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Correlation-coupling entropy as a measure of strong electron correlation and fragment-conditional
density spin polarization as a measure of electron entanglement
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Quantum entanglement has been one of the hottest topics in current day physics, since it is the driving
force behind quantum cryptography, quantum teleportation, and quantum computing. Several measures of
quantification of entanglement have been proposed, each of which can often only be applied to a few specific
systems. In this paper we derive a kinematic measure of entanglement that is capable of giving a full description
of Einstein-Podolsky-Rosen entanglement in molecular systems. The associated “coupled entropy” energy
contribution generates the correct amount of strong correlation energy for the H2 and N2 prototype systems,
and is shown to be able to perform the same feat if it is explicitly used as the correlation component in the
density-matrix functional context. And, finally, we propose a nonkinematic way to measure the entanglement of
spins by using the conditional density of the system.
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I. INTRODUCTION

The first-order density matrix (1RDM) γ (x1, x′
1)

γ (x1, x′
1) = N

∫
�∗(x′

1, . . . , xN )�(x1, . . . , xN )dx2 . . . dxN

(1)

and its diagonal, the electron density ρ(x1)

ρ(x1) = γ (x1, x1), (2)

are the key descriptors of the averaged electron distribution
in many-electron systems. In (1) �(x1, . . . , xN ) is the generic
wave function, where x = {r, s} stands for both spatial r and
spin s electron coordinates. The one-electron functions ρ and
γ serve as the basic arguments of the familiar density func-
tional (DFT) [1–3] and density-matrix functional (DMFT)
[4–17] theories, respectively. Useful information is contained
in the conditional density

ρcond(x2|x1) = ρ2(x1, x2)

ρ(x1)
(3)

extracted from the pair density ρ2(x1, x2), the diagonal of the
second-order RDM (2RDM)

ρ2(x1, x2) = N (N − 1)
∫

�∗(x1, x2, . . . , xN )

×�(x1, x2, . . . , xN )dx3 . . . dxN . (4)

The function ρcond(x2|x1) gives the density of the electrons
with the spin s2 at r2 when the reference electron with the
spin s1 is at r1 [7].

One of the topics of this paper is the quantification of one
of the most intriguing quantum phenomena: quantum entan-
glement [18–20]. Entanglement became one of the hottest
issues in the present-day physics, giving birth to quantum
cryptography [21] and quantum teleportation [22], and it is the
basic phenomenon in quantum computing [23–26]. Then, the

important theoretical point is the adequately defined measure
of entanglement [27–33]. In this paper, a local Lent(r2(∈
�B)|r1(∈ �A)σ ) and a global Gent(B|r1(∈ �A)σ ) measures of
entanglement of formation of the mixed states in a bipartite
system AB are proposed based on the relaxed ρcond (see
below).

Apparently, strong electron correlation is a mechanism
of electron entanglement in molecular systems, such as the
paradigmatic dissociating hydrogen molecule H2. Indeed, in
the molecular realization of the Bohm version [19] of the fa-
mous Einstein-Podolsky-Rosen (EPR) Gedanken experiment
[18] strong correlation dictates that the spin of the electron
on the hydrogen atom HB is opposite to that measured on
another atom HA of the entangled dissociating H2 state. Then,
the important theoretical point is to provide the kinematic (in-
direct) measure of strong correlation, which simultaneously
can be used to correctly evaluate its energetic effect. In this
paper, correlation-coupling entropy Scc is proposed as such a
measure (see below).

II. STRONG ELECTRON CORRELATION VIA
CORRELATION-COUPLING ENTROPY

“Metathermodynamic” description of strong correlation
with Scc is based on the adopted in DMFT notion of a fictitious
ensemble noninteracting system, which has the same γ (x, x′)
as the considered real interacting system [34–36]. This means
that both systems have also the same eigenfunctions, the
natural orbitals (NOs) χp and eigenvalues, and the natural
occupation numbers (NONs) ni of γ

γ (x, x′) =
∑

p

npχ
∗
p (x′)χp(x). (5)

The introduced noninteracting system is represented with
the ensemble N-order density matrix (NDM) �N

es(x1, . . . , xN )
constructed from the reference N-electron Slater determinant
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	0 (built from the first N strongly occupied spin-NOs χi) and
its double excitations 	aa

ii to other NOs χa

�N
es = w0|	0〉〈	0| +

∑
i,a

wa
i

∣∣	aa
ii

〉〈
	aa

ii

∣∣, �N
es → γ . (6)

The ensemble weights w0 and wa
i are related to the NONs as

follows:

w0 +
∑

i( �= j),a

wa
i = n j (7)

for the “strong” occupations nj � 1
2 and

∑
i

wa
i = na (8)

for the “weak” occupations na < 1
2 . Then, the NOs and NONs

can be considered as obtained from the minimization of the
ensemble energy Ee

s

Ee
s = TrN

[
HN

s �N
es

]
, (9)

where HN
s is the Hamiltonian of the noninteracting system,

which consists of the one-electron operators

HN
s =

N∑
i

{h(ri ) + vee(xi )}. (10)

Here, h(r) is the standard one-electron operator with the local
external potential v(r)

h(r) = − 1
2∇2

r + v(r), (11)

while vee(x) is the one-electron nonlocal effective potential of
the electron-electron interaction [36,37].

The correlation-induced deviation of γ of the introduced
ensemble from idempotency can be used to define a measure
of the correlation strength. In principle, the Shannon-type
symmetrized correlation entropy Sc

Sc = −
∑

p

[np ln np + (1 − np) ln (1 − np)] (12)

can serve as a kinematic measure of strong correlation [38].
Unfortunately, Sc cannot optimally serve our goal of ade-
quately evaluating the energy of strong correlation Esc as the
metathermodynamic entropy contribution of the type

Esc = −
S, (13)

where 
 is the effective temperature. Sc cannot differentiate
between a system in which multiple isolated bonds are broken
and one in which the broken bonds are themselves entangled
with each other [17,27]. To this end, we introduce a measure
of the departure of γ from idempotency

Scc = 1

4 ln 2

∑
i, j

√
−[ni ln ni + (1 − ni ) ln (1 − ni )]

×√−[n j ln n j + (1 − n j ) ln (1 − n j )]. (14)

In (14) the components of Sc of (12) for the NOs are coupled,
so we call it correlation-coupling entropy Scc. This coupling
allows one to use the pairwise correlation interactions of

TABLE I. All H-H distances are in bohr. 6-31G* basis.
CASSCF(2,2) NOs and NONs were used to evaluate the E γ

HF and
Esc entries.

R 1.4 10.0

EHF −1.1267 −0.7481
E γ

HF −1.0966 −0.6821
E γ

HF + Esc −1.1369 −0.9965
ECASSCF(2,2)(NO) −1.1462 −0.9965
EFCI −1.1517 −0.9965

DMFT, the exchange integrals Ki j

Ki j = 〈i j| ji〉 =
∫

χ∗
i (x1)χ∗

j (x2)χ j (x1)χi(x2)

|r1 − r2| dx1dx2 (15)

as the partial effective temperatures (interaction strengths) 
i j


i j = Ki j . (16)

With this, Esc is expressed as follows:

Esc = − 1

4 ln 2

∑
i, j


i j

√
−[ni ln ni + (1 − ni ) ln (1 − ni )]

×√−[n j ln n j + (1 − n j ) ln (1 − n j )]. (17)

Then, the total electronic energy EHFE of a system with strong
correlation can be written as the sum

EHFE = Eγ

HF + Esc, (18)

where Eγ

HF is the Hartree-Fock (HF) energy evaluated using
γ (x, x′) of the ensemble

Eγ

HF = 2
∑

i

nihii +
∑
i, j

nin j (2Ji j − Ki j ), (19)

with Ji j = 〈i j|i j〉 being the Coulomb integral and the sums
are over all orbitals.

The paradigmatic system with strong nondynamic electron
correlation is the (stretched) H2 molecule. In the dissociating
limit strong nondynamic correlation is adequately described
with the Heitler-London (HL) model with only one antibond-
ing χu orbital in addition to χg. The HF energy of H2 (19) in
the dissociation limit is given by

Eγ

HF ≈ hgg + huu + 1
4 Jgg + 1

4 Juu + Jgu − 1
2 Kgu (20)

and the proposed strong correlation energy expression (17)
has the correct asymptotic correction

Esc ≈ − 1
4 Jgg − 1

4 Juu − 1
2 Kgu, (21)

which renders the correct bond R(H-H) dissociation asymp-
totics also for the total energy (18)

EHFE ≈ hgg + huu + Jgu − Kgu ≈ hgg + huu + 1

R
. (22)

Table I displays the energies (18) calculated for H2 at
the equilibrium R = 1.4 bohr and stretched R = 10.0 bohr
bond distances within the above mentioned two-orbital HL
model. The NOs and NONs are taken from the corresponding
CASSCF(2,2) calculations with two HL NOs. These NOs are
also inserted in the HF part (19) of (18).
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TABLE II. All N-N distances are in bohr. 6-31G* basis.
CASSCF(6,6) NOs and NONs were used to evaluate the E γ

HF and
Esc entries.

R 2.075 10.0

EHF −108.9426 −107.7976
E γ

HF −108.7928 −107.5997
E γ

HF + Esc −109.0132 −108.7646
ECASSCF(6,6) −109.0786 −108.7646
EMRCI −109.2668 −108.9368

One can see from Table I that the energy (18) reasonably
reproduces the reference CASSCF(2,2) energy of the H2,
which at R = 10.0 bohr coincides with that of the full CI (FCI)
in the chosen basis. This means that the proposed metathermo-
dynamical approach fully grasps strong nondynamic electron
correlation in this paradigmatic case. Then, the relative low-
ering of the FCI energy at the equilibrium compared to those
of CASSCF(2,2) and (18) is due to the inclusion within the
former of a large part of dynamic correlation.

Application to another paradigmatic case of strong non-
dynamic correlation, the triple-bonded N2 molecule, shows
further virtues of the proposed description (14), (17) of strong
correlation via the correlation-coupling entropy. The apparent
nonadditivity of Scc of (14), in fact, correctly reflects the
actual nonadditivity of correlation coupling in the dissociat-
ing multiple-bonded molecules. In particular, the correlation
coupling in the dissociating N2 does not reduce to the sum of
the correlation couplings in the individual bonds. The point
is that the N2 dissociates to the symmetrized combination
of quartet ground states of two N atoms. This entails extra
nonadditive coupling between the electrons of different σ - and
π -electron pairs [39]. All these couplings are accounted for
in the CASSCF(6,6) calculation, which includes all possible
excitations in the active space of six frontier σ - and π -bonding
and antibonding orbitals.

One can see from Table II that the energy (18) is close to
the reference CASSCF(6,6) energy of the N2 at the stretched
R = 10.0 bohr bond distance. At the R = 2.075 bohr equi-
librium distance the Esc is able to close the majority of the
gap between the NO based HF and CASSCF(6,6) energies.
It is still missing roughly 0.06 hartree of correlation. The
order of magnitude of the missing energy is very close to
the amount of energy that has been shown to be related to
dispersion type interaction that can only be described by using
integrals that use four different orbital indices [17]. This type
of correlation is purely dynamical in nature, so the proposed
correlation-coupling approach seems to fully grasp both intra-
and interpair effects of strong nondynamic correlation.

In addition to being able to describe and extract strong cor-
relation from a one-body density matrix generated by a wave
function, EHFE can also be seen as a full DMFT functional that
can be used independently. A relatively faithful approximation
of the logarithmic form of Esc in terms of symmetrical particle
hole products is given by

Esc ≈ −
∑
i, j


i j
1

4
(

1
16

)p [ni(1 − ni )n j (1 − n j )]
p, (23)

with p = 0.38. A more commonly known functional, the
corrected Hartree Fock or Hartree Fock Bogoliubov (HFB)
functional, is recovered in case one sets p = 0.5. So one
could view this EHFE functional as a more strongly correlated
version of the HFB functional. The HFB functional itself is
known to suffer from variational collapse [40], which can be
avoided by imposing occupation number contraints [41]. In
order to test the self-consistent performance of the HFE func-
tional we have applied the (nonapproximated) logarithmic
form to the H2, LiH, H2O, and N2 molecules. We have also
performed HFB and CASSCF calculations for comparison
purposes. In case of the first three molecules the active space
is spanned by two orbitals whose occupation sums up to two
electrons. In the case of the N2 molecule the HFB and HFE
active space is spanned by three sets of two orbitals whose oc-
cupations sum up to two electrons each, while CASSCF uses
all six orbitals. The remaining core and deep valence orbitals
have their occupations fixed at full occupancy, although the
orbitals themselves are still optimized. The potential-energy
surfaces are shown in Fig. 1. The H2 and and H2O curves show
that the HFE functional is able to reproduce almost the entire
CASSCF curve, only missing a small amount of correlation
in the equilibrium region. The “normal” HFB curves, on the
other hand, are on top of the HF curves for a relatively
long time before separating and going to the CASSCF dis-
sociation limit. So the HFE functional is more capable of
giving a balanced description of the change of nondynamical
correlation along the entire curve. The same situation can
also be seen for the N2 molecule, the only difference being
that the presence of dispersive dynamical correlation terms
in the CASSCF space causes a larger discrepancy between
the HFE and CASSCF equilibrium energies. Both the HFB
and HFE functional overestimate the dissociation limit energy
for the LiH molecule. This is a known problem of HFB like
functionals when they are used in self-consistent calculations
of dissociations involving two different atoms or fragments,
and can be fixed by adding an appropiate constraint term to the
energy [42]. Overall the performance of the HFE functional is
good enough to warrant further investigation in the future.

III. FRAGMENT SPIN POLARIZATION OF THE
CONDITIONAL DENSITY AS A MEASURE OF

ENTANGLEMENT

Now, we return to the nonkinematic (direct) measure of
entanglement in a system AB based on the conditional density.
To provide such a measure, it is crucial to use the relaxed
ρcond, which is adjusted to the presence of the reference
electron with a certain spin at a certain position. Consider, for
example, the β-spin component ρcond(r2β|r1α) of the condi-
tional density of the dissociating H2 relaxed in the presence of
the reference electron with the spin α in the region r1 ∈ �A of
a certain H atom HA. Then, strong electron correlation dictates
that the relaxed ρcond(r2β|r1α) turns to the electron density of
another H atom HB

ρcond(r2β|r1(∈ �A)α) ≈ ρHB (r2). (24)

In a general case of a bipartite closed-shell system AB,
we propose a local Lent(r2(∈ �B)|r1(∈ �A)σ ) and a global
Gent(B|r1(∈ �A)σ ) measures of entanglement based on the

032335-3



R. VAN MEER AND O. V. GRITSENKO PHYSICAL REVIEW A 100, 032335 (2019)

 

 
(a)

h
E

E
E

E

(b)

(c)

(d)

FIG. 1. Potential-energy curves (6-31G*) for H2 (a), LiH (b),
H2O (c), and N2 (d). The H2O equilibrium geometry is slightly
distorted in order to break the symmetry. Only a single O-H bond
is broken for the H2O molecule.

relaxed ρcond characterized above. The function Lent (r) is
defined as the spin polarization of the conditional density on
fragment B, which is relaxed in the presence of the refer-
ence electron with spin σ placed in the (strongly correlated
valence) region of fragment A

Lent(r2(∈ �B)|r1(∈ �A)σ )

= ρcond(r2(∈ �B)σ ′( �= σ )|r1(∈ �A)σ )

−ρcond(r2(∈ �B)σ |r1(∈ �A)σ ). (25)

In the considered example of the dissociating H2 the second
term in the right-hand side of (25) vanishes due to the strong
correlation driven full spin polarization on the individual H
atoms. With this, Lent turns to just ρHB

Lent(r2(∈ �B)|r1(∈ �A)σ ) ≈ ρHB (r2). (26)

Next, we introduce the global measure of entanglement Gent

as the number of the unpaired electrons on the fragment B
obtained for the relaxed conditional density as the integral of
Lent (r) over the fragment B:

Gent(B|r1(∈ �A)σ ) =
∫

�B

Lent(r2(∈ �B)|r1(∈ �A)σ )dr2.

(27)

Apparently, in the considered example of the dissociating
H2 the proposed Gent tends to 1 with R and its parametrical
dependence of the position r1 of the reference electron on A is
weak

∀r1 ∈ �A, Gent(B|r1(∈ �A)σ ) → 1, R(H − H) → ∞.

(28)

Furthermore, in the example considered above of the disso-
ciating N2 the strong intra- and interpair electron correlation
makes the spins of three bonding electrons on the nitrogen
atom NB all opposite to the predetermined spin σ of the refer-
ence electron located in the bonding region r1 ∈ �A(bond ) of
another nitrogen atom NA (assuming that atom A has a local
maximum sz value). Then, apparently, the proposed Gent tends
to three with R and its parametrical dependence of the position
r1 of the reference electron in the bonding region of NA is,
again, weak:

∀r1 ∈ �A(bond ), Gent(B|r1(∈ �A)σ ) → 3,

qR(N − N) → ∞. (29)

IV. DISCUSSION AND CONCLUSIONS

The introduced measures of entanglement Lent and Gent

give a rigorous quantum-mechanical description of the EPR
Gedanken experiment [18] in its simplified version by Bohm
[19]. Indeed, fixing the spin of the reference electron to σ on
the atom HA of the entangled state of the dissociating H2 is
equivalent to measuring the electron spin of this atom by Al-
ice. Then, because of entanglement, Bob will instantly receive
the opposite spin on another atom HB, which is adequately
represented with the value 1 of the proposed Gent.

Moreover, the introduced measures adequately describe the
multientanglement extension of the EPR experiment with the
considered example of the dissociating N2. Fixing the spin of
the reference electron to σ in the bonding region of the atom
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NA of the entangled state of the dissociating N2 is equivalent
to the hypothetical measuring of the spin of the electron of the
corresponding breaking bond on the atom NA by Alice. Then,
because of multiple entanglement, Bob will instantly receive
three opposite spins on another atom NB, which is adequately
represented with the value 3 of the proposed Gent.

We have seen that the metathermodynamical energy cor-
rection (17) is perfectly capable of describing the bond break-
ing processes. However, the entropy component of this energy

(14) scales quadratically, which means that it does not have
the proper additive property that an entropy measure should
have, i.e., adding an identical noninteracting copy of the
system to the system does not result in the doubling of the
entropy, since additional cross terms appear. The energetic
correction does not suffer from any difficulties due to the fact
that it uses an exchange integral, which nullifies any entropic
terms between noninteracting parts of the system. One could
define a spatially modified entropy of the form

Scco = 1

4 ln 2

⎛
⎝∑

i

−[ni ln ni + (1 − ni ) ln (1 − ni )] +
∑
i �= j

Oia

√
−[ni ln ni + (1 − ni ) ln (1 − ni )]

× √−[n j ln n j + (1 − n j ) ln (1 − n j )]

⎞
⎠, (30)

where

Oia =
∫

|χi(r1)||χa(r1)|dr1. (31)

This entropy would not suffer from the additive collapse. We
have also proposed a conditional density based scheme that
can measure the entanglement directly. Work on both of these
schemes is in progress.
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