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Since the development of boson sampling, there has been a quest to construct more efficient and experimen-
tally feasible protocols to test the computational complexity of sampling from photonic states. In this paper,
we interpret and extend the results presented previously [Phys. Rev. Lett. 119, 170501 (2017)]. We derive
an expression that relates the probability to measure a specific photon output pattern from a Gaussian state
to the Hafnian matrix function and use it to design a Gaussian boson sampling protocol. Then, we discuss
the advantages that this protocol has relative to other photonic protocols and the experimental requirements
for Gaussian boson sampling. Finally, we relate it to the previously most general protocol, scattershot boson
sampling [Phys. Rev. Lett. 113, 100502 (2014)].
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I. INTRODUCTION

Boson sampling, introduced by Aaronson and Arkhipov
(AABS) [1,2] is a nonuniversal model of quantum com-
putation that may demonstrate the advantage of quantum-
computational schemes over classical algorithms. From a
computational point of view, this is especially interesting, as
it may provide evidence against the extended Church-Turing
thesis, and experimentally it is attractive as it requires a
straightforward implementation: N single-photon Fock states
are launched in an N2-dimensional linear interferometer and
the output pattern of photons is measured. This experimental
feasibility has inspired many groups to implement proof-
of-principle experiments to demonstrate the viability of this
protocol [3–6]. However, because of a lack of deterministic
single-photon sources, these implementations had to use prob-
abilistic, postselected photon-pair sources (postselected Fock
boson sampling [PFBS]). The use of probabilistic sources
means that the probability of generating high photon num-
bers in these schemes decreases exponentially with photon
number. Since a boson sampling experiment that may provide
evidence against the extended Church-Turing thesis requires
N = 50–100 photons [1,7,8], a probabilistic approach to pho-
ton generation is not likely to reach this benchmark.

To improve the performance of boson sampling machines,
some groups have concentrated on the development of on-
demand single-photon sources to overcome the probabilistic
nature of photon generation [9–11]. Alternatively, theoreti-
cal work by Tamma and Laibacher [12,13] has shown that
arbitrary, distinguishable multimode single photons can be
used if special care is taken at the detection stage. Other
theoretical proposals have been sought to overcome photon-
generation problems by multiplexing the photon sources,
either spatially [14] or in time [15]. The latter, scattershot
boson sampling (SBS), proposed by Lund et al. [14], is a
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way to avoid the exponential scaling of probabilistic sources.
This protocol makes use of N2 parallel two-mode squeezed
states to generate N photon pairs, where one photon of each
pair acts as a herald for the other photon, which enters the
input of the interferometer. These latter photons are the ones
that are sampled in the AABS protocol. This increase in the
number of resources improves the generation probability to
a polynomial scaling for large photon numbers. An alterna-
tive method utilizing more sources was shown in Ref. [15],
where sources were used in series, in between interferometers,
yielded further improvements in the generation probability of
photons.

Although SBS and PFBS use weakly squeezed Gaussian
states (mean number of photons 〈n〉 � 1) as the photon-
generation resource, these approaches reduce the protocol to
sampling from single-photon Fock states and do not exploit
the full Gaussian nature of their initial states. This poses the
question, from both theoretical and experimental perspectives,
of whether a hybrid approach considering the full Gaussian
nature of the input states and photon-counting measurement
schemes can improve existing sampling protocols. Such an
approach benefits from the methods and concepts devel-
oped in the framework of both continuous- and discrete-
variable quantum information, as Gaussian states are the basis
of continuous-variable quantum information and have been
demonstrated to be a powerful resource for highly scalable
systems, for example, in the context of cluster-state generation
[16]. The special case of sampling from thermal states was
studied in Refs. [17,18] and shown to be in BPPNP, whereas
measuring photons from coherent states is well known and is
in the simplest complexity class, P.

In a recent paper [19], we introduced Gaussian boson
sampling (GBS) that answers questions about the complexity
of sampling from a general squeezed state. In that paper, we
derived an expression that connects the probability to measure
a specific output pattern of photons from a general Gaussian
state to the Hafnian matrix function. This was then used to de-
velop a regime of boson sampling from squeezed states, which
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has specific advantages when compared to previous regimes,
i.e., SBS. In this paper, we extend our formula to account
for displaced squeezed states (the addition of coherent light)
and the presence of higher order photon number contributions
in a single output mode. Next, we detail the construction of
our GBS protocol with single-mode squeezed states, discuss
why the computation of the Hafnian is in the #P complexity
class, and provide arguments, similar to those of Aaronson
and Arkhipov (AA) [1], that approximate GBS is still in #P.
From this discussion, we derive several requirements on the
experimental parameters and finally relate our GBS protocol
to the most efficiently known boson sampling protocol, SBS.
We then show that SBS is a special subclass of GBS protocols
and demonstrate that GBS provides significant experimental
advantages over current experimental realisations.

Our paper is structured as follows. In Sec. II, we review
the main points of the AABS protocol. In Sec. III, we derive
the closed-formula expression that connects the probability to
measure a specific photon output pattern from a general Gaus-
sian state. Next, in Sec. IV, we comment on the complexity
of the Hafnian and go into detail on the construction of our
GBS protocol with single-mode squeezed states. Section V
summarizes our arguments for the hardness of approximate
GBS, and we derive several requirements for an experiment
in Sec. VI. In Sec. VII, we introduce a regime of GBS where
we allow for possibly different squeezed states, which allows
us to sample from any symmetric matrix. Additionally, in
Sec. VIII, we show that the most widely known protocol, SBS,
is a specialized subclass of GBS problems and compare the
experimental feasibility of our GBS protocol with existing
experimental approaches in Sec. IX. Finally, we give some
conclusions in Sec. X.

II. REVIEW: AABS

In this section, we briefly review the original proposal by
Aaronson and Arkhipov (AABS) [1,2]. Specifically, we are
interested in an outline of their hardness proof, as we base
our arguments for approximate GBS (Sec. V) on this. For the
AABS scheme, shown in Fig. 1(a), N pure, single photons are
inserted into the first N modes of an M = O(N2)-dimensional
Haar random interferometer T. At the output, we measure
the number of photons in each mode, generating the photon
pattern n̄ = n1n2 . . . nM , where n j is the number of photons
in the jth mode, thereby sampling the output distribution of
the device. It is assumed that all the photons leave in different
modes, giving (M

N ) different output patterns. The probability to
measure a specific photon pattern n̄ is given by the permanent
of the sampled submatrix of T, which we call TS

Pr(n̄) = |Perm(TS )|2 =
∣∣∣∣∣
∑
σ∈PN

N∏
i=1

TSi,σ (i)

∣∣∣∣∣
2

. (1)

Here, PN are all permutations of size N . The process for
constructing the submatrix TS is illustrated for three photons
in Fig. 1(b). We select the columns of T corresponding to the
position of the input photons and the rows of T corresponding
to the output positions [20]. It is the intersection of these rows
and columns that selects the entries of the matrix TS .

in
out

(b)

(a) {

( )
FIG. 1. (a) AABS scheme: N photons are injected in the first N

input modes of an interferometer T and the output patterns n̄ are
sampled. The corresponding probability for a particular pattern n̄
depends on the permanent of the sampled submatrix TS . (b) A typical
construction of the sampled submatrix TS for three photons where
the first three columns are preset by the input modes and the rows are
selected by the output pattern n̄. The matrix elements given by their
intersections define the submatrix TS .

The key point of AABS is that the permanent is, in
computational complexity theory, a #P-complete problem,
which means that it cannot be efficiently computed on a
classical machine. Therefore, the calculation of all output
pattern probabilities should also fall into the #P complexity
class, and thus the output of the device cannot be efficiently
sampled by a classical machine. To prove this claim, AA prove
two main theorems, one for the exact sampling from such a
distribution (i.e., from the exact probability distribution DA)
and one for approximate sampling (from an approximation of
DA, i.e., D′

A). In Sec. V, we recall the main arguments of their
complexity proof for the second theorem, i.e., the approximate
sampling, and introduce arguments for approximate GBS, one
of which is based upon the AA proof and another that is
unique to GBS.

III. PHOTO COUNTS FROM A GAUSSIAN STATE

In this section, we derive the probability to measure pho-
tons from a general Gaussian state and derive the closed-
formula expression for the probability to measure a specific
photon output pattern n̄. We showed in Ref. [19] that this
probability is related to the Hafnian [21,22] of a submatrix
AS , which is dependent upon the covariance matrix of the
measured state. This result is the equivalent to the result for
Fock states (e.g., Ref. [20]), which provides the foundation
for boson sampling schemes with single photons.

The probability of a photon pattern is found by calculating
the overlap of our Gaussian state ρ̂ with the number state op-
erator ˆ̄n = ⊗M

j=1n̂ j , where n̂ j = |n j〉 〈n j | measures n j photons
in output mode j,

Pr(n) = Tr[ρ̂ ˆ̄n]. (2)

032326-2



DETAILED STUDY OF GAUSSIAN BOSON SAMPLING PHYSICAL REVIEW A 100, 032326 (2019)

In the following analysis, we will use the phase-space rep-
resentation of quantum mechanics [23–25], similar to the
approach used in Refs. [18,26]. Equation (2) is now written
as the overlap integral of the Q and P functions of the state
and measurement operator respectively,

Pr(n) = πM
∫

dαQρ̂ (α)Pn̄(α), (3)

where dα =∏M
j=1 dα jdα∗

j , Qρ̂ (α) is the Q function repre-
sentation of the Gaussian state [27], and Pn̄(α) is the P
representation [28,29] of the number state operator.

An M-mode Gaussian state can be fully characterized by
its 2M × 2M covariance matrix σ and a displacement vector
d [23,30]

σi j = 1
2 〈{ζ̂i, ζ̂

†
j }〉 − did

∗
j , di = 〈âi〉, (4)

where ζ̂i runs over all creation and annihilation operators
â j, â†

j and we assume di = 0 for this derivation (we discuss
the case di 	= 0 in Sec. III B). Note that σ here corresponds
to the measured modes of the system (i.e., at the output of
an interferometer). If we do not measure a mode, then the
corresponding rows and columns of that mode are removed
from the covariance matrix and the state that remains is also
a Gaussian state. From the covariance matrix σ , we can
construct the Q function of the state by convolving the cor-
responding Wigner function with another Gaussian function
[24],

Qρ̂ (α) = 1√|πσQ| exp

[
−1

2
α†

νσ
−1
Q αν

]
, (5)

where σQ = σ + I2M/2 with I2M is the 2M × 2M identity ma-
trix and αν = [α1, α2 . . . αM, α∗

1 , α
∗
2 . . . α∗

M]t . The P function
of the n-photon number state |n〉〈n| is [31]

Pn(α) = e|α|2

n!

(
∂2

∂α∂α∗

)n

δ(α)δ(α∗), (6)

where δ(α) is the two-dimensional Dirac δ function
δ(α) = δ(Re(α))δ(Im(α)). When we insert these into Eq. (3)
and perform integration by parts, we arrive at

Pr(n) = 1

n!
√|σQ|

M∏
j=1

(
∂2

∂α j∂α∗
j

)n j

exp

[
1

2
αt

νAαν

]∣∣∣∣∣∣
αv=0

,

(7)
where we have defined

A =
(

0 IM

IM 0

)[
I2M − σ−1

Q

]
. (8)

We have switched from α†
ν in (5) to αt

ν in (7) (αt
ν = α†

νP, with
P as a permutation matrix). We introduce P only to reorder
the vector α† and thus simplify the final expression.

In order to evaluate the expression in Eq. (7), we expand
the derivatives using Faà di Bruno’s formula, a higher order
chain rule [32]. For now, to stay in the typical boson sampling
framework, we restrict ourselves to measure either nj = {0, 1}
photons at each output mode (we will discuss higher photon
numbers in a single output mode in Sec. III A). For N mea-
sured photons, in total we have 2N derivatives (∂α j, ∂α∗

j per

photon) in Eq. (7), each having an index j (for α j) and j + M
(for α∗

j ). The expansion of the derivatives yields [33]

∂2N e
1
2 αt

νAαν∏N
i ∂αi∂α∗

i

= e
1
2 αt

νAαν

|π |∑
j = 1

π j ∈ {2N}

⎛
⎜⎜⎜⎝

|π j |∏
k = 1

Bk ∈ π j

∂ |Bk |αt
νAαν∏|Bk |

l = 1
l ∈ Bk

∂α
(∗)
l

⎞
⎟⎟⎟⎠, (9)

where the first sum runs over all partitions π j (where |π |
represents the number of partitions) of the set {α(∗)

i = αi, α
∗
i }

(size 2N) and the first product over Bk is over all k blocks
of the partition π j (the number of blocks of π j is |π j |). The
partial derivative is formed from the size of the block |Bk|
(the number of indices contained within Bk), which gives the
order of the derivative and is differentiated with respect to the
elements of that block, the αl or α∗

l .
The expansion of the derivatives can therefore be related

to the different partitions of the set of photon indices. To
illustrate this point, we consider the case when a single photon
is detected in both modes 1 and 2, and thus we have to find
all partitions of the set of indices {α1, α

∗
1 , α2, α

∗
2}. One such

partition, {α1}, {α∗
1 , α2, α

∗
2}, corresponds to the term in the

derivative expansion

∂αt
νAαν

∂α1

∂3αt
νAαν

∂α∗
1∂α2∂α∗

2

. (10)

When calculating the derivatives of αt
νAαν in Eq. (7), we

find that, as it is a quadratic function of αν , all derivatives of
third order or higher vanish. In addition, since we evaluate the
derivatives at αν = 0, all derivatives of first order also vanish.
Therefore, the only partitions that contribute to the overall
probability are ones where the 2N elements are sorted into N
sets, each of size 2. This means that, in the above formalism,
for 2N variables, |π j | = N ∀ j, |Bk| = 2 ∀ k and the number of
partitions is |π | = (2N − 1)!!, where (.)!! denotes the double
factorial,1 the product over all odd numbers less than or equal
to 2N − 1.

These partitions π j (of 2N numbers into N blocks of size 2)
can be interpreted as permutations of the 2N photon indices,
which can be stored in a vector μ j . For each partition, the
blocks are ordered with respect to their smallest element
(lowest to highest) and the numbers within a block are also
ordered in increasing size. In terms of the permutation vector
μ j , these conditions can be written as

μ j (2k − 1) < μ j (2k),

μ j (2k − 1) < μ j (2k + 1),

for k = 1, . . . , N . The set of permutations that satisfy these
conditions are known as the perfect matching permutations
(PMP) [34] and there are (2N − 1)!! such permutations (or
partitions).2

1In the case, where the argument of the double factorial is even,
(2N )!!, the product runs over all even numbers less than or equal
to 2N .

2E.g., for N = 2 photons detected in modes 3 and 4 of a M = 4
mode unitary, we have to consider the set of indices {3, 4, 7, 8}. The
number of PMP is (2N − 1)!! = 3. The partitions (and permutations)
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FIG. 2. Construction of the submatrix AS from the state matrix
A for two photons measured in last two output modes 3 and 4 of an
M = 4 mode interferometer. Contrary to the Fock boson sampling
schemes, the selection of the matrix entries in AS is independent of
the input state and only depends upon the output photon pattern, n̄.
For details, see text.

With this definition, we are now able to write down the final
result for Eq. (7),

Pr(n) = 1

n!
√|σQ|

(2N−1)!!∑
μ j∈{PMP}

N∏
k=1

Aμ j (2k−1),μ j (2k) . (11)

The indices of the measured photons’ position, stored in μ,
define AS , a submatrix of A. The sum in (11), over all PMP of
AS , is exactly the Hafnian of that matrix, as defined by Caian-
iello [21,22]. As such, we are able to write down a closed-form
expression that connects the probability to measure a specific
output pattern n̄ from any Gaussian state with the Hafnian
matrix function [19]

Pr(n) = 1

n!
√|σQ|Haf(AS ) . (12)

This formula, due to the nature of the Hafnian function,
constitutes the basis for a truly GBS protocol, which we
discuss in the next section.

As A is a symmetric matrix of dimension 2M × 2M (due
to the structure of the initial covariance matrix), it can be
divided into four blocks of dimension M × M, as indicated in
Fig. 2. The structure of A is a combination of the squeezed
and thermal contributions present in the state. However, if
we only have squeezed light present in the state, then C =
0 and B 	= 0, and if we only have thermal light, then the
opposite is true, B = 0, C 	= 0. For the latter case, our for-
malism reproduces the results for thermal states derived in
Ref. [18] by using a matrix identity for the Hafnian [35] [cf.
Eq. (24)]. The construction of the submatrix AS depends only
on the measured output pattern [compare Figs. 1(a) and 2], in
contrast to standard boson sampling schemes. Any detected
N-photon event then selects a 2N × 2N submatrix, where a

are then

π1 = {34}{78}, π2 = {37}{48}, π3 = {38}{47},
μ1 = 3, 4, 7, 8 μ2 = 3, 7, 4, 8 μ3 = 3, 8, 4, 7.

detected photon in mode j selects the columns j and j + M
of A and the rows with the same indices. This is illustrated for
a two-photon example3 by the blue bars in Fig. 2.

A. Multiple photons in the same mode

In the above derivation, we restricted ourselves to the case
where we only detect n j = {0, 1} photons per output mode;
however, the formalism of Eq. (12) is not limited to this case.
To consider the case of having more than one photon per
output mode, we have to adapt the submatrix that we sample
from. Consider the simplest example, a single-mode system.
The system matrix A is given by

A =
(

A11 A12

A21 A22

)
. (13)

If we now consider a two-photon detection event in this mode,
then Eq. (7) is given by

Pr(n1 = 2) = 1√|σQ|
1

2!

∂2

∂α2
1

∂2

∂α∗2

1

e
1
2 αt

νAαν

∣∣∣∣∣
αv=0

. (14)

Terms like this are not covered directly by the calculation of
the Hafnian. We can circumvent this problem by artificially
“moving” this photon to another “psuedomode” and forming
a new matrix A′ by repeating the corresponding rows and
columns of A; i.e., we write

Pr(n1 = 1, n2 = 1)

= 1

2!
√|σQ|

∂

∂α1

∂

∂α∗
1

∂

∂α2

∂

∂α∗
2

e
1
2 αt

νA′αν

∣∣∣∣
α=0

,
(15)

where we have defined A′ as a new matrix constructed as

A′ =

⎛
⎜⎝

A11 A12 A11 A12

A21 A22 A21 A22

A11 A12 A11 A12

A21 A22 A21 A22

⎞
⎟⎠ . (16)

This can be repeated for each extra photon in that mode, such
that there is always one mode per photon and A′ is 2N × 2N
matrix. Note that A′ is not a proper quantum covariance ma-
trix. We only define it as a way to use the Hafnian expression
for higher order photon-detection events.

B. Nonzero displacement

Finally, we analyze the situation where we consider a
nonzero displacement in our state; i.e., we allow for dj 	= 0
in Eq. (4). In this case, the Q function for a displaced, multi-
mode Gaussian state (squeezed and thermal contributions) is

3In this case, where photons detected in modes 3 and 4 from M = 4
overall modes, select the 4 × 4 submatrix

A4×4
S =

⎛
⎜⎜⎝

A33 A34 A37 A38

A43 A44 A47 A48

A73 A74 A77 A78

A83 A84 A87 A88

⎞
⎟⎟⎠ .
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given by

Q(α, α∗) = 1√|σQ| exp

[
−1

2
(αν − dν )†σ−1

Q (αν − dν )

]
.

(17)

Expanding the exponent yields

− 1
2 (αν − dν )†σ−1

Q (αν − dν )

= − 1
2 d†

ν σ−1
Q dν − 1

2α†
νσ

−1
Q αν + Fαν , (18)

where we defined F = d†
ν σ−1

Q . Inserting this into Eq. (3) [or
(7)], we arrive at

Pr(n̄) = exp
[− 1

2 d†
ν σ−1

Q dν

]
n̄!
√|σQ|

×
M∏

j=1

(
∂2

∂α j∂α∗
j

)n j

exp

[
1

2
αt

νAαν + Fαν

]∣∣∣∣∣∣
αv=0

. (19)

As Fαν is a linear function of αν we have extra, first-
order terms that are nonzero in the expansion of the deriva-
tives (9), when compared to the squeezing-only case (10).
For example, it is now possible that partitions of the form
{α1}, {α∗

1}, {α2}, {α∗
2} or {α1}, {α∗

1}, {α2, α
∗
2} will contribute to

the overall probability. These partitions, respectively, lead to
terms in the expansion of the derivatives

∂Fαν

∂α1

∂Fαν

∂α∗
1

∂Fαν

∂α2

∂Fαν

∂α∗
2

= F1F1+MF2F2+M and

∂Fαν

∂α1

∂Fαν

∂α∗
1

∂2α†
νAαν

∂α2∂α∗
2

= F1F1+MA2,2+M

(and we have ignored contributions that evaluate to zero at
αν = 0). Re-examining Eq. (9), we now have a total number
of partitions

|π | =
N∑

k=0

(
2N

2k

)
[2(N − k) − 1]!! (20)

instead of (2N − 1)!!. The individual partitions are formed by
first taking 2k of the 2N variables, to give 2k single-index
partitions and then N − k double-index partitions. This subset
gives us a product of the first-order terms Fj , corresponding
to those indices within the subset. The remaining 2N − 2k
indices give us a submatrix of A, and we calculate the Hafnian
of this submatrix. We can write each partition of the 2N
numbers as

π j =
2k⋃

l=1

B1
l

2N−2k⋃
l ′=1

B2
l ′ , (21)

where B1 are the single-index blocks of π j and B2 are the
blocks of size 2 (as we had before). This leads to a modified
expression for the probability of a photon pattern, akin to

Eq. (12),

Pr(n̄) = e− 1
2 d†

ν σ−1
Q dν

n̄!
√|σQ|

|π |∑
j = 1

π j ∈ {2N}

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

|B1
j |∏

k=1
B1

j ∈π j

Fk

⎞
⎟⎟⎟⎠Haf

(
AB2

j

)
⎤
⎥⎥⎥⎦

= e− 1
2 d†

ν σ−1
Q dν

n̄!
√|σQ|

⎡
⎣Haf(AS ) +

∑
j1, j2, j1 	= j2

Fj1 Fj2 Haf
(
AS−{ j1, j2}

)

+ · · · +
2N∏

j

Fj

⎤
⎦, (22)

where the first sum is over all partitions of the set of 2N
indices, the product is over all indices in the blocks B1

j , and
the remaining indices in blocks B2

j form AB2
j
, a submatrix of

A, which we then take the Hafnian of.
We can give an interpretation to the terms in Eq. (22).

The first term in the sum can be identified as the contribu-
tion where all the photons come from the covariance matrix
(squeezed and thermal light) and none from displacement
operator. The last term only contains the contributions from
the displacement operators, i.e., when all the photons come
from the coherent state. The intermediate terms mix photons
from the squeezed, thermal, and coherent contributions of the
state.

In the case where we only have coherent light (σQ = I),
Eq. (22) reduces to

Pr(n̄) = e− 1
2 d†

ν σ−1
Q dν

n̄!
√|σQ|

2N∏
j=1

Fj = e−∑ j |d j |2

n̄!

N∏
j=1

|d j |2n j , (23)

as expected [24]. Depending on the squeezing and displace-
ment levels in our state, the weights of the respective con-
tributions vary; i.e., for an almost purely squeezed state, the
first term will dominate the other terms, and for a large
displacement, the last term will dominate the photon counting
probability.

IV. CONSTRUCTION OF GBS WITH SQUEEZED STATES

In this section we develop the protocol boson sampling
from a Gaussian state. We start by describing the main re-
quirements for a Gaussian boson sampling protocol, and in
subsequent sections we comment on the details of such a
protocol, including approximate GBS.

The main requirement for Fock boson sampling protocols
is the computational complexity of the underlying matrix
function, the permanent, which is in the #P complexity
class. The Hafnian, also in the #P class [36], is a more
general function than the permanent, as the Hafnian counts the
number of perfect matchings in a general, undirected graph
whereas the permanent is restricted to a bipartite graph. This
is encapsulated in the formula

Perm(G) = Haf

[(
0 G

Gt 0

)]
, (24)

where we can express the permanent of a matrix G in terms of
the Hafnian [35].
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FIG. 3. Schematic of the GBS protocol. We send K single-mode
squeezed states into a Haar random interferometer TGBS of size M
and sample the output photon distribution n̄GBS at the end.

Having discussed this necessary requirement for a boson
sampling problem, we proceed to construct the GBS protocol
based on squeezed states. We use squeezed states, as it is
known that thermal states can be approximated in BPPNP

[18,37], a complexity class easier than #P.
We depict the physical setup of the protocol in Fig. 3,

where K single-mode squeezed states enter a linear interfer-
ometer TGBS and at the output we measure all M modes of the
system and record all photo counts. This choice of squeezing
and linear transformation leads to B 	= 0 and C = 0 in the
overall system matrix A (see Fig. 2). For this scheme, the
matrix A is defined by the input state and the interferometer
TGBS. The single-mode squeezed states in our system are
described by the matrix

S =
(⊕M

j=1 cosh r j
⊕M

j=1 sinh r j⊕M
j=1 sinh r j

⊕M
j=1 cosh r j

)
, (25)

where r j is the squeezing parameter of the
single-mode squeezed states in the jth mode and⊕M

j=1 x j = diag(x1, x2, . . . , xM ), a direct sum of numbers,
yielding a diagonal matrix. Note that for M − K entries
r j = 0, corresponding to a vacuum state input. Then, the
covariance matrix at the output of the interferometer is given
by

σ = 1

2

(
TGBS 0

0 T ∗
GBS

)
SS†

(
T †

GBS 0

0 T t
GBS

)
(26)

and A in Eq. (8) is calculated to be A = B ⊕ B∗, with

B = TGBS

⎛
⎝ M⊕

j=1

tanh r j

⎞
⎠T t

GBS . (27)

It is easy to show that the Hafnian of a direct sum, as in
A, can be written as the product of the Hafnians of the two
submatrices. Thus, we can simplify Eq. (12) to

Pr(n) = 1√|σQ| |Haf(BS )|2, (28)

where we have restricted ourselves to the measurement out-
come of n j = {0, 1} per mode. As BS is a submatrix of
B, its construction is obtained by keeping the intersection
of the rows and columns where a photon was measured, a
single index per photon. BS will be an even-sized matrix, as

physically this corresponds to measuring an even number of
photons from the multimode squeezed state. The probability
to measure an odd number of photons from such a state is
always zero. Note that in the case of odd N , Eq. (12) still
applies but the identity (28) is invalid.

Because of the intrinsic complexity of the Hafnian, the
complexity of GBS in the exact case is ensured. However,
this does not guarantee the complexity for an approximate
Gaussian boson sampling protocol, which we discuss next.

A. Complexity of multiple photons in the same mode
and displacement contributions

In this section, we comment on the complexity of the
two other instances of the GBS expression, that of multiple
photons in the same mode and that of the contribution of
displaced light.

As shown in the previous section, we can incorporate the
measurement result of multiple photons in the same mode by
modifying the matrix A. The extra photons can be included by
repeating the rows and columns of the original matrix to gen-
erate an extended matrix. These extra rows and columns do
not increase the rank of the matrix A and thus do not increase
the complexity of calculating the output pattern in the way that
detecting a photon in another mode would. While this method
allows us to write the expression using the Hafnian, a more
computationally efficient method to incorporate multiphoton
events was described by Kan [38].

The complexity of measuring photons from a displaced
state is in the P complexity class, as the output state can
be written as a vector of displacement amplitudes and the
probability of photon numbers in each mode is independent
of each other. This is in contrast to squeezed or thermal states,
where the complexity arises from the correlations between
modes. From Eq. (22), the complexity of the combination of
squeezed and displaced light still comes from the squeezed
light (the Hafnian terms) and therefore displaced light does
not increase the complexity of the problem, as expected.

V. APPROXIMATE GBS

In this section, we present the ideas of approximate GBS.
First, we briefly recall the main arguments of AA [1] that
approximate AABS is a #P-hard problem, as we use a key
result of theirs, which is to hide the matrix we wish to sam-
ple within a larger unitary transformation. The approximate
AABS problem |GPE|2± states that given a matrix X ∈ CN×N

of independent and identically distributed (i.i.d.) complex
normal entries and error bounds ε, δ, the estimation of the
permanent |Perm(X )|2 up to an additive error ±ε N! with a
success probability of 1 − δ for any possible X takes a time
polynomial in (N, 1/ε, 1/δ). The main requirement that the
boson sampling computer has to fulfill in this instance is that
it is “robust,” meaning that if a small fraction ε of all events
are “badly wrong,” the remaining 1 − ε results are still valid
to encode the boson sampling scheme.

If we suppose that an approximate boson sampling com-
puter works this way, we can use the robust encoding to
prevent a classical adversary from corrupting our sampling.
The procedure to show that approximate AABS up to an
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additive error is hard uses the fact that we hide the interesting
probability (i.e., the sampling of a specific TS) among all the
other random outputs of our boson sampling scheme. The so-
lution that AA propose is to choose the (M × M)-dimensional
interferometer matrix T according to the Haar measure. Then,
any sufficiently small submatrix is, in variation distance, close
to a matrix whose entries are independent and identically
drawn from the complex normal distribution. This means that
the adversary will not know which instance we are interested
in and therefore cannot corrupt the result, on average.

The sampling from such a device is random in the sense
that we cannot predict the output pattern of N photons, even if
the same input state is used. This choice fulfils the robustness
criterion and the need to hide the interesting sampling prob-
ability in a multitude of other possible output patterns. Then,
using Stockmeyer’s counting algorithm [39], AA show that

|GPE|2± is in BPPNPO
, where O is an oracle for approximate

AABS. If there is an efficient classical algorithm to simulate
O, then the polynomial hierarchy will collapse, having severe
consequences for the computational complexity theory.

While BPPNP is enough to claim that boson sampling
is not classically “simple,” it remains an open question of
whether approximate AABS is indeed in #P. Nevertheless,
AA provide evidence in the form of two conjectures, the
permanents-of-Gaussians conjecture, which says that esti-
mating the permanent up to multiplicative error GPE× is
in #P. The second permanent-anticoncentration conjecture
implies a polynomial-time equivalence of the sampling up to
additive error |GPE|2± and the sampling up to multiplicative
error GPE×. If these conjectures hold, this would mean that
P#P = BPPNP, unless approximate AABS is in #P.

A. Approximate GBS

In this section, we discuss approximate GBS. The device
we are considering here is a Haar-random interferometer with
N2 modes where we pump N modes with identical squeezed
states. With these settings, we consider only those measure-
ment events with N photons in N different output modes. We
start by defining our problem:

Problem 1. |GHE|2±. Given as input a matrix
X ∼ CN(0, 1)N×N , whose entries are i.i.d. complex
Gaussians, together with error bounds ε, δ � 0, estimate
|Haf(XX t )|2 to within additive error ±εN!/(cM )N with
probability at least 1 − δ over X, in poly(N, 1/ε, 1/δ) time
and 0 < c < 1 is a parameter dependent upon the number of
photons (described in Appendix A).

We can immediately use the result from AA to “hide” X
in TGBS that fails with a probability smaller than δ/4. We
define O as an oracle for |GHE|2± if it reproduces the desired
distribution, DA, with an approximate distribution, D′

A, such
that the error between the two is given by

||DA − D′
A|| � β ∝ δε. (29)

Theorem 1. Let O be an approximate oracle for |GHE|2±.

Then, |GHE|2± ∈ FBPPNPO
.

We can prove this theorem by following the same steps as
Aaronson and Arkhipov used to prove their Theorem 1.3 (Sec.
5.2 in Ref. [2]) and also the steps shown in the supplemental

information of Ref. [12]. This proof is given in Appendix A.
As in AABS, if an efficient, classical algorithm exists for
|GHE|2±, then BPPNP = P#P and the polynomial hierarchy
collapses, as in other versions of the boson sampling problem.
The extra factor cN in the definition of this problem represents
the nature of GBS and is related to the probability to generate
N photons from the squeezed sources and the fact that the
unitary matrix appears twice in Eqs. (27) and (28). This
increases the size of the error bound, but the expected value
of |Haf(XX t )|2 scales faster to compensate for this.4 As in
Ref. [2], we must conjecture that approximate GBS is #P
hard.

One difference between GBS and other boson sampling
protocols is that in the former the number of photons is not
fixed (see Secs. VI C and VI D) because of the nature of
Gaussian states. We can restrict our device to a fixed photon
number at a cost polynomial in that number. This means we
can focus on the same class of output states in AABS.

We briefly comment on the regime where identical
squeezed states enter every interferometric mode (M = N2).
The matrix that is sampled in this case is B ∝ TGBSTt

GBS,
which is known as a circular orthogonal matrix [40]. A
sufficiently small submatrix of this class has been shown to
be close to a matrix of random complex entries, as required
for approximate boson sampling. It only remains to show that
we can “hide” a certain matrix within the larger matrix B to
prove approximate GBS in this case.

VI. FURTHER REQUIREMENTS

In the previous section, we outlined our arguments that the
approximate GBS problem is also in the #P complexity class.
However, there are several aspects unique to GBS that must
be satisfied to guarantee that the sampling is complex. We
now comment on those, as well as on optimal experimental
parameters.

A. Number of single-mode squeezed states

For permanents and Hafnians it is known that the matrix
rank determines the complexity of the computation [38,41].
The rank of the matrix that we sample in GBS, Eq. (27),
is determined by the number of independent single-mode
squeezed states (see Appendix B for this proof). This means
that if we want to sample N photons, then we have to pump at
least K = N input modes with single-mode squeezed states to
saturate the complexity. Therefore, we require K � N single-
mode squeezed states at the input of the interferometer.

B. Dilute sampling

In Secs. III and IV, we required that we measure only
n j = {0, 1} in each output mode to avoid the repetition of
rows and columns in the BS matrix. The reason is that these
repeated photons do not increase the rank of the sampled
matrix and thus the complexity of the boson sampling problem
[38]. Therefore, we have to show that the probability to

4E (|Haf(XX t )|2) ∝ 2nn3.8n (from numerical simulations).

032326-7



REGINA KRUSE et al. PHYSICAL REVIEW A 100, 032326 (2019)

measure more than one photon in an output mode can be made
sufficiently small.

Consider N single-mode squeezed states at the input, each
with a mean number of 1 photon (sinh2 r = 1). Then, if we
have an interferometer of size M = N2 that is balanced (all
entries are of similar size), we have at the output a mean
number of 1

N photons per mode. This is due to the interfer-
ometer distributing all photons equally on average among the
output modes, which a Haar random unitary can provide due
to the intrinsic randomness of the Haar measure. If we now
examine a single output mode of such a system, tracing over
all other modes, we obtain approximately a thermal state with
a mean photon number 〈n〉 ≈ 1

N . As a rule-of-thumb guide to
the concentration of photons within the setup, we calculate
the ratio between the probability of two or more photo counts
versus the probability of one photo count for a single-mode
thermal state, ∑∞

n j�2 Pr(n j )

Pr(n j = 1)
= 1

N
≈ 〈n〉. (30)

The mathematical details of these arguments are given in
Appendix C. As the higher order coincidences have a very
low probability of occurring, a low-photon-number resolving
capability is enough to faithfully exclude higher order events
in a single channel. This is the same requirement that SBS has
in the heralding part of the scheme.

C. Valid GBS events

In Fock boson sampling experiments, such as AABS, a
fixed number of photons enter and exit the linear interferom-
eter T. That means that these experiments sample from the
family of photon patterns with N photons {PN }{

p1, p2, . . . , pCN

}
N = {PN } , (31)

where p j is the probability of a particular pattern and CN =
(M

N ) is the number of possible patterns of N single photons
in M modes. We discard configurations with more than one
photon in any output mode and thus

∑
j p j < 1.

As we use Gaussian states, the number of photons N within
the setup is not fixed but is a distribution of even photon
numbers, in the range [0,∞) (in the case of squeezed states
with no loss). The mean photon number is finite and in a fol-
lowing section we will discuss how to optimize experimental
parameters to maximize a given photon number. Therefore, in
GBS we sample from photon pattern families with different
total number of photons N ,

{{p0 = |σQ|}0, {p1, p2, . . . , pC2}2,

. . . , {p1, p2, . . . , pC2N }2N , . . . }
= {{P0}, {P2}, . . . , {P2N }, . . . } (32)

with
∑∞

N=0{P2N } = 1.
As with AABS, we must discard events with more than

one photon per mode. In addition to this, we also discard
events with more photons than are allowed by the size of
the interferometer and the regime we are operating in (see
Secs. V A and VII). This means that N < O(

√
M ) for GBS.

D. Photon number distribution

Given that squeezed states (and Gaussian states in general)
produce a distribution of photon numbers and not a definitive
number, we now describe that distribution and explain how
to maximize the probability of the desired number of photons
by adjusting the strength of the single-mode squeezers, given
the number of squeezed states. The probability to generate
2ν photons from a single-mode squeezed state [24] can be
identified as a negative binomial distribution [42]. The proba-
bility distribution to generate 2ν photons from K single-mode
squeezed states is then a convolution of the individual distri-
butions and can be calculated using the Fourier transformation
of the negative binomial distribution’s characteristic function.
This probability is then given by

PK (2ν) =
(

ν + K/2 − 1

ν

)
sechK (r)tanh2ν (r)

= �(ν + K/2)

�(K/2)ν!
sechK (r)tanh2ν (r) ,

(33)

where �(x) is the � function. The mean number of photons is
K sinh2 r and the modal number of photons (most common
number) is nmodal = 2�(K/2 − 1) sinh2(r)�. An example of
this distribution is shown in Fig. 4 for K = 15 single-mode
squeezed states with equal squeezing parameters, r j = r =
0.8814. With this choice of parameter, the mean photon
number per squeezer is 〈nGBS〉 = 1 and the modal number,
highlighted in red, is six photon pair events (or 12 photons).

When designing an experiment, it will be necessary to
optimize the squeezing parameter to generate the desired
number of photons. This photon number is dependent on
the size of the interferometer, M, and the number of input
single-mode squeezed states, K , which will be determined by
experimental resources. In principle, GBS experiments can
operate when the number of single-mode squeezed states is
in the range N � K � M = N2. Given these parameters, the
squeezing parameters of all the single-mode squeezed states
(which are assumed to be identical) can be adjusted such that
the model number of the distribution (see Fig. 4) is 2ν. To

ν, number of Photon Pair Events
0 5 10 15 20 25

P
K

=
15

(ν
)

0.05

0.1

FIG. 4. Probabilities to generate ν photon pair events from K =
15 single-mode squeezed states with a squeezing parameter of r =
0.8814. The modal number of this distribution is colored red.
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do this optimization, we assume that we are only interested
in a specific number of photons, 2ν, and we set the squeezing
parameters of all the single-mode squeezed states (which are
identical) so that this is the modal number of the distribution
(meaning that 2ν is the most probable number of photons to
be created).

We calculate the scaling of the modal probability with
increasing ν for two explicit examples (the details of this
calculation are in Appendix D). For K = 2ν single-mode
squeezed states (the minimum number of squeezers that we
can have), the modal probability scales as 1/

√
πν. When

we pump every mode, K = M = 4ν2, the modal probability
scales as 1/

√
2πν. In both cases, the modal probability de-

creases as 1/
√

ν, which is only a polynomial cost of photon
generation. Note that this is the same scaling as found for SBS
[14].

E. Computation time of Hafnian relative to permanent

The main aim of boson sampling protocols is to generate
a state that a classical computer cannot simulate in reason-
able time; therefore, the relative computational time of the
permanent and the Hafnian is important. The permanent of
an N × N matrix can be calculated in O(N2N ) steps, whereas
the Hafnian can be calculated in O(2N/2) steps [43]. This
means that in order to achieve a comparable runtime, GBS
has to sample twice the number of photons as other boson
sampling schemes. This is comparable to SBS, however, as
we have no need for heralding in GBS. This requirement also
has implications for the size of the interferometer necessary,
which in the worst-case scenario is 4N2, a constant increase
compared to SBS (where a network of size N2 is considered).

VII. ALTERNATIVE REGIME FOR GBS

We now describe another mode of operation, unique to
GBS. This is motivated by the fact that we have additional
control over our system, namely that we can alter the initial
input state by the squeezing parameters of the individual
single-mode squeezed states, a property which is not present
in either AABS or SBS.

In GBS, the matrix that we sample from is given by
Eq. (27). This construction, if we can control both TGBS and
each r j , means that we can generate any symmetric matrix,
up to an overall factor, by use of the Autonne-Takagi decom-
position [44]. This is a type of singular-value decomposition
that factorizes a complex, symmetric matrix into a unitary
matrix and a diagonal matrix of positive numbers (in the range
[0,∞].) This means we can adjust our Hafnian problem (from
the previous section) to estimate |Haf(ϒ)|2±, the Hafnian of a
symmetric matrix ϒ of random numbers from complex nor-
mal distribution (rather than XXt as in the previous section). If
we require ϒ to be a matrix of complex normal numbers, we
can hide this in the larger matrix B, also of complex normal
numbers, and not a unitary matrix as before. Therefore, there
is no need for a “hiding” lemma, as the whole matrix B
is a user-defined matrix of random numbers and clearly the
desired submatrix can be hidden within. We can calculate
this larger matrix using the Autonne-Takagi decomposition,
which can be done exactly with no approximations needed.

Therefore, if we want to sample from a particular matrix B,
we find the decomposition B = UDUt and then rescale it by√

2λmax, where λmax is the maximum singular value of B. This
is because the tanh r j that appear in the diagonal matrix of
Eq. (27) can only take values between [0,1] (r ∈ [0,∞]). The
rescaled matrix D/(

√
2λmax) corresponds to the set {tanh r j},

the squeezing parameters of the initial input states, and U =
TGBS, the interferometer that this state enters. We note that any
random submatrix of B will be full-rank for the same reasons
as laid out in Appendix B. We now briefly discuss the photon
generation probability when we have input states of different
squeezing parameters. The convolution of these distributions
was studied in Ref. [45], which found an analytical recurrence
relation for the probability of 2N photons. This distribution is
termed a “mixture negative binomial distribution,” which is a
negative binomial where one of the parameters (in this case,
the number of squeezed states) is itself a random parameter.
Numerical simulations of this distribution for 20 squeezers
with arbitrary squeezing parameters demonstrate that this
distribution is shaped like a negative binomial distribution,
with a clear peak. Thus, by rescaling the squeezing parameters
by an arbitrary constant, the photon number distribution can
be shifted to better reach the desired modal number of pho-
tons. The scaling of this modal probability with total photon
number, necessary to show that a higher number of photons
can be created efficiently, remains an open problem.

How large does the matrix TGBS need to be to hide a N × N
submatrix within it? Here, we will conjecture that it needs
to be only a linear factor of N , M = O(N ) = κN , and not
a quadratic relationship as in AABS (and our first argument
for approximate GBS in Sec. V A). A significant reason for
the quadratic relationship is to ensure that the submatrix that
is sampled is close to a random matrix of complex Gaus-
sian numbers, which is now a redundant requirement in this
regime, as explained above.

However, a smaller matrix will may complicate two issues:
the distributed error for approximate sampling and the occur-
rence of photon bunching. For the first issue, the size of the
set of good outcomes, GM,N (see Appendix A for definitions)
still scales exponentially with the number of photons if M =
O(N ). This means that the error that the adversary adds to the
device will be spread across these outcomes, as in AABS.

The second issue is the problem of photon bunching at the
output of the device. Photon bunching leads to repeated rows
and columns in the matrix argument of both the permanent
and Hafnian for boson sampling, as explained in Sec. III A.
It has been shown that the computational runtime to calculate
the permanent of a matrix with repeated rows and columns is
reduced but still has exponential form [46,47]. A similar result
for Hafnians has also been shown [38]. This would suggest
that the boson sampling is still a #P hard problem for modest
levels of photon bunching, in that the complexity depends
upon the number of distinct channels occupied, although the
tolerable level of photon bunching remains an open question.
Thus, the main problem with photon bunching it that it
inefficiently uses photon resources. This is less of a problem
for GBS due to the nature of photon generation (discussed in
a following section below). The full solution for the hardness
of approximate GBS in this regime, that takes into account
bunching and photon generation, is an open problem.
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FIG. 5. SBS is a special case of GBS. 2M single-mode squeezed
states (SMSS) enter an array of phase shifters UPS and beam splitters
UBS to transform them to two-mode squeezed states, which are
required in SBS. Then, one half of the photons is directly routed
to a detection unit to generate the heralding pattern h̄SBS, while the
other half enters the interferometer TSBS and generates the sampling
pattern n̄SBS. The dashed blue box frames the corresponding GBS
interferometer.

VIII. RELATIONSHIP TO SBS

In this section, we now demonstrate the relationship be-
tween SBS and GBS, by describing the SBS setup in terms of
GBS and can formally show the connection between the two
protocols by using the relationship between the permanent and
the Hafnian.

Figure 5 shows a typical SBS setup. On the left of the
figure, we have 2M (identical) single-mode squeezed states,
which are then combined, pairwise, at an array of phase
shifters, UPS, and beam splitters, UBS, that are described by
the two unitary transformations

UPS =
(

1 0

0 i

)
UBS = 1√

2

(
1 1

−1 1

)
. (34)

This transformation creates the initial M two-mode squeezed
states necessary for SBS. One mode of each two-mode
squeezed state is sent directly to a set of detectors (i.e., trans-
formed by the identity 1M), where the detection of a photon
heralds the presence of the other photon from the photon pair.
This latter photon then enters the corresponding input mode of
a Haar random interferometer TSBS, with dimension M, and at
the output we measure all modes to detect the position of the
photons. This yields two photon patterns at the output, n̄ for
the sampled photons and h̄ for the herald photons.

As the input state is dependent upon the herald pattern,
the probability to measure a specific pattern from an SBS
experiment is actually a conditional probability, Pr(n|h). We
can relate this to a joint probability using Bayes’ theorem.
This joint probability, to measure the combined pattern n̄ ∩ h̄,
is exactly the probability which we obtain when we consider
this specific setup as a GBS experiment,

PrSBS(n) = Pr(n|h) = PrGBS(n ∩ h)

Pr(h)
. (35)

The denominator in Eq. (35) is the probability of generating
the heralding pattern, which, due to the identity transforma-
tion in the herald arm, is simply the probability to generate
the total number of photons that h̄ represents. We can therefore
interpret SBS as a specialized GBS experiment that samples
from an interferometer of a very specific shape,

TGBS = IM ⊕ TSBS ×
M⊕

j=1

UBS jUPS j . (36)

A more formal proof of this connection between SBS and
GBS can be given by using the relationship between the
permanent and the Hafnian. We begin with the SBS experi-
ment, where, for simplicity, all M two-mode squeezed states
have equal squeezing parameter r and the generated photons
then enter the interferometer IM ⊕ TSBS. The probability to
measure the sampling pattern n̄ given a herald pattern h̄ is

PrSBS(n|h) = |Perm(TS )|2
n! h!

= Perm(TS )Perm(T ∗
S )

n! h!
, (37)

where TS is the submatrix that is constructed from the input
and output positions of the photons. Note that the input
position of the photons is given by the pattern, h̄. To map this
probability to our GBS experiments, we have to express the
SBS protocol in terms of covariance matrices. The Gaussian
output state after the SBS interferometer has the covariance
matrix

σ = 1
2 (I⊕ TSBS⊕I ⊕ T ∗

SBS)STMS†
TM(I ⊕ TSBS ⊕ I ⊕ T ∗

SBS)† ,

(38)

where

STM =

⎛
⎜⎜⎜⎝

cosh(r) I2M

0M sinh(r) IM

sinh(r) IM 0M

0M sinh(r) IM

sinh(r) IM 0M
cosh(r) I2M

⎞
⎟⎟⎟⎠,

(39)

which encodes the operation of the two mode squeezers (the
black bars are for better clarity of the four blocks). The order
of the modes is

[â1, . . . , âM , b̂1, . . . , b̂M , â†
1, . . . , â†

M , b̂†
1, . . . , b̂†

M ], (40)

where â j denotes the M herald modes and b̂ j are the M
sampling modes. The probability for a valid GBS event in this
interpretation is given by

PrGBS(n ∩ h) = Haf(AS )

n! h!
√|σQ| , (41)

with
√|σQ| = cosh2M (r) for M two-mode squeezed states.

The matrix AS has a simple form and is given by

AS = −tanh(r)

⎛
⎜⎜⎝

0 T †
S 0 0

T ∗
S 0 0 0
0 0 0 T t

S
0 0 TS 0

⎞
⎟⎟⎠ = BS ⊕ B∗

S . (42)

032326-10



DETAILED STUDY OF GAUSSIAN BOSON SAMPLING PHYSICAL REVIEW A 100, 032326 (2019)

We can use Eq. (24) to express the Hafnian in terms of the
permanent

Haf(AS ) = Haf(BS )Haf(B∗
S )

= tanh2N (r)Perm(TS )Perm(T ∗
S )

= tanh2N (r)|Perm(TS )|2 . (43)

We finally arrive at

PrGBS(n ∩ h) = sech2M (r)tanh2N (r)|Perm(TS )|2
n! h!

(44)

and

Pr(h) = sech2M (r) tanh2N (r). (45)

Combining Eqs. (44) and (45) and comparing them to
Eq. (37), we can see that

PrGBS(n ∩ h)

Pr(h)
= |Perm(TS )|2

n! h!
= PrSBS(n|h) , (46)

as expected. This demonstrates how SBS can be considered as
a subset of all possible GBS experiments.

This viewpoint also illustrates why we are allowed to retain
multiple photons from the same squeezer. In GBS, we use a
coherent superposition5 over all (even) photon number states.
Our ignorance of the input state in the Fock basis allows us
to use “paths” where all the photons come from the same
squeezer, without being able to distinguish these events from
the ones where the photons come from different squeezers. In
contrast, in SBS, the herald detectors collapse our input state
to a specific one, giving us exact knowledge of this state in the
Fock basis.

IX. RATE OF PHOTON GENERATION

In this section, we describe one of the main advantages
that GBS has in an experimental implementation, the rate
of photon generation. We then compare the GBS scheme to
existing Boson sampling implementations.

A. Resource efficiency compared to single-photon schemes

In Sec. VI D, we discussed the probability to gener-
ate ν photon pair events from the K � 2ν single-mode
squeezed states to saturate the complexity of the GBS scheme
[Eq. (33)]. In this section, we compare how this probability
scales in comparison to existing boson sampling schemes with
probabilistic single-photon inputs.

PFBS protocols generate their single-photon input states
with a limited number of K two-mode squeezers, where
SBS as a special case with N2 two-mode squeezers. The
probability to generate ν photon pair events from K two-mode
squeezed states and equal squeezing parameter r is given by

5Note that there is no phase relation between single photons, while
GBS, in contrast to AABS and SBS, relies on coherent superposi-
tions of photon numbers and thus phase control of the input states is
required.

the binomial distribution [14]

PrK,PFBS(ν) =
(

K

ν

)
sech2K (r)tanh2ν (r) . (47)

The ratio of Eqs. (47) and (33) to generate ν photon pairs from
K two-mode squeezed states for PFBS and 2K single-mode
squeezed states for GBS (as a fair comparison) is (for identical
squeezing parameter r)

PrPFBS(ν)

PrGBS(ν)
=
(

K

ν

)[(
K + ν − 1

ν

)]−1

= K!(K − 1)!

(K − ν)!(K + ν − 1)!

⇒ lim
N→∞,K>ν

PrPFBS(ν)

PrGBS(ν)
≈
(

K − ν

K − 1

)ν

. (48)

This ratio scales exponentially in favor of GBS, with an
improvement of roughly νν . We can explain this behavior by
all the possible ways to generate ν photon pairs in total in
each protocol. While PFBS is restricted to a single photon pair
event per squeezer, GBS is not hindered by this restriction
and can use multiple photon pairs from the same squeezers,
signified by the extra term (ν − 1) in the binomial factor. In
the special case of SBS with K = N2 squeezers, this number
converges to Euler’s number e.

We also note that in GBS we do not have to implement
ν2 squeezers at the input to saturate the complexity of the
sampling problem, but only 2ν. Therefore, compared to SBS,
we can save a quadratic factor in the number of squeezers.

B. Comparison to current sources

To compare the GBS approach with existing protocols, we
plot the probabilities of obtaining N photons from different
types of sources in Fig. 6. We first compare the single-photon
efficiency p = pgen pextr, which we define as the product of
the generation probability, pgen, and the extraction probability,
pextr, of state-of-the-art solid-state sources from He et al.
[10] (dashed blue line, p = 0.247), Loredo et al. [11] (blue
dash-dotted line, p = 0.14), and Wang et al. [9] (densely
dashed blue line, p = 0.284), where for the latter we use the
efficiency of the demultiplexer implemented to inject photons
in different inputs of the boson sampler (pgen = 0.845) as
an additional factor for the single photon efficiency p =
0.337pgen. All of these approaches converge exponentially to
zero for high N and only differ in their single-photon success
probability. The green dash-dotted line shows the theoretical
SBS scaling to higher photon numbers (proportional to 1√

N
).6

Finally, we plot the theoretical scaling of our GBS protocol
for K = N2 sources with the green, solid line. We observe
the e-fold improvement toward the SBS schemes and the
expected 1√

N
scaling. For comparison, we also show the scal-

ing behavior of an almost perfect single-photon source with

6The experimental implementation of Ref. [48] does not use as
many photon pair sources as the number of modes (9- and 13-mode
unitaries with K = 6 photon pair sources); for this reason, we do not
report a scaling of their approach.
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FIG. 6. Comparison of single-photon efficiency for different bo-
son sampling approaches. The first three lines represent the current
state of the art with solid-state sources [9–11]. In comparison, we
plot the scaling performance of SBS [14] and GBS and an almost
optimal deterministic source with 90% efficiency. Even for this high
value, GBS (K = N2) is advantageous for more than ≈25 photons
and SBS for more than ≈35 photons.

90% generation probability (gray dashed line). Even in this
case, the polynomial scaling of the Gaussian protocols allows
for better generation probabilities in the high-photon-number
regime; the break-even point for GBS is around 25 photons,
while the one for SBS is higher with 35 photons. As the “inter-
esting” regime for boson sampling experiments begins around
N = 50–100 photons [1,7,8], Gaussian protocols are more
likely to reach the required photon numbers with reasonable
generation rates. Indeed, this break-even point can already be
reached with existing sources of parametric down-conversion
[49,50].

X. CONCLUSIONS

In this paper, we have demonstrated how to use the full
nature of squeezed states to construct a boson sampling pro-
tocol and extended our results and analysis from Ref. [19].
First, we derived an expression for the probability to measure
a specific photon sampling pattern from a general Gaussian
state, which depends upon the Hafnian, a matrix function
more general than the permanent. Our work in this paper
extends this formula to include displacement contributions, so
that all Gaussian states are covered, and we also discussed
how to include higher order detection events into our formal-
ism. Following this, we discuss a boson sampling protocol,
using squeezed states entering a linear interferometer, which
is based on the fact that to calculate the Hafnian is a #P
problem. We then propose arguments for why approximate
sampling from Gaussian states is also a #P problem and
explained the various requirements for the complexity in GBS
to be satisfied. Furthermore, we related our protocol to the
most general protocol up to date SBS and showed that it
is a subset of our GBS scheme. Finally, we compared the
theoretical generation probability of GBS with the actual

generation rates of current experiments, showing the promise
of sampling squeezed states instead of single photons.

Within experimental quantum optics, starting with a
squeezed state, using linear optical transformations and post-
selecting measurement outcomes is a very common method
to create different families of photonic states and is universal
for quantum computation. We can model this situation with
GBS if we “move” all the measurements to the end of the
computation, after the linear optical elements. This means
that the GBS protocol includes other photonic boson sampling
protocols as special cases, which we have demonstrated here
with SBS, but also those problems involving Schrödinger cat
states and photon added and subtracted states [51–53]. We
also note that due to the time-reversal symmetry of quantum
mechanics, GBS also includes the situation of Fock boson
sampling with Gaussian measurements [54–56].

Another important aspect in boson sampling schemes is
the verification of the correct operation of the device in an
efficient manner [57–61]. As the size of the output state space
with single photons is exponentially large, full state tomog-
raphy would be a practically impossible task. In recent works
[62,63], statistical averages that can be calculated were used to
verify the device operation. As Gaussian states are completely
characterized by their covariance matrix, which is of size
M2 and can be efficiently measured [64], then an interesting
question is if this information can be used, in combination
with the methods developed in the continuous-variable field,
to help verify the correct operation of the device.

While boson sampling is demanding and makes use of
experiments at their full capabilities, we show here, through
GBS, a new regime with advantages that will bring the proto-
col within the reach of current technology.
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APPENDIX A: PROOF THAT |GHE|2
± ∈ FBPPNPO

We can prove this statement by using the same techniques
as in Ref. [1]. We wish to estimate the probability of a
particular outcome n̄ from the distribution D of all outcomes
from the matrix B [Eq. (28) from the main text]

B ∝ TGBSIN ⊕ 0M−N T t
GBS ⇒ Bn̄ ∝ Xn̄X t

n̄/M, (A1)

where we have used a result from Ref. [1] that a submatrix
of the unitary TGBS is close to a matrix whose individual
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entries are random numbers drawn from the complex normal
distribution, rescaled by the size of TGBS, in this case Xn̄/

√
M.

The probability of our specific event is then (recall that we
have K = N squeezers with identical squeezing parameter r)

Pr
D

[n̄] = pn̄ = 1√|σQ| |Haf(Bn̄)|2

= tanhN (r)

coshN (r)

∣∣∣∣Haf

(
Xn̄X t

n̄

M

)∣∣∣∣
2

= cN
∣∣Haf
(
Xn̄X t

n̄

)∣∣2, (A2)

where we have simplified the factors in front of the Hafnian
as cN (0 < c < 1).

If we assume we have access to an oracle, O, that approxi-
mates the distribution D with D′,

qn̄ = Pr
D′

[n̄] = Pr[O(B, 01/β, r) = n̄], (A3)

where the oracle takes a particular submatrix B, error bound
β, and bit string r, a source of randomness, which corresponds
to which outcome the oracle generates. The distance between
the two distributions is defined as

�n̄ = |pn̄ − qn̄|, ||D − D′|| = 1/2
∑

n̄

�n̄ < β, (A4)

where �n̄ is the error between the actual probability and the
approximated probability for a particular outcome n̄ and the
total error (over all possible outcomes) is upper bounded by
β. As in Ref. [1], we show that we can approximate pn̄ by
using a combination of the oracle and Stockmeyer’s counting
algorithm. We are only interested in the subset of collision-
free states, where all the photons leave in different modes. The
size of this subset is |GM,N | = (MN), where M is the number of
modes and N is number of photons. We now need to show that
pn̄ and qn̄ are close with high probability. The expected size
of an individual error is

E [�n̄] =
∑

n̄ �n̄

|GM,N | <
2β

|GM,N | < 3β
N!

MN
, (A5)

where the last step is obtained by using Stirling’s formula.
Then, by using Markov’s inequality,

Pr

[
�n̄ > 3kβ

N!

MN

]
<

1

k
for k > 1. (A6)

In a GBS protocol, we are interested in calculating the
probability of a particular outcome, n̄∗, which an adversary
may corrupt beyond an acceptable level of noise. The nature
of the protocol provides two protections against such an
adversary. First, as the matrix we sample is one of a random
numbers, an adversary will not learn any information from
looking at TGBS, where all submatrices look identical. Next, as
the size of |GM,N | is exponentially large, an adversary cannot
know, on average, which particular outcome is of interest
and therefore cannot corrupt the corresponding qn̄∗ to make
it sufficiently different from pn̄∗ , given the bounded level of
noise. For these two reasons, we can assume that the expected
error for a particular �n̄∗ is the same as the average error, �n̄.
Thus, the above statements about the expected error also hold
for a specific outcome n̄∗.

The next step in the proof is to use Stockmeyer’s counting
algorithm to approximate the probability qn̄ (with q′

n̄), which

can be done in FBPPNPO
with probability

Pr[|q′
n̄ − qn̄| > α qn̄] <

1

2M
(A7)

in a time polynomial in M and 1/α. For that, we need the
expected value of qn̄,

E[qn̄] = Pr(N )

|GM,N | < 2
N!√
N MN

. (A8)

This probability is a product of the probability to be in the
“good” space of N photons, GM,N (which scales as 1/

√
N ; see

Appendix D) divided by the size of this space, |GM,N |. The
probabilities qn̄ are lower bounded by 2−poly(N) and therefore
can be approximated by Stockmeyer’s counting algorithm in
poly(M, δ, ε). Using Markov’s inequality again,

Pr

[
qn̄ > 2k

N!√
NMN

]
<

1

k
, (A9)

and again we can assume that this results also holds for qn̄∗ for
the same reasons above.

Finally, setting k = 4/δ and ε = 6βk, and combining all
these steps, it can be shown that

Pr

[
|q′

n̄∗ − pn̄∗ | > ε
N!

MN

]

� Pr

[
|q′

n̄∗ − qn̄∗ | >
ε

2

N!

MN

]
+ Pr

[
|qn̄∗ − pn̄∗ | >

ε

2

N!

MN

]

� Pr

[
qn̄∗ > 2k

N!√
NMN

]
+ Pr

[
|q′

n̄∗ − qn̄∗ | >
3β

2

√
Nqn̄∗

]

+ Pr

[
�n̄∗ > 3kβ

N!

MN

]

� 1

k
+ 1

2M
+ 1

k
= δ

2
+ 1

2M
, (A10)

where we have used a result, Eq. (D6), from the supplemental
information of Ref. [12],7 in moving from the first line to
the second. In going from the second to third line, we have
used Eqs. (A9), (A7), and (A6) respectively. Adding in the
probability of failure for the hiding lemma δ/4, we see that
the total probability of failure remains less than δ (for large
M). This completes the proof. �

APPENDIX B: PROOF THAT A SUBMATRIX
OF B = U�Ut IS RANK K

U is a N2 × N2 unitary matrix randomly drawn from the
Haar measure and � is a matrix that has the K × K identity
matrix (K � N) in the upper left block and zeros elsewhere,
with �2 = �. The (random) position of the measured photons
selects a submatrix of B, which can be modeled with a pro-
jective matrix P with either 1 or 0 in each diagonal position,
dependent upon whether a row or column is selected. Thus,

7The result from Ref. [12] is

Pr[|x − y| > z] � Pr[y > z/c] + Pr[|x − y| > c y], (z, c > 0).
(A11)
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we define

X = PU�, (B1)

where we can use the results from AA that the N × N X is
close to a matrix of i.i.d. complex normal numbers. Then, it
can be shown, with probability 1, that XXt is a matrix of full
rank [65] as singular matrices exist in a lower dimensional
space [due to the constraint det(X ) = 0], which, when inte-
grated over, along with the continuous density of the original
Haar matrices, will yield zero probability of singular matrices.

APPENDIX C: DERIVATION OF THE BUNCHING
PROBABILITY

In this Appendix, we show that the probability of two
or more photons in the same output mode is low for the
case where we have M = N2 modes. The photon number
distribution of a single-mode thermal state is [24]

Pr(n) = 〈n〉n

(1 + 〈n〉)n+1
, (C1)

where 〈n〉 is the mean number of photons of that state and the
ratio of collision events to collision-free events is then∑

n�2 Pr(n)

Pr(1)
= 〈n〉. (C2)

We have a mean total number of photons exiting the interfer-
ometer

∑
j〈n〉 j = N , regardless of the number of squeezers.

Thus, the mean photon number per mode is 〈n〉 = 1/N , au-
tomatically ensuring a dilute regime of photons at the output
(for large N).

APPENDIX D: DERIVATION OF THE MODAL
PROBABILITY

The modal number of photons from K single-mode
squeezed states, described by the negative binomial distribu-
tion (33), is given by

nmodal = 2�(K/2 − 1) sinh2(r)�. (D1)

If we set nmodal = 2ν photons, then we can rearrange the above
equation to

sinh2(r) ≈ 2ν

K − 2
, (D2)

which determines the squeezing strength r of each individual
squeezer. Below, we will calculate how the probability of
this modal number scales for large photon numbers for two
different number of squeezers, K = 2ν and K = (2ν)2, i.e.,
the minimal number and the maximal number of squeezers.
Throughout this section, we assume that ν (and thus N)
are sufficiently large to make useful approximations in the
binomial coefficients.

1. K = 2ν

To ensure the complexity requirements are satisfied when
we measure 2ν photons, we must set K = 2ν, and thus
sinh2(r) ≈ 1 for large N(or K) from (D1). When we insert
this into Eq. (33) and evaluate at 2ν photons, we have

P2ν (2ν) ≈
(

2ν

ν

)
sech2ν (r)tanh2ν (r) (D3)

and using (2ν

ν ) ≈ 4ν/
√

πν, sech2(r) = 1/2 and tanh2(r) =
1/2 yields

P2ν (2ν) = 4ν

√
πν

1

2ν

1

2ν
= 1√

πν
. (D4)

Thus, the modal probability decreases as 1/
√

ν.

2. K = 4ν2

We can also calculate the case when we have K = 4ν2

squeezers (i.e., one in every mode). Then, we have

sinh2(r) ≈ 1

2ν
. (D5)

Then,

P4ν2 (2ν) ≈
(

2ν2 + ν

ν

)
sech4ν2

(r)tanh2ν (r),
(D6)

and using (2ν2 + ν

ν
) ≈ (2ν + 1)νeν/

√
2πν, sech2(r) =

1 + (2ν)−1, and tanh2(r) = (2ν + 1)−1 yields

P4ν2 (2ν) ≈ (2ν + 1)νeν

√
2πν

(
1 + 1

2ν

)−2ν2(
1

2ν + 1

)ν

≈ 1√
2πν

. (D7)

Again, the modal probability decreases as 1/
√

ν.
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