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Validating quantum computers using randomized model circuits
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We introduce a single-number metric, quantum volume, that can be measured using a concrete protocol on
near-term quantum computers of modest size (n � 50), and measure it on several state-of-the-art transmon
devices, finding values as high as 16. The quantum volume is linked to system error rates, and is empirically
reduced by uncontrolled interactions within the system. It quantifies the largest random circuit of equal width
and depth that the computer successfully implements. Quantum computing systems with high-fidelity operations,
high connectivity, large calibrated gate sets, and circuit rewriting toolchains are expected to have higher
quantum volumes. The quantum volume is a pragmatic way to measure and compare progress toward improved
system-wide gate error rates for near-term quantum computation and error-correction experiments.
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I. INTRODUCTION

Recent quantum computing efforts have moved beyond
controlling a few qubits and are now focused on controlling
systems with several tens of qubits [1–3]. In these noisy
intermediate-scale quantum (NISQ) systems [4], the perfor-
mance of isolated gates may not predict the behavior of the
system. Methods such as randomized benchmarking [5], state
and process tomography [6], and gate set tomography [7]
are valued for measuring the performance of operations on
a few qubits, yet they fail to account for errors arising from
interactions with spectator qubits [8,9]. Given a system such
as this, whose individual gate operations have been indepen-
dently calibrated and verified, how do we measure the degree
to which the system performs as a general purpose quantum
computer? We address this question by introducing a single-
number metric, the quantum volume, together with a concrete
protocol for measuring it on near-term systems. Similar to
how LINPACK [10] and improved benchmarks [11,12] are used
for comparing diverse classical computers, this metric is not
tailored to any particular system, requiring only the ability
to implement a universal set of quantum gates. With the
concept of this metric being discussed elsewhere [13,14], our
focus here is on measuring this metric in near-term quantum
devices.

The quantum volume protocol we present is strongly linked
to gate error rates and is influenced by underlying qubit
connectivity and gate parallelism. It can thus be improved
by moving toward the limit in which large numbers of well-
controlled, highly coherent, connected, and generically pro-
grammable qubits are manipulated within a state-of-the-art
circuit rewriting toolchain. High-fidelity state preparation and
readout are also necessary. In this work we evaluate the
quantum volume of current IBM Q devices [1] and corrob-
orate the results with simulations of the same circuits under
a depolarizing error model. While we focus on transmon
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devices, the protocol can be implemented with any universal
programmable quantum computing device.

II. QUANTUM VOLUME

The quantum volume is based on the performance of
random circuits with a fixed but generic form. It is well known
that quantum algorithms can be expressed as polynomial-
sized quantum circuits built from two-qubit unitary gates [15].
Quantum algorithms are generally not random circuits. How-
ever, random circuits model generic state preparations and
are used as the basis of proposals for demonstrating quantum
advantage [16]. In addition, circuits with a similar form appear
in near-term algorithms like quantum adiabatic optimization
algorithms [17] and variational quantum eigensolvers [18].

A model circuit, shown in Fig. 1, with depth d and width
m, is a sequence U = U (d ), . . . ,U (2)U (1) of d layers

U (t ) = U (t )
πt (m′−1),πt (m′ ) ⊗ · · · ⊗ U (t )

πt (1),πt (2), (1)

each labeled by times t = 1, . . . , d and acting on m′ = 2�n/2�
qubits. Each layer is specified by choosing a uniformly ran-
dom permutation πt ∈ Sm of the m-qubit indices and sampling
each U (t )

a,b, acting on qubits a and b, from the Haar measure on
SU(4).

To define when a model circuit U has been successfully
implemented in practice, we use the heavy output generation
problem [19]. The ideal output distribution is

pU (x) = |〈x|U |0〉|2, (2)

where x ∈ {0, 1}m is an observable bit string. Consider the set
of output probabilities given by the range of pU (x) sorted in
ascending order p0 � p1 · · · � p2m−1. The median of the set
of probabilities is pmed = (p2(m−1) + p2(m−1)−1)/2 and the heavy
outputs are

HU = {x ∈ {0, 1}m such that pU (x) > pmed}. (3)

The heavy output generation problem is to produce a set
of output strings such that more than two-thirds are heavy.
The expected heavy output probability for an ideal device is
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FIG. 1. Model circuit. A model circuit consists of d layers of
random permutations of the qubit labels, followed by random two-
qubit gates. When the circuit width m is odd, one of the qubits is idle
in each layer. A final permutation can be applied to the labels of the
measurement outcomes.

asymptotically (1 + ln 2)/2 ∼ 0.85 [19], while it falls to ∼0.5
if the device is completely depolarized.

To evaluate heavy output generation, we implement model
circuits using the gate set provided by the target system. For
example, the model circuit may need to be rewritten, not
only to use the system’s gate set, but also to respect the
set of available interactions, which may require additional
operations such as SWAP gates. The average gate fidelity [20]
between m-qubit unitaries U and U ′ is

Favg(U,U ′) = |Tr(U †U ′)|2/2m + 1

2m + 1
. (4)

Given a model circuit U , a circuit-to-circuit transpiler finds
an implementation U ′ for the target system such that 1 −
Favg(U,U ′) � ε 
 1. In many cases, the approximation error
ε is limited by the selected classical precision within the
transpiler (e.g., for arithmetic to compute new gate angle
parameters), but may be further increased if the hardware
requires SU(4) to be approximated with a discrete set of
available gates.

The transpiler is free to use all available tricks and hard-
ware resources to implement U ′ (e.g., taking great compu-
tational effort in finding an optimized U ′ and using extra
qubits for gate teleportation or temporary storage). It may
optimize over qubit placements by choosing the best region
of the device. If it is practical to calibrate a very large gate
set and it happens to include an accurate implementation of
U , the transpiler is free to use it. None of these approaches
is expected to provide an asymptotic advantage, but may
significantly improve practical performance. We do require
that the transpiler make an honest attempt to implement U and
not merely choose a relatively simple operation far from U
that nevertheless produces the heavy outputs for U . The com-
pilation routine for computing the quantum volume of IBM
Q devices is described in Appendix A and an approximation
scheme is given in Appendix B.

The observed distribution for an implementation U ′ of
model circuit U is qU (x) and the probability of sampling a
heavy output is

hU =
∑
x∈HU

qU (x). (5)

To determine if a given output is heavy, we compute HU

directly from U using a method that scales exponentially1

with m. The probability of observing a heavy output by
implementing a randomly selected depth d model circuit is
hd = ∫

U hU dU . Ideally, we would estimate this quantity using
all of the qubits of a large device, but NISQ devices have
appreciable error rates, so we begin with small model circuits
and progress to larger ones. We are interested in the achievable
model circuit depth d (m) for a given model circuit width
m ∈ [n]. We define the achievable depth d (m) to be the largest
d such that we are confident hd > 2

3 (see Appendix C for
further discussion of confidence intervals). In other words,

h1, h2, . . . , hd (m) > 2
3 , hd (m)+1 � 2

3 . (6)

Algorithm 1 provides pseudocode for testing when each
hd > 2

3 .

Algorithm 1. Check heavy output generation.

function ISHEAVY(m, d; nc � 100, ns )
nh ← 0
for nc repetitions do

U ← random model circuit, width m, depth d
HU ← heavy set of U from classical simulation
U ′ ← compiled U for available hardware
for ns repetitions do

x ← outcome of executing U ′

if x ∈ HU then nh ← nh + 1

return nh−2
√

nh (ns−nh/nc )
ncns

> 2
3

We desire a metric that is a single real number, as this
enables straightforward comparison. Data {d (m)} can be gath-
ered by sweeping over values of m and d . We are free to
choose any function of this data {d (m)} to capture how well
a device performs. The quantum volume treats the width and
depth of a model circuit with equal importance and measures
the largest square-shaped (i.e., m = d) model circuit a quan-
tum computer can implement successfully on average [13,14].
We define the quantum volume VQ as

log2 VQ = argmax
m

min (m, d (m)) (7)

and take this definition going forward.
This definition differs from [13,14] and loosely coincides

with the complexity of classically simulating the model cir-
cuits. There are different ways to classically simulate the
model quantum circuits. A straightforward wave-vector prop-
agation approach requires exponential space and time ∼2m.
A Feynman-like algorithm uses linear space ∼dm but ex-
ponential time ∼4dm. It is possible to trade off time and
space complexity in a smooth way [19]. Clever partitioning

1For error rates as low at 10−4, we anticipate that model circuits
U that can be successfully implemented will involve few enough
qubits and/or low enough depth to compute HU classically. For
lower error rates than this, the quantum volume can be superseded
by new volume metrics or modified so classical simulations are not
necessary.
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FIG. 2. Experimental data for square (width equals depth) quan-
tum volume circuits using the IBM Q 20-qubit device Tokyo. The
ideal simulation results are green plus signs. The noisy simulations,
using a depolarizing noise model with average error rates from the
qubits used on the device, are red circles. The experiments using
200 circuits are blue squares. The dotted line is the threshold of
2
3 for heavy output generation and the dashed green line is the
asymptotic ideal heavy output probability of 1+ln 2

2 [19], which the
ideal simulations quickly approach. In order to set a high confidence
level that hd surpasses the threshold, the point at m = d = 3 was
repeated with 5000 circuits (cyan diamond). This number of shots
corresponds to a stricter threshold of 0.68, indicated by the solid line
at the experimental points for m = 3.

of circuits can achieve good parallelism and efficient use of
distributed memory resources for particular supercomputer
architectures [21–27]. Particular effort for circuit partitioning
and parallelism has been expended for circuits defined on a
two-dimensional square grid of qubits, where the state of the
art is d = 40 for a 9×9 grid [22].

One view of these methods is that they use heuristics to
approach optimal variable elimination ordering for a tensor
network calculation on the graph corresponding to the circuit.
The time complexity scales exponentially with the treewidth
of the circuit graph [28]. The treewidth is upper bounded
by m, and while there are specific circuits of depth d = 4
with expander graph structure for which the treewidth is
�(m), heuristic estimation of the treewidth for some classes
of random circuits [24,25] indicates that the treewidth grows
roughly as d . Therefore, we heuristically bound the treewidth
of the model circuits as min(d, m), and since the simulation

FIG. 3. Experimental data for square (width equals depth) quan-
tum volume circuits using the IBM Q Johannesburg 20-qubit device.
As in Fig. 2, the ideal simulation results are green plus signs,
the noisy simulations are red circles, and the experiments are blue
squares. Again, the dotted line is the threshold of 2

3 for heavy output
generation and the dashed green line is the asymptotic ideal heavy
output probability. The additional point at m = d = 4 (magenta
triangle) is not only repetition with more circuits but experimental
results using optimized circuits with the KAK approximation, assum-
ing 1% error gates. The experiments with optimized circuits were run
with 1000 circuits. The threshold for this number of circuits is 0.695
and is indicated by the solid line at m = 4.

complexity grows exponentially with the treewidth, we define
the quantum volume as VQ = 2min(d,m).

III. RESULTS

We have run quantum volume circuits on four IBM Q
devices: 5-qubit Tenerife [29], 16-qubit Melbourne [30], 20-
qubit Tokyo, and 20-qubit Johannesburg. We generate 200
circuits for d = m with m = 2, 3, 4 to determine VQ. The ex-
perimental results and comparison to simulated data for Tokyo
and Johannesburg are given in Figs. 2 and 3, respectively,
whereas a summary of results across all devices is in Table I.
We note that the noisy simulation substantially overestimates
the performance, highlighting the value of system-level met-
rics such as quantum volume. In order to set a high confidence
level that the experimental measurements of hd surpass the
threshold, we repeat the experiments for m = 2 on Tenerife
and m = 3 on Tokyo with 5000 circuits. This larger number

TABLE I. Experimentally estimated heavy output probabilities for four IBM Q devices: 5-qubit Tenerife, 16-qubit Melbourne, 20-qubit
Tokyo, and 20-qubit Johannesburg, for circuits of equal width m and depth d . For each m, 200 circuits were run on every device.

Circuit Tenerife Melbourne Tokyo Johannesburg

m = d = 2 0.685 (0.001)a 0.638 (0.006) 0.718 (0.006) 0.711 (0.006)
m = d = 3 0.651 (0.006) 0.641 (0.009) 0.682 (0.002)a 0.729 (0.007)
m = d = 4 0.516 (0.002) 0.523 (0.002) 0.614 (0.003) 0.664 (0.004)
m = d = 4b 0.649 (0.005) 0.699 (0.001)c

m = d = 5 0.601 (0.004)

aExperiments were repeated with 5000 circuits to ensure a 97.5% one-sided confidence interval as described in Appendix C.
bExperiments used circuits optimized with the KAK and approximate SU(4) decompositions assuming a 1% CX error rate.
cExperiments were repeated with 1000 circuits to ensure a 97.5% one-sided confidence interval as described in Appendix C.
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TABLE II. Gate counts and heavy output probabilities for m = d = 4 circuits optimized with the KAK decomposition and the approximate
SU(4) decompositions assuming CX error rates of 1%, 3%, and 5%. For each width or depth, 200 circuits were run on Tokyo and simulated
using average error rates from Tokyo.

Parameter Standard KAK 1% approximation 3% approximation 5% approximation

average no. of CX gates 28.1 21.0 17.7 16.1 15.1
noisy simulation 0.676 (0.003) 0.687 (0.004) 0.693 (0.004) 0.692 (0.004) 0.685 (0.005)
experiment 0.614 (0.003) 0.632 (0.005) 0.649 (0.005) 0.647 (0.005) 0.646 (0.005)

of circuits has a strict threshold of ĥd > 0.68 for a 97.5%
one-sided confidence interval (see Appendix C). From Table I
we see that log2 VQ = 3 for Tokyo, log2 VQ = 2 for Tenerife,
and log2 VQ < 2 for Melbourne. Additional details about the
devices used here are given in Appendix D.

We also compare circuits run on Tokyo with optimized
compiling schemes. Table II presents ĥd for m = d = 4
found with circuits optimized both by the KAK decomposi-
tion [31,32] described in Appendix A and the approximate
SU(4) decomposition described in Appendix B. The approxi-
mate decomposition takes the CX error rate as a parameter to
determine acceptable approximation errors when synthesizing
a circuit for an element of SU(4). We apply this decomposition
assuming CX error rates of 0.01, 0.03, and 0.05 and compare
the results. We find modest increases in ĥd that correspond to
the reduction in the total number of CX gates in the compiled
circuits: The standard QISKIT TERRA transpiler [33] produces
circuits with 28 CX gates on average, and we measure ĥd =
0.614(0.003); KAK reduces the average number of CX gates to
21 and produces ĥd = 0.632(0.005). The approximate SU(4)
circuits introduce further gains with the best result of ĥd =
0.649(0.005) achieved using circuits with a 1% CX error
approximation.

Finally, we present the outcomes of the quantum volume
circuits measured on Johannesburg. This device has the lowest
gate error rates of all the devices measured, with single-
qubit gate errors a factor of 4 smaller and two-qubit gate
errors nearly half those measured on Tokyo. These reduced
error rates suggest that Johannesburg should have the best
performance of all the devices measured, and in fact we find
the highest heavy output probabilities for m = d > 3 on this
device as is evident in Table I. For the case m = d = 4 the
results lie just below the threshold of ĥd = 2

3 , and optimizing

TABLE III. Estimates of the maximum permissible two-qubit
error needed for quantum volume VQ, with log2 VQ given in column
1, for three coupling maps: all-to-all connectivity, square grid, and
loop. The estimates are based on simulations using a depolarizing
noise model with two-qubit error ε as given, single-qubit error equal
to ε/10, and perfect measurements.

All-to-all Square grid Loop

log2 VQ

4 0.03 0.028 0.028
6 0.015 0.011 0.011
8 0.008 0.005 0.0047
12 0.0032 0.0015 0.0014

the circuits with both the KAK decomposition and the approx-
imate SU(4) with 1% CX error yields ĥd = 0.699(0.001).

IV. DISCUSSION

To understand how the quantum volume scales in a system
with limited connectivity, as gate error probabilities decrease,
we consider model circuits of width m on a square grid of
m qubits. The m qubits are arranged into the largest possible
square, and extra qubits are added first to a new right column
and then to a new bottom row. We approximate the achievable
model circuit depth d̃ (m) by assuming independent stochastic
errors, so the computation fails with high probability when the
model circuit volume (width times depth) satisfies

md̃ (m) ≈ 1

εeff(m)
. (8)

We substitute an estimate of the mean effective error prob-
ability εeff(m) per two-qubit gate into this expression. This
estimate εeff(m) = (a

√
m + b)ε is proportional to the two-

qubit gate error probability ε, with a prefactor that is linear in√
m. This factor fits the mean number of SWAP gates necessary

to bring a pair of qubits next to each other, apply the gate,
and then return them to their original positions. It is twice the
average shortest path length (minus one). We do a similar cal-
culation for a loop of m qubits and find εeff,loop(m) = (a′m +
b′)ε, which grows linearly with the number of qubits.2 At a
given error rate ε, we can use these expressions to estimate
the quantum volume, permitting m to grow as needed.

To validate these estimates, we consider the influence of
connectivity on quantum volume by simulating three coupling
graphs for up to 12 qubits: all-to-all connectivity, square grid,
and loop. We estimate the two-qubit gate error ε required
for each coupling graph to obtain a log2 VQ of 4, 6, 8, and
12, assuming the single-qubit gate error is equal to ε/10
(Table III). We run these simulations with no measurement
error for all graphs and for measurement errors of 0%, 1%,
and 5% for the square grid (Table IV). The values for ε

here correspond to 200 simulated circuits with a heavy output
probability of ĥd = 0.67 ± 0.05.

It is clear from Table III that all-to-all connectivity provides
an advantage over the less-connected graph; log2 VQ of 12
is achievable with twice the two-qubit error rate (0.0032) of
the square grid (0.0015) and the 12-qubit loop (0.0014). At
the same time, there is little difference between the required
two-qubit error rate for the square grid versus the loop graphs;

2For a square array, we find a ≈ 1.29 and b ≈ −0.78, and for a
loop, we find a′ = 1/2 and b′ ≈ −0.45.
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TABLE IV. Comparison of the maximum permissible two-qubit
error rate for log2 VQ of 4, 6, 8, and 12 for three values of the
measurement error: 0%, 1%, and 5%. These simulations all use a
square grid coupling map; the 0% measurement error column is
identical to the square grid column of Table III.

log2 VQ 0% error 1% error 5% error

4 0.028 0.026 0.020
6 0.011 0.010 0.007
8 0.005 0.0045 0.0023
12 0.0015 0.00125 0.0002

the error rate for the loop is less than 7% lower than that of
the square grid for the 12-qubit case. This relatively small
difference is due to the small total number of qubits, since
there is a significant asymptotic difference between loop and
grid layouts. However, the difference may increase, even at
small sizes, when using an optimal transpiler. All circuits for
the simulations in Tables IV and V were compiled using the
standard QISKIT TERRA transpiler. Quantum volume estimates
computed from Eq. (8) are consistent with these depolarizing
noise simulations at error probabilities down to ε ≈ 10−3, as
shown in Fig. 4.

These simulations give an indication of how quantum vol-
ume measurements might look on different quantum comput-
ing architectures. Trapped ions, for instance, will benefit from
having all-to-all connectivity. Typical trapped-ion systems
have both two-qubit gate errors and measurement errors less
than 0.01, which, based on Table III, should be sufficient
to achieve log2 VQ = 6 if not higher. Recently, trapped-ion
experiments have demonstrated two-qubit gates with errors
of 0.001 [34], indicating higher quantum volumes should
be possible. However, multiqubit experiments are susceptible
to larger error rates than isolated two-qubit gates, due to
correlated errors across many ions [35]. A measurement of
quantum volume would give a reliable validation of multiqubit
trapped-ion systems. Similarly, we can infer that for super-
conducting devices, coupling maps with more connectivity
should produce higher quantum volume, but only if additional
coupling does not also introduce larger errors.

V. CONCLUSION

In this paper we expanded on a previously presented
metric, the quantum volume [13,14], and showed both a
concrete specification and a method for benchmarking noisy
intermediate-scale quantum devices. This metric takes into ac-
count all relevant hardware parameters. This includes the per-

FIG. 4. The quantum volume increases as a function of inverse
gate error 1/ε. This plot shows numerical simulation results from the
top half of Table III together with estimates using the expression in
Eq. (8) for grid and loop connectivities.

formance parameters (coherence, calibration errors, crosstalk,
spectator errors, gate fidelity, measurement fidelity, and ini-
tialization fidelity) as well as the design parameters such as
connectivity and gate set. It also includes the software behind
the circuit optimization. Additionally, the quantum volume is
architecture independent and can be applied to any system
that is capable of running quantum circuits. We implemented
this metric on several IBM Q devices and found that we can
successfully implement model circuits on up to log2 VQ = 4
qubits, which corresponds to a quantum volume as high as
VQ = 16. We conjectured that systems with higher connectiv-
ity will have higher quantum volume given otherwise similar
performance parameters.

From numerical simulations for a given connectivity, we
found that there are two possible paths for increasing the
quantum volume. Although all operations must improve to
increase the quantum volume, the first path is to prioritize
improving the gate fidelity above other operations, such as
measurement and initialization. This sets the roadmap for
device performance to focus on the errors that limit gate
performance, such as coherence and calibration errors. The
second path stems from the observation that, for these devices
and this metric, circuit optimization is becoming important.
We implemented various circuit optimization passes (far from
optimal) and showed a measurable change in the experimental
performance. In particular, we introduced an approximate
method for NISQ devices and used it to show experimental
improvements.

TABLE V. Average error rates for the experimental devices: ε1Q for single-qubit error rates, εCX for two-qubit error rates, and εM for
measurement. The averages are taken over the set of qubits from each device that were used in the quantum volume experiments. The number
of qubits are 5, 16, 20, and 20 for the Tenerife, Melbourne, Tokyo, and Johannesburg devices, respectively.

Average error rate Tenerife Melbourne Tokyo Johannesburg

ε1Q 1.7×10−3 1.6×10−3 1.6×10−3 0.4×10−3

εCX 4.7×10−2 3.4×10−2 2.1×10−2 1.1×10−2

εM 5.8×10−2 8.7×10−2 3.0×10−2 3.9×10−2
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We encourage the adoption of quantum volume as a pri-
mary performance metric, which we believe will allow the
field to work together and focus efforts on the important
factors to develop improved NISQ devices. To this end, we
have released a library for measuring quantum volume as an
open-source component of QISKIT IGNIS [33].
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APPENDIX A: QISKIT TRANSPILER PASSES

Model circuits must be rewritten to use the gate set of the
target system while attempting to minimize any additional
overhead that might result from the translation. The IBM Q
systems used in this paper accept quantum circuits expressed
by products of controlled-NOT (CNOT) gates and single-qubit
gates [36]. The single-qubit gates are defined by

u1(λ) = diag(1, eiλ), (A1)

u2(φ, λ) = Rz(φ + π/2)Rx(π/2)Rz(λ − π/2), (A2)

u3(θ, φ, λ) = Rz(φ + 3π )Rx(π/2)Rz(θ + π )Rx(π/2)Rz(λ),
(A3)

where RP(θ ) = exp(−iθP/2) for a Pauli matrix P ∈ {X,Y, Z}.
The available CNOT gates for a particular system are given in
the form of a qubit connectivity graph G = (V, E ). Each ver-
tex of G represents a qubit and each (directed) edge represents
a pair of qubits that can be coupled by gates.

We generate input model circuits by sampling and expand-
ing each SU(4) gate to CNOT and single-qubit gates using the
KAK decomposition [31,32] implemented in QISKIT TERRA

(see also Appendix B). Each input circuit is then mapped to
the target system and optimized using a sequence of circuit
rewriting passes that are implemented in QISKIT TERRA. These
passes are named unrolling, CNOT reorientation, CNOT cancel-
lation, single-qubit optimization, and SWAP mapping. All of
the passes can be applied multiple times, but some passes,
such as CNOT reorientation, have requirements that are ensured
by other passes, such as SWAP mapping.

The unrolling pass is essentially a macroexpansion that
descends into each gate’s hierarchical definition and rewrites
that gate in terms of lower-level gates. In the setting of
rewriting model circuits, the lower-level gate set is always
the IBM Q gate set. For example, a Hadamard (H) gate is
defined as u2(0, π ) in the QISKIT TERRA gate library, which
is in the IBM Q gate set, and a SWAP gate is defined as
CNOTa,b CNOTb,a CNOTa,b.

The CNOT reorientation pass examines each CNOT gate in
the circuit and applies the identity

CNOTc,t = (H ⊗ H ) CNOTt,c(H ⊗ H ) (A4)

if (t, c) is a directed edge of G but (c, t ) is not. The pass fails
if neither (c, t ) nor (t, c) is an edge of G.

The CNOT cancellation pass collects sequences CNOTm
c,t

of CNOT gates with the same control and target qubits and
replaces them by CNOTc,t if m is odd or removes them from
the circuit if m is even.

The single-qubit optimization pass collects sequences of
single-qubit gates on the same qubit and replaces each se-
quence by at most one single-qubit gate. Furthermore, the
replacement is chosen in an attempt to minimize the num-
ber of physical pulses used to implement the gate; u1 uses
zero pulses, u2 uses one pulse, and u3 uses two pulses. The
algorithm composes the gates in sequence, rewriting each
composed pair of gates as a new gate according to a handful
of rewriting rules that follow from the definitions.

The SWAP mapping pass is the most involved of the funda-
mental passes within QISKIT TERRA. This pass first partitions
the input circuit into a sequence of layers such that each
layer consists of gates that act on disjoint sets of qubits.
The algorithm then acts layer by layer. For simplicity we
will ignore single-qubit gates in the following discussion.
Consider the gate U = U1U2, . . . ,Um applied in a particular
layer, where U1, . . . ,Um are pairwise disjoint two-qubit gates
that may act on remote pairs qubits. When the mapping pass
acts on this layer, it computes a quantum circuit U ′ with the
following properties.

(i) U ′ consists of nearest-neighbor gates with respect to the
connectivity graph G = (V, E ).

(ii) U ′ = WU , where W is some permutation of the
n = |V | qubits.

(iii) U ′ has small depth, which the algorithm tries to
minimize subject to the first two conditions.

The algorithm to compute U ′ consists of a sequence of
rounds, each of which increases the depth of U ′ by one. At
the beginning of a round, the algorithm applies all gates Uj

that are nearest neighbors and removes them from U . The
rest of the round performs a greedy (randomized) optimization
over SWAP gates to choose a depth-one SWAP circuit that brings
pairs of qubits coupled by gates as close as possible.

The passes are applied in the following order for our
standard compilation: unrolling pass, SWAP mapping pass, un-
rolling pass (to expand SWAP gates), CNOT reorientation pass,
CNOT cancellation pass, unrolling pass (to expand Hadamard
gates), and single-qubit optimization pass. In our study of
optimized model circuits, we apply the following optimization
passes after the standard set of passes: a two-qubit block col-
lection pass and a two-qubit block optimization pass. The two-
qubit block collection pass is an analysis pass that traverses
the circuit’s gates in topologically sorted order. Starting at
each newly discovered CNOT gate, the pass explores that gate’s
predecessors and ancestors to collect the largest block of
previously unseen and contiguous gates acting on the control
and target qubits. The pass continues in this manner and
returns a collection of disjoint blocks. The two-qubit block op-
timization pass computes the unitary operation for each block,
synthesizes a new subcircuit (either exactly, using the KAK
decomposition [31,32], or approximately; see Appendix B),
and replaces the block.

To further reduce the number of SWAP gates, we considered
an optimization called the local ordering circuit optimization
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(LOCO), which permutes qubits such that those interacting
via CNOT gates are as nearest neighbor as possible in the
circuit representation; the circuit is optimized for a linear
nearest-neighbor topology. This method employs a weighted
variant of reverse Cuthill-Mckee ordering [37,38] to reorder
the sparse matrix Ai j , with nonzero elements counting the
number of CNOT gate operations between qubits i and j in
the circuit so that its bandwidth is minimized. The matrix
is symmetric as we do not consider the direction of the
CNOT gates. This reordering is efficient, having a runtime
that is linear in the number of nonzero matrix elements [39].
To properly account for multiple CNOT interactions between
qubits, the LOCO algorithm uses a weighted heuristic when
reordering, which favors optimizing pairs of qubits with the
largest number of repeated interactions over those with fewer
gates between them. Input circuits whose bandwidth was
reduced by LOCO were replaced with their optimized coun-
terparts. Although this optimization did not lead to significant
improvements for heavy output generation using small num-
bers of qubits, we expect SWAP optimizations such as these to
further improve results for larger circuits mapped onto devices
with limited connectivity.

APPENDIX B: APPROXIMATE COMPILING

We can always decompose [40,41] an arbitrary two-qubit
unitary in the form

U = K1Ud (α, β, γ )K2, (B1)

where Ki = Kl
i ⊗ Kr

i are products of single-qubit unitaries
Kl,r

i , the two-qubit component is represented in terms of the
information content (α, β, γ ) as

Ud (α, β, γ ) = exp[i(ασx ⊗ σx + βσy ⊗ σy + γ σz ⊗ σz )],
(B2)

and we can always restrict to the Weyl chamber π/4 � α �
β � |γ |. Let U ∼ V denote equivalence between U and V
under local operations, implying equality of the information
content of U and V .

We can calculate a trace of the product of two Ui =
Ud (αi, βi, γi ) as

Tr(U †
c Ut ) = 4 cos(�α ) cos(�β ) cos(�γ )

− 4i sin(�α ) sin(�β ) sin(�γ ), (B3)

where

�α = αc − αt , (B4a)

�β = βc − βt , (B4b)

�γ = γc − γt . (B4c)

From this trace we may easily determine the average gate
fidelity [20]

Favg(Uc,Ut ) = 4 + |Tr(U †
c Ut )|2

20
, (B5)

and these expressions give also the maximal fidelity between
arbitrary unitaries Uc,t ∈ SU(4) after optimizing over local

pre- and postrotations [42]

max
Kl

1,K
r
1 ,Kl

2,K
r
2

Favg[(Kl
1 ⊗ Kr

1 )Uc(Kl
2 ⊗ Kr

2 ),Ut ]. (B6)

We are interested in decompositions of a target unitary
Ut ∈ SU(4) with the minimal number of applications of a
fixed basis gate Ub. It is obvious that with zero applications of
the basis we can construct only nonentangling target unitaries
Ut ∼ Ud (0, 0, 0), and with one application of the basis we
can construct only target unitaries which are equivalent to the
basis Ut ∼ Ud (αb, βb, γb). For Ub ∼ CNOT ∼ Ud (π/4, 0, 0) it
is well known [43,44] that three applications of the basis
is sufficient to cover all of SU(4). Zhang et al. [45] give
decompositions using a more general supercontrolled basis
Ub ∼ Ud (π/4, βb, 0), for any βb, both an expansion with
three applications of Ub to decompose an arbitrary Ut ∼
Ud (αt , βt , γt ) and also an expansion using two applications of
Ub for a restricted target unitary Ut ∼ Ud (αt , βt , 0) and γt = 0
for any αt and βt .

The above expansions are exact, so the constructed unitary
Uc satisfies

Favg(Ut ,Uc) = 1, (B7)

but we can use Eq. (B5) to find the average gate fidelity
due to approximating general Ut by fewer applications of the
basis gate than is necessary for exact expansion. With zero
applications of arbitrary Ub we have

U (0)
c = Kt,1Kt,2, (B8a)

F (0)
avg = [1 + 4 cos2(αt ) cos2(βt ) cos2(γt )

+ 4 sin2(αt ) sin2(βt ) sin2(γt )]/5, (B8b)

which is optimal. With one application of arbitrary Ub we have

U (1)
c = Kt,1Ud (αb, βb, γb)Kt,2, (B8c)

F (1)
avg = [1 + 4 cos2(�α ) cos2(�β ) cos2(�γ )

+ 4 sin2(�α ) sin2(�β ) sin2(�γ )]/5, (B8d)

which is optimal. With two applications of supercontrolled
Ub ∼ Ud (π/4, βb, 0) we have

U (2)
c = Kt,1Ud (αt , βt , 0)Kt,2, (B8e)

F (2)
avg = [1 + 4 cos2(γt )]/5, (B8f)

which is optimal for Ub ∼ CNOT ∼ Ud (π/4, 0, 0) or Ub ∼
DCNOT ∼ Ud (π/4, π/4, 0). DCNOT is the composition of a
pair of CNOT gates. For completeness, with three applications
of supercontrolled Ub there is no need to approximate and we
have

U (3)
c = Kt,1Ud (αt , βt , γt )Kt,2 = Ut , (B8g)

F (3)
avg = 1, (B8h)

which is clearly optimal.
There can be an additional freedom when expanding a

two-qubit gate: In many cases it does not matter whether we
implement Ut or Utm = Ut SWAP since the latter differs merely
by permutation of the output qubit labels. We call it the mirror
gate of Ut and its expansion is easily related to Ut ,

Utm ∼ Ud (π/4 − |γt |, π/4 − βt , sgn(γt )(αt − π/4)), (B9)
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making use of the sign function defined as sgn(x) = −1 for
x < 0 and sgn(x) = 1 for x � 0. We can extend Eqs. (B8)
to give i-gate expansions of Utm, U (im)

c with fidelities F (im)
avg ,

defined by choosing to expand whichever of Ut and Utm gives
the better fidelity. For example, the two-gate expansion has

F (2m)
avg = {1 + 4 cos2(min[|γt |, |αt − π/4|])}/5. (B10)

Because of the mirroring action within the Weyl chamber,
the expansion of the mirrored gate has best fidelity exactly
when the expansion of the unmirrored gate has worst fidelity
and vice versa. In addition to improving Favg, the freedom to
combine a SWAP operation may also allow reduction in the
number of inserted SWAP gates during a SWAP mapping pass
as described in Appendix A.

It is interesting to investigate the expected infidelity of
each of the approximate expansions of Ut , averaged over Ut

uniformly distributed within SU(4) in the Haar measure on
the Weyl chamber [46,47]

M(α, β, γ ) = 24

π
[cos(4α) cos(8β ) + cos(4β ) cos(8γ )

+ cos(4γ ) cos(8α) − cos(8α) cos(4β )

− cos(8β ) cos(4γ) − cos(8γ) cos(4α)], (B11)

allowing calculating the distribution of fidelities of the two
basis gate approximations of Eq. (B12) for a random element
of SU(4),

P
(
F (2)

avg < F
)

= cos4(2z){(4z − π )[cos(4z) − 2] − 3 sin(4z)}/π, (B12)

where z is defined by

cos(z) =
√

5F − 1

2
(B13)

for F > 3
5 and

P
(
F (2)

avg < F
) = 0 (B14)

for F � 3
5 . Similarly, for the mirrored version (B16),

P
(
F (2m)

avg < F
)

= cos(4z){(8z − π )[cos(8z) − 2] − 3 sin(8z)}/π (B15)

for z < π/8, F > 0.88 and

P
(
F (2m)

avg < F
) = 0 (B16)

for z � π/8.
The two basis gate approximations perform surprisingly

well, with the median fidelities F (2)
avg = 0.99 and F (2m)

avg =
0.997 comparing favorably to the typical two-qubit gate fi-
delities for current quantum devices. The full distribution of
fidelities for the zero-, one-, and two-gate approximations are
plotted in Fig. 5, where the zero- and one-gate distributions
are determined by random sampling.

By comparing F (i)
avg for all i we can choose the best ap-

proximation for any given Ut . Specifically, if the basis gate
Ub may be implemented with average gate fidelity Fb we
can estimate the overall fidelity by multiplying the fidelity
due to approximation by the fidelity due to the number of

FIG. 5. Average gate fidelity for random target gates in the Haar
measure, for approximations using zero, one, or two applications of
a two-qubit supercontrolled basis gate, with and without freedom to
mirror. These approximations are optimal for the case that the basis
gate is equivalent to CNOT.

applications of Ub and choose the expansion with the highest
overall fidelity

Fbest = max
i

F (i)
avg(Fb)i, (B17a)

F (m)
best = max

i
F (im)

avg (Fb)i. (B17b)

The statistics of the number of basis gate applications for
a randomly generated ensemble of target gates are shown
in Fig. 6. With a fairly noisy basis gate Fb = 0.97 and
no mirroring, the best expansion by this method has three
applications of the basis for 22%, two applications for 76%,
one application for 2%, and zero applications for less than
0.1% of targets, thus an average of 2.2 basis gate applications.
With the freedom to mirror, there are three applications for
3%, two applications for 93%, one application for 4%, and
zero applications for less than 0.1% of targets, thus a mean
of 2.0 basis gate applications. The resulting fidelity can be
quoted as an effective fidelity Fe equal to the cube root of the
mean of Fbest, which we can interpret as the equivalent basis
gate fidelity if we were to use only exact three-gate expansions
of random targets. We show in Fig. 7 the ratio of the effective
infidelity 1 − Fe to the basis gate infidelity 1 − Fb, giving the
factor by which the use of approximate expansions improves
effective gate performance. For Fb = 0.97 we get Fe = 0.976
and F (m)

e = 0.978, reducing the infidelity by factors of 0.82
and 0.74, respectively.

For the volume measurements described in the main text
(Table II), we implemented the approximate two-qubit block
optimization compilation pass without mirroring, assuming
fixed 1 − Fb of 1%, 3%, or 5%. Because the four qubits chosen
for Johannesburg have a linear nearest-neighbor topology,
we were able to implement a special-case optimization that
replaces some gates by the corresponding mirrored gate in
order to minimize the number of inserted SWAP gates for this
topology. Using measured CNOT fidelities for each of the qubit
pairs, implementing the mirror expansions, and combining
the mirror choice with a SWAP mapping pass for general
topologies should allow future compiler-driven improvements
in quantum volume.
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(a)

(b)

FIG. 6. Number of basis gate applications used for approximat-
ing randomly chosen target gates in the Haar measure, choosing the
approximation according to Eq. (B17) as a function of the basis
gate fidelity Fb (a) without mirroring, as in Eq. (B17a), and (b) with
mirroring, as in Eq. (B17b). The fraction of cases with each number
of applications is shown by shading (left axis) and the mean number
of basis applications is shown by the dashed line (right axis).

APPENDIX C: CONFIDENCE INTERVALS
FOR THE HEAVY PROBABILITY

To be confident with a finite number of trials that the heavy
probability hd exceeds 2

3 , we should set a stricter threshold
t > 2

3 , requiring the estimated heavy probability ĥd > t to
claim success. This is a hypothesis test with null hypothesis

FIG. 7. Effective infidelity ratio as a function of basis gate infi-
delity, with and without freedom to mirror.

(a) (b)

(c) (d)

FIG. 8. Device diagrams used for the experimental data in
Table I: (a) Tenerife, (b) Melbourne, (c) Tokyo, and (d) Johannes-
burg. The highlighted qubits are those selected for the experiments
discussed here. CX gates are available between pairs of qubits con-
nected by a highlighted line.

H0: hd = 2
3 and alternative hypothesis H1: hd > 2

3 . Drawing
nc random model circuits of given width and depth and
executing each circuit ns times gives a total of ncns experiment
outcomes, each of which is to be checked against simulation
of the corresponding circuit to determine a count nh of heavy
outcomes. We estimate hd in the natural way by the heavy
fraction over these outcomes

ĥd = nh

ncns
. (C1)

For the purposes of making a conservative bound on the
spread of ĥd we analyze using the worst-case distribution
where the heavy probability conditioned on each circuit is
either zero or one. Thus, executing each circuit multiple times
ns > 1 (as is typically convenient to avoid reconfiguring ex-
perimental settings and allow recycling of simulation results)
will generally narrow the observed fluctuations in ĥd but,
for fear of systematic errors, we do not allow this to alter
the threshold t . Under this worst-case assumption, nh/ns is
binomially distributed with the parameter nc.

While it would be straightforward to calculate numerically
confidence intervals directly from the binomial distribution,
because the interesting range of ĥd is close to 2

3 where a
normal approximation is valid, we instead require a minimum
of nc = 100 circuits and make a normal approximation to the
binomial, and write the requirements for claiming success at
a given width and depth

nc � 100, (C2)

nh − z
√

nh
(
ns − nh

nc

)

ncns
>

2

3
, (C3)

where we set z = 2 for a 97.5% 2-σ one-sided confidence
interval. For example, to claim success with nc = 5000 model
circuits, the observed heavy fraction must exceed the thresh-
old t = 0.68.

APPENDIX D: DEVICE PARAMETERS

We measured the quantum volume of four IBM Q devices:
5-qubit Tenerife, 16-qubit Melbourne, and 20-qubit Tokyo,
and 20-qubit Johannesburg. The device connectivities are
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shown in Fig. 8, with the four qubits from each device that
were used for the m = d = 4 experiments highlighted in gray
boxes. Table V lists the average error rates for the set of qubits
used in these experiments. These error rates were measured
one day before the quantum volume experiments were per-

formed. Fluctuations in these numbers can occur during the
timescale of these experiments, but they are representative of
the single-qubit, two-qubit, and measurement errors for each
device. The data from Table V were also used in the noisy
simulations of the quantum volume circuits in Table II.
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