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Detuning-modulated composite pulses for high-fidelity robust quantum control
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We introduce a control method for off-resonant robust quantum information processing suited for quantum
integrated photonics. We utilize detunings as control parameters to derive a family of composite pulses for
high-fidelity complete population transfer. The presented detuning-modulated composite sequences can be
implemented within the decay lifetime of the qubit and correct for control inaccuracies in various parameters
including pulse strength, duration, detuning, phase jitter, Stark shift, and unwanted frequency chirps. We
implement the proposed robust sequences in an integrated photonics platform to achieve complete light transfer
insensitive to fabrication errors.
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I. INTRODUCTION

Quantum information processing (QIP) relies on high-
fidelity quantum state preparation and transfer. This presents a
challenge in practical realizations of QIP where the admissible
error of quantum operations is smaller than 10−4 [1]. Thus
small systematic errors due to imperfections in fabrication
or in the experimental control knobs reduce the fidelity of
state transfer below the fault-tolerant threshold. A powerful
tool to correct for systematic errors is composite pulses (CPs),
which were initially developed in the field of nuclear magnetic
resonance [2–9]. A composite pulse is a sequence of pulses
with different areas and/or phases that implement accurate
and robust quantum gates. To this end, CPs are designed
for resonant or adiabatic interactions with complex coupling
parameters [10–12] and were successfully used to achieve
complete population transfer (CPT) in quantum systems in
both rf and ultrashort pulses [13].

More recently, CPs found applications in matching higher
harmonic generation processes [14] and in designing polar-
ization rotators [15,16], as well as in QIP realizations in-
cluding trapped ions [17] and atomic systems [18,19]. An-
other promising candidate for advancing QIP technologies
is integrated photonic circuits due to their scalability and
on-chip integration capacity [20–22]. However, to date, the
gate fidelity remains below the QIP threshold due to unavoid-
able fabrication errors. CPs have not been previously used
to correct for such errors as existing CP sequences require
control of the phase of the coupling, whereas in integrated
photonic circuits it is a real parameter. The present research
is the first to address this limitation and to derive CPs that
can be used in any qubit architecture including integrated
photonics.

In this paper, we introduce the first composite sequences
designed for off-resonant robust qubit inversion. We realize
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the desired high-fidelity population transfer by suitably choos-
ing the detuning parameters while maintaining constant cou-
pling throughout the constituent pulses. The presented general
approach to derive detuning-modulated composite pulses of
an arbitrary length N has a minimal pulse overhead and
robust transfer is realized even for N = 2. In our analysis we
consider a generic qubit which has many physical realizations
including atomic and photonic systems (Fig. 1). We show
that our sequences are stable to inaccuracies in various sys-
tematic parameters—coupling strength, duration, phase jitter,
and resonance offsets—and achieve fidelities well above the
QIP gate error threshold within the temporal lifetime of the
system. Finally, we lay out the general recipe to implement
the presented detuning-modulated composite sequences in in-
tegrated photonic systems for broadband high fidelity optical
switching.

II. DETUNING-MODULATED COMPOSITE PULSES

The dynamics of a qubit {|1〉, |2〉} driven coherently by an
external electromagnetic field [Fig. 1(a)] is governed by the
Schrödinger equation

ih̄∂t

[
c1(t )

c2(t )

]
= h̄

2

[−�(t ) �(t )

�∗(t ) �(t )

][
c1(t )

c2(t )

]
. (1)

Here, [c1(t ), c2(t )]T is the probability amplitudes vector, �(t )
is the Rabi frequency of the transition, and �(t ) = (ω0 − ω)
is the real-valued detuning between the laser frequency ω

and the Bohr transition frequency of the qubit ω0. In what
follows, we assume �(t ) and �(t ) real and constant, which
is well suited for the foreseen implementation in coupled
waveguides and in optical elements for generating higher
harmonics. However, we note that our composite sequences
can also be implemented in physical systems with complex
�(t ).
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FIG. 1. Coherent qubit dynamics. Qubit realization in (a) an
atomic system driven by a field with Rabi frequency � and detuning
� and in (b) coupled waveguides of widths w1 and w2 at a distance g.
(c) Population transfer fidelity as a function of detuning and coupling
errors. (d) Resonant Rabi oscillations. The permissible gate infidelity
is <10−4.

The unitary propagator corresponding to Eq. (1) is found
according to U (t, 0) = e−i/h̄

∫ t
0 H (t )dt and reads

U (δt ) =
[
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2

) + i �
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(
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2
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sin
(
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2

)
−i �
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(
A
2

)
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(
A
2

) − i �
�g

sin
(

A
2

)
]
.

(2)

Here, �g = √
�2 + �2 is the generalized Rabi frequency and

A = �gδt is the pulse area with δt = (t − t0) being the pulse
duration. The propagator U (δt ) evolves the state of the qubit
from the initial time t0 to the final time t according to c(t ) =
U (δt )c(t0). If the initial state of the qubit at t0 is |1〉, the popu-
lation of the excited state |2〉 at time t is given by the modulus
squared of the off-diagonal propagator element |U12(δt )|2.

We assume the most general composite pulse sequence
comprising N individual off-resonant pulses with Rabi fre-
quencies �n and detunings �n. Given the individual pulse
propagator Un(δtn) from Eq. (2), the propagator for the total
composite pulse sequence is expressed by the product

U (N )(T, 0) = UN (δtN ) UN−1(δtN−1) . . .U1(δt1), (3)

where δtn = (tn − tn−1) is the duration of the nth pulse (t0 =
0 and tN ≡ T ). Below, we focus on the case of ingredient π

pulses, i.e., An = A = π , which is easily realized by setting
the pulse durations according to δtn = π/

√
�2

n + �2
n.

A. General propagator matrix

We require that the composite sequence produces a prese-
lected single-qubit rotation T on the Bloch sphere at an angle
θ ,

T =
[

cos θ −i sin θ

−i sin θ cos θ

]
. (4)

That is, at the end of the pulse sequence the propagator from
Eq. (3) should implement the target T . The exact form of

the off-diagonal element of the composite propagator for an
arbitrary even N = 2n pulse sequence is given by

∣∣U (2n)
12 (T, 0)

∣∣ =
2n∏

s=1

|�s|√
�2

s + �2
s

∣∣∣∣∣
2n∑

i=1

(−1)i+1 �i

�i

+
2n∑

i< j<k=1

(−1)i+ j+k �i

�i

� j

� j

�k

�k
+ · · ·

+
2n∑

i<···<m=1

(−1)i+···+m+1 �i

�i
· · · �m

�m︸ ︷︷ ︸
2n−1

∣∣∣∣∣∣∣∣, (5)

while for an odd N = (2n + 1) pulse sequence by

∣∣U (2n+1)
12 (T, 0)

∣∣ =
2n+1∏
s=1

|�s|√
�2

s + �2
s

∣∣∣∣∣1 +
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i< j=1

(−1)i+ j+1 �i

�i

� j

� j

+
2n+1∑
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(−1)i+ j+k+l �i

�i

� j

� j

�k

�k

�l

�l
+ · · ·

+
2n+1∑

i<···<m=1

(−1)i+···+m+1 �i

�i
· · · �m

�m︸ ︷︷ ︸
2n

∣∣∣∣∣∣∣∣. (6)

We require that |U (N )
12 (T, 0)| = | sin θ |.

B. Complete population transfer

Below we focus on providing the protocol for the deriva-
tion of composite sequences, which produce a robust complete
population inversion. The same protocol can be followed for
any other rotation angle θ and we provide an example for
θ = π/2 in the Appendix.

For target θ = π , we require that the modulus squared of
the off-diagonal element from Eq. (3) should be equal to 1,
|U (N )

12 (T, 0)| = 1. To fulfill this condition we use the set of
detunings {�n} as free control parameters. We find that for
a complete population inversion they need to obey a general
analytical condition depending on the parity of N . For an even
N = 2n, the condition is

1 +
2n∑

i< j=1

(−1)i+ j+1 �i

�i

� j

� j
+ · · ·

+
2n∑

i<···<m=1

(−1)i+···+m+1 �i

�i
· · · �m

�m︸ ︷︷ ︸
2n times

= 0, (7)

while for an odd N = (2n + 1) it reads

2n+1∑
i=1

(−1)i+1 �i

�i
+

2n+1∑
i< j<k=1

(−1)i+ j+k �i

�i

� j

� j

�k

�k
+ · · ·

+
2n+1∑

i<···<m=1

(−1)i+···+m+1 �i

�i
· · · �m

�m︸ ︷︷ ︸
(2n+1) times

= 0. (8)
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Note that the above Eq. (7) or (8), depending on the parity of
the composite pulse, is the only condition that the detuning
and coupling parameters need to fulfill in order to realize a
population inversion in the system.

The next step in our protocol is to find which subset of
the solutions to Eqs. (7) and (8) produce an excitation profile
that is maximally robust to variations in the pulse area A
at selected value(s) of A. This is achieved mathematically
by nullifying the even derivatives of the propagator element
∂k

∂Ak |U (N )
12 (T, 0)|2 at A = π . Note that the odd derivatives are

always equal to zero. Thus for a first-order CP realizing
a robust composite sequence that corrects for imperfections
in the pulse area we need to nullify the second derivative,
while for a second-order CP—the second and the fourth
derivatives simultaneously. Note, that in contrast to previous
works [10,11,18], the pulse area A for an off-resonant pulse
is a function of all systematic parameters—pulse duration,
amplitude, and detuning—and thus the detuning-modulated
composite pulses presented here are robust against various
systematic errors.

C. First-order composite pulses: Sign-alternating �s

In the following we provide analytical solutions for broad-
band pulse sequences of arbitrary lengths N . In order to obtain
the elegant analytical solutions for arbitrary N presented
below we assume that the detuning and coupling parameters
values are not completely arbitrary but they have equal ratios
|�i
�i

| = |� j

� j
|, ∀i, j. The uncovered pulse symmetries represent

a powerful analytical quantum control tool and allow for
finding sequences of arbitrary lengths in a straightforward
manner. The presented sequences will be straightforward to
realize in NMR and in coupled waveguide qubits.

Our first-order composite pulse parameters are antisym-
metric along their length, i.e., �i

�i
= −�i+1

�i+1
≡ ξ for i =

(1, . . . , N − 1). The rationale behind this is that the composite
sequence needs to produce a change in the path of the state
vector on the Bloch sphere (see the inset of Fig. 5). Then,
the CPT conditions Eqs. (7) and (8) can be rewritten as the
polynomial

n∑
s=0

(−1)s

(
N

N − 2s

)
ξN−2s = 0, (9)

which is valid for both even N = 2n and odd N = (2n + 1)
sequences. The roots of this polynomial provide the values
of δ for which a complete population transfer is achieved
and moreover ∂2

∂A2 |U (N )
12 |2 at A = π is nullified. For a flat-

top broadband composite sequence we choose the root that
minimizes the fourth derivative ∂4

∂A4 |U (N )
12 |2 at A = π (the

polynomial is a symmetric function of ξ ). Finally, we find that
first-order detuning-modulated CPs of length N are realized
for δ equal to the largest (in absolute value) root of the
polynomial Eq. (9). In Table I we present the first several
examples for CPs.

D. Second-order composite pulses: Antisymmetric �s

Second-order CPs are of odd pulse length, N = (2n + 1),
and similar to the first-order ones the ratios of the detunings

TABLE I. First-order detuning-modulated CPs.

N ±(
�1
�1

,
�2
�2

, . . .
)

2 (1,−1)
3 (1, −1, 1)

√
3

4 (1,−1, 1, −1) (
√

2 + 1)

and couplings are equal and antisymmetric with respect to
the length of the pulse. That is, �i

�i
= −�N+1−i

�N+1−i
≡ ξ , while the

detuning of the middle pulse is �n+1 = 0. This antisymmetric
arrangement fulfills the CPT condition Eq. (8) automatically
and the second derivative is zero as it is proportional to
the diagonal element of the propagator. To achieve a higher
fidelity of the CPs we need to also nullify the fourth derivative
∂4

∂A4 |U (N )
12 (T, 0)|2 at A = π and minimize the sixth. This task is

simple numerically and in Table II we present a few examples
of second-order CPs, which can easily be extended to large
odd N .

The above presented approach of tailoring the propagator
element and its derivatives to achieve robustness against sys-
tematic parameters can be extended to implement other gates,
i.e., create equal superposition between the states. In this case
the propagator elements squared from (7) and (8) should be
equal to 1/2 and the derivatives with respect to any chosen
systematic parameter should be nullified accordingly.

III. ROBUSTNESS OF THE DETUNING-MODULATED
SEQUENCES

A. Pulse area errors and phase jitter

The infidelities of the first- and second-order composite
sequences as a function of errors in the target pulse area are
shown in Fig. 2. For easy reference, we include the fidelity of
a resonant pulse and the QI gate error threshold [1]. Note that
the infidelity of the population transfer is well below the QI
benchmark even for δA/A larger than 10% as compared to less
than 1% for a resonant excitation. We achieve approximately
an order of magnitude improvement in the error tolerance
by adding a single pulse (first-order CP) and 1.5 orders of
magnitude by adding two extra pulses (second-order CP). The
pulse overhead scales as N , which is significantly better than
that of previous proposals (2N) [10–12]. In our analysis we
also allowed for Gaussian errors of 10% in the individual
pulse areas and averaged over 100 times (with dashed curves).
Note that any other first- and second-order pulses have similar
robustness to the ones we show here as they nullify up
to the same derivative of the propagator element and, for
compactness, we have omitted them. Finally, we relaxed the
assumption of real couplings � and allowed for a random

TABLE II. Second-order detuning-modulated CPs.

N ±(
�1
�1

,
�2
�2

, . . . , 0, . . . ,
�N−1
�N−1

,
�N
�N

)
3 (1, 0, −1) 2.5425
5 (1,−1, 0, 1, −1) 5.09027
7 (1, −1, 1, 0, −1, 1, −1) 7.6375
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FIG. 2. Infidelity of the shortest first- (red) and second-order
(blue) CPs vs area errors with (dashed curves) and without (solid
curves) Gaussian noise of 10% in A averaged over 100 times. The
point-dash blue curve shows the second-order pulse with a random
phase error of 1%. The black curve shows the infidelity of a single
resonant pulse and we also show the 10−4 QIP infidelity threshold.

phase jitter of 1% in the second-order pulse (dashed blue). We
note that the error correction of our CPs is largely unaffected
by such inaccuracies.

B. Detuning and coupling errors

We further examine the robustness of the detuning-
modulated composite sequences in the presence of simulta-
neous detuning and coupling errors and show the population
transfer fidelity in Fig. 3(a). We present the contour plots of
the fidelity of the first-order (left) and second-order (right)
CPs of length N = 2 and 3, respectively. Note that the con-
tour plots for any other pulses from their respective families
look similar. The area where the fidelity is above 90% is
increased significantly as compared to that of a resonant pulse
[Fig. 1(c)]. We also identify areas in the parameter space
where the fidelity exhibits a notable stability against either
detuning δ�i/�i or coupling δ�/� errors and mark them by
horizontal and vertical cut lines in the contour plots. We zoom
in on them in Figs. 3(b) and 3(c) and observe an increased
robustness vs detuning and coupling errors.

C. In the presence of relaxation

As composite sequences require longer implementation
times, it is important to test their fidelity against the lifetime
of the system. Given relaxation, we substitute � → (� − iγ )
in the diagonal elements of the Hamiltonian (1), and find the
probability amplitude of each state according to |ci(t )|2e−γ t/2,
where the relaxation time is T1 = γ −1. It is known that for free
decay T1 is independent of T2 and there is an upper limit to the
decoherence rate T2 � 2T1 [23,24]. We show the robustness
of the population transfer with respect to γ in Fig. 4 where
we have used experimentally reported decoherence values
(Refs. [25–28]) to allow for γ of the order of �. The above
analysis shows that the detuning-modulated sequences are a
powerful tool for a robust qubit inversion even in the presence
of decay or decoherence and that their implementation time is
well within the decay time of the qubit.

IV. REALIZATION IN COUPLED WAVEGUIDES

The detuning-modulated CPs offer a unique solution to
overcome inaccuracies in fabrication in integrated photonic

Individual detuning error δΔi/Δi
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FIG. 3. Robustness of first- (left) and second-order (right)
detuning-modulated sequences vs detuning and coupling errors.
(a) Contour plots of the fidelity vs errors in both δ�i/�i and δ�/�.
The error tolerance is increased significantly as compared to the
contour plot of a single resonant pulse, shown in Fig. 1(c). The
infidelity, 1 − F , along the horizontal (b) and vertical (c) cut lines
from the contour plots from (a), where first-order pulses are in red
and second-order pulses are represented with blue. For easy reference
we show the 10−4 QIP infidelity threshold and the resonance pulse
infidelity with black.

circuits. In Fig. 1(b), we show two evanescently coupled
optical waveguides at a distance g measured from their cen-
ter lines. Within the coupled-mode approximation [29], the
amplitudes of the fundamental modes in the waveguides obey
an equation analogous to Eq. (1) where the coupling is � =
a e−bg (a and b are material and geometry dependent). For con-
stant g, � is also constant throughout the length. The system
is on resonance if the waveguides have identical geometries;
otherwise, there is a real-valued phase mismatch � = (β1 −
β2)/2 with β1,2 being the respective propagation constants.

10-3 10-2 10-1 10010-5
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10-3
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γ/Ω

           
   resonant pulse
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FIG. 4. Infidelity, 1 − F , in log scale vs the decay rate in units of
� for N = 2 first- and N = 3 second-order composite sequences and
for a resonant pulse in red, blue, and black, respectively.
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FIG. 5. Complete light transfer in a first-order N = 2 detuning-
modulated composite waveguide coupler. (a) An out-of-scale
schematic of the waveguide design with EME calculation. Light is
initially injected in waveguide 1 and is then robustly transferred
to waveguide 2. (b) Light intensity of waveguide 1 (blue, initially
populated) and waveguide 2 (red, initially empty) vs normalized
propagation length. The inset shows the path of the system’s state
vector on the Bloch sphere during the evolution. (c) Fidelity of the
light transfer vs errors in (left) the propagation length L and (right)
the target phase mismatch �.

Thus our sequences can be implemented by changing the
waveguides’ widths such that there are step changes in �

along the length.
Figure 5(a) is an out-of-scale schematic of the N = 2 first-

order CP in coupled waveguides of length 2L. The width
of waveguide 1, w1, is fixed, while the width of waveguide
2 changes midlength from 1.034w1 to 0.966w1, realizing
the required step change in � in Si on SiO2 configuration.
By employing an eigenmode expansion (EME) solver, we
simulate the light propagation along the waveguides. We plot
the light intensities in Fig. 5(b) along with the Bloch sphere
path of the state vector. We realize a complete light switching
and test its robustness to errors in the phase mismatch δ�/�

and in the propagation length δL/L, shown in Fig. 5(c). We
observe high fidelity light transfer in excellent agreement with
the theoretical calculations (Figs. 2 and 3). Finally, in Fig. 6
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(c)In
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FIG. 6. (a) Light intensity as a function of normalized length of
two composite waveguide couplers: one with first-order design as
shown in (b) and one with second-order design as shown in (c). The
light intensity of the initially populated waveguides [with blue curves
in (a) starting from 1] is robustly transferred to the other waveguide
[with red curves in (a) starting from zero].

we show light switching for N = 3 composite waveguides
based on first- and second-order sequences.

V. CONCLUSIONS

We introduced a set of detuning-modulated composite
pulse sequences that are robust to inaccuracies in various sys-
tematic parameters including duration, coupling strength, and
off-resonance errors well within the system’s lifetime. The
control knobs, which we utilized to achieve broadband pop-
ulation transfer, are the detuning parameters of the constituent
pulses, while the coupling constants remain unchanged. We
achieved an inversion gate fidelity above the QI threshold vs
errors of several percents in the pulse area for a sequence of
only two constituent pulses and vs errors of over 10% for
three constituent pulses. The presented composite pulses are
radically different compared to existing composite sequences,
which assume complex coupling parameters and modify their
phases. Thus we believe that our analytical solutions will be
the cornerstone for quantum information protocols in practical
realization of high-fidelity quantum computing in integrated
photonic circuits.
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APPENDIX: COMPOSITE PULSE FOR A ROBUST
EQUAL SUPERPOSITION

An equal superposition between the two qubit states is
realized when the rotation angle from Eq. (4) θ = π/2. We
focus on the shortest sequence with N = 2. Then, for the
off-diagonal composite propagator element from Eq. (5) we
have the condition

U (2)
12 =

�1
�1

− �2
�2√

�2
1 + �2

1

√
�2

2 + �2
2

= −1/
√

2. (A1)

We solve this equation for one of the independent parameters,
�1
�1

, and find that it is satisfied for �1
�1

= −1− �2
�2

−1+ �2
�2

and �1
�1

=
−1+ �2

�2

1+ �2
�2

. We substitute this solution into the second derivative

of |U (2)
12 |2 with respect to A at A = π and finds its roots. The

exact expression is too cumbersome to be explicitly included
here. Finally, we find the roots to be(

�1

�1
,
�2

�2

)
= ±(−5.52, 0.69), (A2)

which gives the interaction parameters of a two-pulse se-
quence that produces a robust equal superposition.
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