔ R(k)
p in Eqs. (A5) and (A6).
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