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The standard approach to realize a quantum repeater relies upon probabilistic but heralded entangled state
manipulations and the storage of quantum states while waiting for successful events. In the literature on this
class of repeaters, calculating repeater rates has typically depended on approximations assuming sufficiently
small probabilities. Here we propose an exact and systematic approach including an algorithm based on Markov
chain theory to compute the average waiting time (and hence the transmission rates) of quantum repeaters with
arbitrary numbers of links. For up to four repeater segments, we explicitly give the exact rate formulas for
arbitrary entanglement swapping probabilities. Starting with three segments, we explore schemes with arbitrary
(not only doubling) and dynamical (not only predetermined) connections. The effect of finite memory times
is also considered and the relative influence of the classical communication (of heralded signals) is shown to
grow significantly for larger probabilities. Conversely, we demonstrate that for small swapping probabilities the
statistical behavior of the waiting time in a quantum repeater cannot be characterized by its average value alone
and additional statistical quantifiers are needed. For large repeater systems, we propose a recursive approach
based on exactly but still efficiently computable waiting times of sufficiently small subrepeaters. This approach

leads to better lower bounds on repeater rates compared to existing schemes.
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I. INTRODUCTION

Quantum repeaters are essential ingredients for large-scale,
fiber-based quantum networks because of the exponential de-
cay of photonic quantum information along the optical com-
munication channels. Besides recent all-optical approaches
relying on experimentally still demanding quantum error cor-
rection procedures, memory-based quantum repeaters remain
good candidates to realize long-range quantum communica-
tion [1-9]. In such quantum repeaters, probabilistic events
like, especially, the heralded distribution of entangled Bell
states over sufficiently small elementary channel segments
become independent through the use of sufficiently long-
lasting quantum memories, thus circumventing the exponen-
tial scaling when the segments are connected. Remarkably, the
precise average waiting time, and hence the communication
rate in a nondeterministic quantum repeater is unknown and
computing this time has been a long-standing problem [10].
An exact analytic solution only exists for the special case of
deterministic entanglement swapping; otherwise any existing
work on quantum repeaters relies upon approximations or
numerical simulations. In our work, we present a system-
atic scheme, based on a Markov formalism [11] and linear
equation solving, that enables one to obtain the exact waiting
times in practically relevant regimes. For a repeater as large
as 1024 segments, we demonstrate that the trade-off between
the computational efficiency and the prediction accuracy can
be dealt with in a modular approach by recursively applying
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exactly but still efficiently computable subchains like 32 times
32 segments. This provides increasingly more accurate but
still computable lower bounds on the repeater rates. Fur-
thermore, our method allows one to easily compute the full
probability distribution of the random waiting time for nonde-
terministic quantum repeaters including those with arbitrary
(not only doubling) and dynamical (not only predetermined)
connections and including classical communication and finite
memory effects.

Quantum repeaters enable one, in principle, to extend
(optical-fiber-based) quantum communication schemes such
as quantum cryptography to distances as large as 1000 km
and beyond despite channel losses that typically increase
exponentially with distance. Thanks to some recent results on
the bounds for point-to-point communication [12,13], there
are now well-defined benchmarks for long-distance quantum
communication. These bounds can be explored in terms of a
secret key rate per mode (per channel use) and, when ignoring
all imperfections besides channel losses, this corresponds to
an optimal raw qubit transmission rate without intermediate
stations like in a quantum repeater [14].

Since the standard approach to quantum repeaters is based
on quantum memories and on (at least partially) probabilistic
operations on entangled states (distribution, swapping, and
purification) [15], some recent proposals consider small-scale
versions of quantum repeaters with a minimal number of
memory stations (repeater links) [16—19]. While the rate
analysis for the smallest repeater with only two segments
and one link is fairly straightforward, quantum repeaters with
two or more links become increasingly complex to analyze
when the entanglement swapping is probabilistic. Indeed there
is no explicit expression for the average repeater waiting
time in the literature for such advanced cases [20]. However,
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entanglement swapping based on heralded but nondeterminis-
tic Bell measurements is a rather natural situation, especially
in one of the most prominent approaches based on atomic en-
sembles and linear optics [21] where normally even the ideal
(photonic) Bell measurement cannot exceed an efficiency of
1/2 [22]. Thus, so far, the typical approximate rate formulas
that have been applied depended on the assumption of suffi-
ciently small probabilities [10,23-25]. Nonetheless, the most
efficient memory-based quantum repeater schemes would rely
on high swapping probabilities, for instance, based on suitable
atom-light interactions [26] or enhanced linear-optics Bell
measurements [27-29]. While exact analytical rate formulas
are known only for the extreme case of fully deterministic
entanglement swapping [30], in the present work, we will
address the entire range of arbitrary swapping probabilities
including a full statistical analysis beyond only average val-
ues. For large-scale repeaters, we propose to divide the whole
system into smaller subrepeater chains, still sufficiently big to
maintain the great accuracy of our formalism and sufficiently
small to be efficiently computable. Errors that occur during the
long-distance entanglement distribution in a quantum repeater
can be included into the Markov-chain formalism. Here the
focus will be on the distribution times, which, for example, in
the context of quantum key distribution would be related to a
quantum repeater raw rate [31].

The paper is structured as follows. In Sec. II we introduce
the general setting and review existing results on the rate
analysis in quantum repeaters. Section III then discusses some
commonly used approximations and Sec. IV gives a detailed
introduction into the Markov-chain formalism for quantum
repeaters. Explicit examples of small repeaters and some
special cases are presented in Sec. V. How to incorporate the
effects of finite memory and classical communication times
into our rate analysis is described in Secs. VII and VIII,
respectively. An alternative, complementary approach based
on generating functions is introduced in Sec. IX and a possible
way to compress the Markov chain describing a quantum
repeater system in order to make the analysis more efficient
is discussed in Sec. X on lumpability. Finally, Sec. XI briefly
describes a numerical validation of some of our analytical
results, Sec. XII treats larger repeater systems based on a
recursive application of our exact rate formulas, and Sec. XIII
concludes the paper.

II. GENERAL SETTING AND KNOWN RESULTS

Let us consider a quantum repeater with n identical seg-
ments of length Ly and n — 1 swappings between them.
The initial entanglement distribution success probability is
denoted by p and the swapping success probability by a.
The former includes the local state preparation efficiency and
the channel transmission probability that decays exponentially
with distance. The latter may include local losses such as
(heralded) memory erasures. The characteristic time unit T =
Ly/c is the typical duration of a single distribution attempt
(including the transmission times of quantum and classi-
cal signals between neighboring repeater stations, and more
specifically depending on the particular repeater protocol).
To distribute entanglement along the whole repeater we first
distribute it in individual segments and then combine them
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FIG. 1. Different ways for entanglement distribution in a quan-
tum repeater. (a) The basic parameters of our model (see main text).
(b—d) Various distinct situations for the entanglement swapping (also
see main text).

with swapping. If a swapping fails, or if a state is kept in
memory longer than ~m time units 7, the affected segments
are zeroed out and have to start entanglement distribution
from the very beginning. In Fig. 1(a) we show two segments
of such a quantum repeater. Figures 1(b) and 1(c) illustrate
schemes based on deterministic and probabilistic entangle-
ment swapping, respectively, while the latter has the fixed rule
of doubling the distance on every nesting level. Figure 1(d) is
more general, no longer imposing such rules.

Generally, with probability a"~! p" we succeed in one step
with no gain over direct state transmission. In order to gain
efficiency and change the scaling, we have to exploit quantum
memories and allow to perform several steps to successfully
distribute entanglement over the whole repeater. We introduce
the random variable K,, which is equal to the number of steps
taken to successful distribution over the total distance L = nl,
and, when multiplied with 7, corresponds to the total waiting
time (on higher nesting levels different time units may apply;
see Sec. VIII). The goal of this work is to study statistical
properties of K.

The main characteristic of any random variable is its
probability distribution function (PDF). Up to now hardly
anything has been known about the full PDF of K, in the
most general setting with arbitrary (including still relevant)
p and a, although the waiting time in a single segment is
obviously geometrically distributed with probability pg*—! for
success at the kth attempt (where g = 1 — p). A few results
about the average K, have been obtained. The expression
for the average waiting time of a two-segment repeater with
nondeterministic swapping and “memory cutoff” of m time
units has been obtained in Ref. [32] and reads as

—(m)_ 1+2q_2qm+1
P ap(l4+q—2¢")

(D

In the case of deterministic swapping, a = 1, and infinite
memory, m = +00, the exact expression for K, for arbitrary
n was presented in Ref. [30] [Fig. 1(b) illustrates such a
repeater; since swappings cannot fail, there are no additional
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levels]. It reads as
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The expression for the average waiting time of an n-segment

quantum repeater with deterministic swapping and a finite

memory cutoff of m time units has been obtained in Ref. [33],
and it is given by the following expression:
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We thus have three expressions independently obtained by
different methods, so we need to verify that they are in
agreement where applicable. Simple algebra shows that the
expression (2) for n = 2 coincides with the expression (1)
for a = 1 and m = 400 and that the expression (1) fora = 1
coincides with the expression (3) for n = 2. Verification that
the expression (3) for m = 400 coincides with the expression
(2) requires slightly more work.

Lemma 1. The expressions (2) and (3) are consistent for
the case of infinite memory cutoff: K.~ = K,.

Proof. We need only verify the following relation:

lim |[m—Y (1-¢) | =K, )

m——+00

The sum can be expanded as follows:
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In the last equality we used the relations
g _ 1
1—q/

- — 1 /
1—g )
and

- (- 1)!“(])—0 1y =0. ®)

j=1

This concludes the proof that the expressions (2) and (3) are
consistent.

One must be careful by using the expressions (2) and
(3) for numerical evaluation of the averaged waiting time.
For large n (roughly speaking, for n > 60) and for small p
(roughly, for p < 0.01) one can obtain wrong results due

to the limitations of the standard double precision floating
point arithmetic. In this case, either one has to use multiple
precision numbers or use the approximations presented in the
next section.

III. APPROXIMATIONS

No expression for the exact average waiting time time is
known in the case of nondeterministic swapping, a < 1, and
for more than two segments, n > 2. Moreover, for nondeter-
ministic swapping different orders of the swapping operations
lead to schemes of significantly different efficiencies. One of
these schemes is when the number of segments is a power of
two, n = 29, recursively doubling the entangled segments in
the repeater [see Fig. 1(c)]. For this scheme, an often used
approximation [10] is given by

- 3\’1 3\°e"
K, ~ (—) - = <—) -=K,. ©)]
2a) p 2a p

As opposed to our exact treatment below, this approximation
can be applied only for the power-of-two case and, as we
will show, it is imprecise in relevant regimes of parameters
p and a. It is asymptotically precise only when both p and a
are small. In particular, for small p and bigger values of a (a
very common regime; see, e.g., Ref. [34]) the approximation
is much larger than the actual waiting times and hence the
minimal repeater performance in terms of lower bounds on the
repeater rates is significantly underestimated. Moreover, the
approximation does not produce the correct scaling behavior.
For the fully deterministic case p = a = 1 we obviously have
K, = 1, because we immediately succeed in the very first
attempt, but

E; = (3/2)log2n — nIng 32 _ n0‘58‘~

> Jn. (10)

Thus, in this case the approximation is off by a factor of larger
than /. Neither the exact result (2) nor the approximation (9)
are directly applicable with a finite memory cutoff m < 400
or with inclusion of classical communication times at higher
nesting levels. The exact result (3) for arbitrary m and a = 1
is based on basic probability theory, hard to systematically
generalize. How to obtain a systematic and general framework
and incorporate various effects such as arbitrary memory
cutoffs and classical communication times with our formalism
is described in detail in later sections of our work. Here we
shall now focus on general repeaters for m = +o0.

To find out the asymptotic behavior of K, in the determinis-
tic swapping case, a = 1, and for p < 1, we expand (1 — p)/
with the Binomial Theorem and keep only the linear term in p
in each of the denominators in the sum (2). We have

Z( 1)/“(") Z-= —", (11)

where H,, = Z j=1 1/ is the nth harmonic number. For large
n it can be approximated by

1 1
Hn=y+1n(n)+—+0(—2>, (12)
2n n

where y = 0.57721... is the Euler—Mascheroni constant.
Combining all these results, we get the following simple
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FIG. 2. Markov chain of a two-segment repeater. (a) With zero-time transitions. (b) Without zero-time transitions.

approximation:

K, ~ l|:y +In(n) + i}. (13)
P 2n

For a fixed number of segments n both approximations, this
and the commonly used E;, give the same asymptotic growth
of the commonly time as O(1/p), but f:, gives a wrong factor.
For a fixed value of entanglement distribution success proba-
bility p, the waiting time really grows as O(Inn), while f;
scales as O(n'°20/2)) = O(n%3%), which grows faster than
O(+/n). This is a clear example where the usually employed
approximations when used in the wrong regime, i.e., p < 1
and a = 1 as still relevant for practical quantum repeaters,
lead to an inaccurate scaling.

The approximation K/l, given by Eq. (9), is applicable only
in the power-of-two case, n = 24 and for deterministic swap-
ping this approximation becomes rather inaccurate. In the
next section, we present an approach to compute the average
waiting time exactly and for an arbitrary number of segments.
This approach is based on the venerable Markov chain theory,
which has many applications in different branches of mathe-
matics, physics, biology and computer science.

IV. MARKOYV CHAINS

Roughly speaking, a Markov chain is a formal description
of a system that can be in several states and can go from
one state to another with known probability. We denote the
state space of the system by S = {sy, ..., sy}. The transition
probability from the state s; to the state s; is expressed as p;; =
P(s; — s;). The matrix P = (p; j)?’ =1 of these probabilities is
referred to as the transition probability matrix (TPM) of the
system. We can apply this formalism to study properties of
the waiting time of quantum repeaters.

A. Simple example

To illustrate the description of quantum repeaters with the
Markov chain approach, consider a two-segment repeater. It
can be only in five states, which we denote as 00, 01, 10, 11,
and 11, where 0 means that the segment has no distributed
entanglement yet and 1 means that entanglement was success-
fully distributed. The overline means that the corresponding

segments have been successfully swapped and represent now
a single, longer segment. The transition probabilities between
these states are easy to compute; the states with all pos-
sible transitions between them are shown in Fig. 2(a). For
example, the probabilities P(11 — 00) =1 — g and P(11 —
ﬁ) = a mean that from the state 11, where both segments
have successfully generated entanglement and are ready to
be swapped, we can either succeed with probability a and
move to the state 11, or we fail with probability 1 — a and
move back to the initial state 00. The TPM of the two-segment
repeater thus reads as

¢ pg pg PO
0 q o p O
P= 0 0 q p O (14)
1—a O 0 0 a
0 0O 0 o0 1

The main property of any TPM is that all its row sums are
equal to one, and this matrix obviously satisfies this property.
Note that one state is special: there is no arrow originating
from the state 11. Once the system entered this state, it
will stay there. To be completely precise, we would need to
show a loop for this state with probability 1, but instead we
distinguish it with double circle. Such states are referred to as
absorbing.

A typical approach to study the waiting time is to ignore
the time it takes to perform the swapping, as well as the
classical communication time associated, in general, with
any nesting level beyond the initial entanglement distribution
(the inclusion of such more general effects will be discussed
in Sec. VIII). Thus, we only count the initial entanglement
distribution time (including its classical communication). The
waiting time, the variable K, in the example, is thus the
number of steps from the initial state 00 to the absorbing
state 11 without counting the dashed zero-time transitions.
This problem is closely related to the well-known problem
for Markov chains: absorption time. The absorption time is
the number of steps it takes to get from some starting state
to an absorbing state (a general Markov chain can have more
than one absorbing state). If we could describe the quantum
repeater by a Markov chain without zero-time transitions, then
the waiting time would be exactly the absorption time, whose
properties can be obtained directly from the corresponding
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TPM. The Markov chain without zero-time transitions for
a two-segment quantum repeater is shown in Fig. 2(b). We
just need to remove the state 11 and recompute the transition
probabilities. We thus reduced the problem of studying the
waiting time of this simplest repeater to the absorption time
problem of the Markov chain shown in Fig. 2(b) with the
following TPM:

F+A—a)p* pg pg ap?

_ (1—-a)p g 0 ap
=l a-ap 0 ¢ a|
0 0 0 1

This reduction illustrates a general phenomenon: either we
use a larger chain with zero-time transitions, whose transi-
tion probabilities are easier to compute, or we use a more
compact chain, but should spend more efforts to determine
the transition probabilities. Below we show that this reduction
to the absorption time problem is possible for a general n-
segment quantum repeater, but before this we shall review the
absorption time problem for general Markov chains.

B. Absorption time

Consider a Markov chain with a single absorbing state,
which we assume to be the last one, sy. The general theory
can be applied to a chain with several absorbing states, but we
need a simpler case when there is only one such state. In this
case the TPM can be partitioned as follows:

0
P= <0T l;) (16)

where Q is the matrix of transition probabilities between
nonabsorbing states, u is the vector of transition probabilities
from nonabsorbing states to the absorbing one and 0 is the
zero vector. From the basic property of TPMs it is easy
to see that u = (I — Q)1, where [ is the identity matrix of
the appropriate dimension, N — 1, and 1 = (1, ..., 1)7 is the
vector of the same dimension with all components equal to 1.
For any state s; except the absorbing one sy we introduce a
random variable K (i) whose value is the number of steps it
takes to get to the absorbing state from the state s; (for the
absorbing state we would have K(N) = 0, so it is not useful
to introduce this variable). We combine all these variables into
the vector

K=((1),...,K(N—=1)". (17)

We now show that the full PDF of these random variables
(and thus their averages, standard deviations and all higher
moments) can be easily expressed in terms of the submatrix Q
of the TPM P.

Theorem 1. The probability distribution of K is given by
the following simple expression:

pe =0 'u. (18)

The average waiting time and the second moment read as
K=R1,
S _ 19)
K2 = 2R — DK,

where x°? is the componentwise square (also known as
Hadamard square) of the vector x and R= (I — Q)! is

the fundamental matrix of the chain. The variance is 02 =

K?-K".
Proof. For any nonabsorbing state s; we have
(P)i = Z QUI lejz s ij—zjk—] Uje_ys (20)

Jtseees Ji—1

where the summation is over all nonabsorbing states since,
if one of the intermediate states is the absorbing one, then we
succeed in less then & steps. In the vector form we have exactly
Eq. (18). Now that we know the full PDF, we can compute
the average waiting time and its standard deviation. By the
definition of the average value and Eq. (18), we have

o +00 +00
K=) kp=) kO 'u. 1)
k=1 k=1

It has been proven in Ref. [35] that the series ZZ:? o+1
converges, so we have

+00 +00
Zkafl — (Z letk)
k=1 k=1

=td-0)""_ =U-0)7% (22

where the prime denotes the derivative with regard to 7. From
this it immediately follows that

K=(U-0u=(0-0)*U-Q)1=Rl. (23

/

t=1

The second moment can be computed in a similar way:

K2 = +Zk2pk - iszk’lu. (24)
k=1 k=1
We have
= 2 nk—1 B k—1 _ k 7
yeo-[(ze)]
=I+0U -0, (25)
So we get

K2=(I+Q)I -0 1=+ -0 'K (26

We just need to show that 1 + Q) — Q) =2 — Q)~! —
I, which is trivially verified by multiplying both sides with
I — Q. This concludes the proof. |

This result shows that the fundamental matrix R = (I —
0)~! is an important characteristic of the corresponding
Markov chain. If we can obtain this inverse in a meaningful
form analytically, we can immediately compute the desired
characteristics of the waiting time. If it is infeasible to find the
inverse analytically, we can go the numerical way. The vector
of average waiting times K is the solution of the following
system of linear equations:

(I-QK=1. (27)

It is numerically more robust to solve the system (27) directly
than to compute the matrix R and multiply it by 1. The second
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moment satisfies the system of linear equations
(I-QK?2=(U+0XK. (28)

Having found the first moment K, we can solve this system to
obtain the second moment and the standard deviation. Simi-
larly, higher moments can be obtained. We thus can compute
all statistical properties of each random variable K (7).

C. Application to quantum repeaters

Now we apply the general theory developed in the previous
subsection to quantum repeaters and show that the problem of
determining the statistical properties of the waiting time can
be reduced to the absorption time problem of an appropriate
Markov chain. In the previous subsection we demonstrated
how to compute the absorption time of the system started
in any state, but in the applications to quantum repeaters we
usually need only the absorption time of the system started in
the initial state (which we always assume to be the first), so
we can just take the first component of the vectors K and o.
Unfortunately, we cannot solve a system of linear equations
just for one variable without finding the values of the others,
even if we later discard those other values.

Each segment of an n-segment quantum repeater can be in
two states, either entanglement has been distributed (which
happens with probability p) or it has not (with probability
q = 1 — p). Moreover, some groups of segments can be suc-
cessfully swapped, which we will denote by an overline over
the swapped segments. The state of a quantum repeater can be
fully described by n-digit binary strings with overlines over all
possible groups of 1s; individual segments are shown without
overlines. For a two-segment repeater there are five states,
which were listed above. For a three-segment repeater, there
are 13 states:

000 010 100 110 O11 10 111

0or o011 101 111 111 111.

The number of states grows exponentially with the number of
segments. More precisely, the number of states is given by the
following

Lemma 2. The number of states N, of an n-segment re-
peater is the (2n 4 1)-th Fibonacci number: N, = Fy,41.

Proof. The statement of the Lemma is correct for n = 2
and n = 3: in the former case there are F5 = 5 states, 00, 01,
10, 11 and 11, and in the latter case there are F; = 13 states as
listed above. The odd-index Fibonacci numbers F,; satisfy
the following recurrence relation:

Fouys =33 — Fopyi, (29)

which is easy to obtain from the defining relation F, 1, =
Foy1 + F,. We show that the numbers N,, satisfy the relation

Nn+1 =3N, — N,_1, (30)

which will prove that N,, = Fp,41.

The set of all (n 4+ 1)-digit binary strings with overlines
can be partitioned into two subsets S and S;: the first subset
contains those strings that do not end in an overline, and
the second subset contains those strings that do. Every string
from S; can be obtained by suffixing all possible states of an

SV O

n=3 n =4

R

n=>5

FIG. 3. Fixed schemes for small quantum repeaters.

n-segment repeater with zero and one, thus |S;| = 2N,. It is
easy to see that the strings of the set S, are in one-to-one cor-
respondence with the states of an n-segment repeater that end
with one: the ending overline in an n-digit string - - - *1 can
be extended to - - - x11 or a new overline can be introduced
if the last 1 is not overlined, -+ - % 1 — .- % 11. It follows
that |S,| is the number of n-digit strings with overlines that
end with one. This number can be obtained by subtracting
from the total number of strings N, the number of strings
that end with zero, which are in one-to-one correspondence
with (n — 1)-digit strings with overlines. We thus have the
relation |S;| = N,, — N,—1, which gives N,;| = |S1| + |S2] =
3N,, — N,_1, so the proof is complete. |

From this Lemma it follows that the number of states
grows exponentially as N, = F>,;; = O(A"), with A = ¢ =
2.61..., where ¢ = (1 ++/5)/2 is the golden ratio constant.
However, not all of them are really needed to describe the
process of entanglement distribution. The actual number of
states necessary to describe this process depends on the
scheme used to perform swappings. We always start in the
initial state 0. .. 0, and not every state is reachable for a given
swapping scheme. For example, for the doubling scheme,
which is exclusively studied in the literature, in the case of
n = 4 the state 0110 is unreachable, since such a swapping
is forbidden in this scheme. On the other hand, for a scheme
that we refer to as dynamical, when we swap everything that
is ready, 0110 is reachable, so both states 0110 and 0110 must
be included. Any scheme with a predetermined rule for the
swappings, such as doubling, we refer to as fixed. Binary trees
corresponding to fixed schemes for small quantum repeaters
are shown in Fig. 3.

Moreover, if we want to reduce the problem of waiting
time computing to the absorption time problem, we also
need to remove all zero-time transitions and recompute the
transition probabilities between the remaining states. This will
reduce the size of the corresponding Markov chain, but will
also make the computation of transition probabilities slightly
more complicated by comparison with the Markov chain with
zero-time transitions. Below we show that for the doubling
scheme, which is applicable only if the number of segments
is a power of two, n = 24 the number of states needed to
implement the scheme without zero-time transitions is N;* =
2" = 22" In this “recursive” scheme we divide the segments
into two equal parts, wait when both are ready and then try
to perform the last swapping to distribute the entanglement
over the whole repeater. We apply the same procedure to each
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half recursively, which is always possible since the number of
segments is a power of two. This is illustrated by Fig. 1(c).
Different schemes may require different subsets of the full
set of states, but because the doubling scheme is the only
one that has been analyzed in the literature, we mainly use
this scheme to illustrate our method. Nonetheless, the method
is completely general and can be applied to any swapping
scheme. One of such more general (nondoubling) schemes is
illustrated by Fig. 1(d).

We illustrate the process of removing zero-state transitions
and the recomputation of transition probabilities by the case
of n =3 and a fixed scheme when we try to swap segments
1 and 2 first and then, having successfully swapped them,
try to swap the combined segments with segment 3. Since
we ignore the time it takes to perform swapping and the
classical communication time needed to restart the process in
the case of swapping failure, transitions between these states
take different times. For example, the transition 000 — 000
takes one time unit (and happens with probability ¢*), while
the transition 011 — 000 happens instantaneously (with prob-
ability 1 — a). The states needed to implement this scheme
without zero-time transitions are

000 001 o010 o011 100 101 110 I111. (31)

For example, the state 011 is unreachable from the initial state
000 and should not be included into this set. The state 110
has a zero-time transition to the state 110 and should not
be included as well. Note that the set of states depends on
the chosen scheme. If we consider a scheme where we swap
segments 2 and 3 first and then swap them with segment 1, the
set of states reads as

000 100 001 101 010 110 OI1 T111. (32)

Below we show how to determine this set of states for any
fixed scheme with an arbitrary number of segments n, but now
we illustrate how to recompute the probabilities. Consider the
transition 000 — 000. In the original Markov chain with zero-
time transitions the probability of this transition is P(000 —
000) = q3. In the new, smaller chain, we can stay in the state
000 in three ways: (1) none of the entanglement distributions
in the three segments succeed; this happens with probability
¢°, (2) the segments 1 and 2 succeed, but swapping them
fails; this happens with probability (1 —a)p?q, and (3) all
three segments succeed, swapping the first two also succeeds,
but swapping them with the last one fails; this happens with
probability a(1 — a)p®. We thus see that the new transition
probability is the sum of these terms, P(000 — 000) = ¢° +
(1 —a)p’q + a(l — a)p’. This example illustrates what we
meant by saying that the new Markov chain will be smaller,
but the transition probabilities will be more tricky to compute.
In the next subsection we present an algorithm to compute
the TPM of the Markov chain corresponding to any fixed
scheme. Our approach is applicable to arbitrary schemes, not
only to fixed ones, but the TPMs of dynamical schemes must
be constructed by other means. Ones the TPM is constructed,
we can use Egs. (18) and (19) to compute the statistical
characteristics of the chosen scheme.

D. Algorithm for TPM construction

We now describe the algorithm for constructing the TPM
P of a quantum repeater constructed from two subrepeaters.
We show how to express its TPM P in terms of the subre-
peater TPMs P’ and P”. The schemes used for these smaller
repeaters can be arbitrary. They could also be fixed (and thus
P’ and P” could be obtained by recursive applications of this
algorithm), or they could be dynamical, or one fixed and the
other dynamical; any possible combination will work. When
both smaller repeaters successfully distribute entanglement
over them, we try to perform the last swapping and either
succeed and distribute entanglement over the whole repeater
or fail and have to start this process from scratch. If the
schemes used for smaller repeaters are also fixed all the way
down, then the whole scheme is fixed; the order we perform
swappings is fixed and does not depend on the order in which
the segments successfully distribute entanglement. But, as we
have already noted, these schemes do not have to be fixed.
The only restriction of this construction is that the division of
the segments is fixed on the highest level, and what happens
below can be arbitrary.

Let us assume that an n-segment repeater is divided into
two parts with #»' and n” segments, so that n =n' +n".
The schemes of the smaller repeaters are described by the
states s;, i =1,...,N’, and s;/, j=1,...,N”, respectively.
As usual, we assume that s; =0...0 (n' zeros) and s} =
0...0 (n” zeros) are the initial states of the subrepeaters and
syp=1...1, 55, = 1...1 are the absorbing ones. Because
swapping between the segments of different subrepeaters are
forbidden, the scheme for the whole repeater can be described

/i

by the states s;s7; (which means the concatenation of strings)

with one exception: the state sy, sy, = 1...11...1 must be

replaced by the absorbing state 1...1 (n ones) for the whole
repeater. We thus have that this schemes requires N = N'N”
states.

To illustrate this construction, consider a three-segment
repeater. We can divide it in only two ways: either like — — |—
or like —| — —. The states of a one-segment “repeater” are 0,
1, and the states of a two-segment repeater (without zero-time
transitions) are 00, 01, 10, 11. In the first case s; denote the
one-segment repeater states and s/ denote the two-segment
repeater states. It is easy to see that for such a division we
obtain exactly the states (31) for the whole repeater. For the
second division we get the states (32).

We now need to compute transition probabilities between

different states s’s”/. As a general rule, we have

"y

P(sis|] — si5)) = P'(s; = spP" (s — 5]), (33)

provided that s;s; is neither the initial nor the absorbing state
of the whole repeater. For the absorbing state we have the

following simple rule:
P(sis} — 1...1)
= aP'(s! — 1...1)P”(s;f—> 1...1), 34

because the overall success is determined by the success of
the transitions inside the subrepeaters and the success of the
swapping at the outermost level. For the initial state the rule is
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slightly more complicated and reads as
P(sis7 — 0...0)
=P(s; —> 0...0)P”(s/j/ —0...0)
+(—aP(s;—> 1...DP"(s] > 1...1), (35)

since we can return to the initial state in two ways: inside
each subrepeater individually or by going to the top and
failing to swap on the outermost level. All these relations, the
general one given by Eq. (33) and the two exceptions, given by
Egs. (34) and (35), can be written in a compact matrix form. In
the case of a = 1 we would have a very simple relation P =
P’ ® P”, but in the nondeterministic case this relation must
be modified. Namely, if we follow our standard convention
that the initial state is the first in the TPM and the absorbing
state is the last, then P is obtained from P’ ® P” by adding
the last column, multiplied by 1 — 4, to the first column, and
then multiplying the last column by a (the elements of the
last row are untouched). In NumPy [36] notation this lengthy
explanation can be compactly expressed as

P = np.kron(P', P")
Pl:-1, 0] += (1-a)*P[:-1, -1] (36)
Pl:-1, -1] *= a

This algorithm can be easily translated to other languages
and computer algebra systems. We emphasize that in this
algorithm the subrepeaters may have different numbers of
segments, but the division of the repeater into subrepeaters is
fixed; we know beforehand when we will try the outermost
swapping. The schemes used for the subrepeaters are arbi-
trary, not necessarily fixed. If we use the fixed schemes for
the subrepeaters, then we can recursively construct the TPM
of the whole repeater with this algorithm, which holds, for
example, for the standard doubling scheme. For the doubling
scheme we start with the matrix P; of size 2 of a single
segment and double it d times to get the TPM P, of an
n-segment repeater, where n = 2¢. Because doubling squares
the size of the TPM, P, is of size 22 = 2" as we claimed
before.

V. EXAMPLES

We now demonstrate how to apply the algorithm of the
previous section to small repeaters, where computing TPMs
by hand is still feasible. Moreover, here we also discuss
dynamical schemes and compare their performance with that
of fixed schemes.

A. One-segment repeater

This is a completely trivial case, but we nevertheless in-
clude it to utilize it later as a building block of larger repeaters.
For a one-segment repeater the swapping success probability
is not applicable, so in this case we have only one parameter
p. This repeater can be described by F3 = 2 states 0 and 1.
The TPM of such a repeater reads as

P = <g ’1’> (37)

The 1 x 1 matrix Q; can be identified with a number ¢, so
from the relations (19) we get

1 J—

_ . l+g— 2-
K1=(1—q)11=;, K =-"11 L

K, =
l—gq P?

(38)

We thus have 012 = K12 - f? = g/p*. From this relation we
see that o /K| = +/q and for small p this ratio is close to
one. It means that for small p the waiting time has a large
deviation and cannot be precisely characterized by its average
value alone. Of course, we could easily obtain all these results
directly from the geometric distribution of a single repeater
segment, but our method is applicable to larger repeaters too,
where it gives the desired result much more easily than by
computing the individual probabilities.

B. Deterministic swapping

Here we consider an n-segment repeater with deterministic
swapping. Because swappings cannot fail, their order does not
matter and all schemes are equivalent in this case. We need 2"
states to describe this scheme. We can identify these states
with the subsets of the set [n] = {1, ..., n} of the segments
(written as binary strings, we should overline the consecutive
runs of 1). For example, in the case of n = 3 these states are

000 001 010 011 100 101 110 TI1. (39)

The transition probability between the states associated with
the subsets 7, J C [n] is given by

mp9n={° reJ (40)

gl g

Nonzero transition probabilities are only from a set to any of
its supersets since the set of ready segments can only increase
with each transition, but never decrease. We first need to check
that such an assignment of probabilities is correct, i.e., that the
equality

ZP(I—>J)=1 41)

J<l(n]

is satisfied for all I C [n]. We have

ZP([—>J)=ZP(I—>J)

JC[n] JoI
n
=3 <” - III)pj_”q,,_j
v A
n—|1|
—|I . .
=Zciuﬁwﬂﬂ=hmm
=0~ 7

since the last sum is just (p 4+ ¢)" " =1 by definition of
g =1—p. We thus have a correctly constructed Markov
chain without zero transitions describing the entanglement
distribution process in a quantum repeater with deterministic
swapping. To find the absorption time we need to solve the
system of 2" — 1 equations (27) for the vector K= (KW},
where the components are labeled by the strict subsets I C [n].
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‘We now show that the solution reads as

n—|I|

— Cafn=lN 1
K= (-1 ( . )—l_qj. 43)

=1 J

This expression for the empty set I = & gives exactly the
expression (2). We need to check that

> 18y —PU - DIKJ) = 1, (44)

JC[n]

which can be rewritten as

1+ Z P — HK(J) =K(). (45)

JoI

The full proof is simple, but tedious so we just give two hints.
The first thing to note is that the sum over all supersets of /
can be replaced by the summation over a simple index i from
0 to n — ||, introducing an additional factor ("_l.” ') (there are
so many supersets J 2 [ with |J| = |I| 4 i). The other hint is
that the double sum that appears after this transformation can
be simplified with the following rule:

n—|I| n—|Il—i n—|l| n—|I|—j
PO BEDIED I (46)
i=0  j=1 j=1 =0

The rest of the proof is just juggling with Binomial coeffi-
cients and applying the Binomial Expansion Theorem. We
have just reproduced the well-known result for the waiting
time of a general repeater with deterministic swapping [30].

C. Asymmetric case

In this subsection, we generalize the result of the previous
section and consider deterministic swapping with asymmetric
distribution probabilities. We no longer assume that all seg-
ments have the same entanglement distribution probability p:
the ith segment has its own probability p;. We use the notation

pr= l_[Pi’ qr = H%‘ (47
iel iel
for the product of probabilities over a set I C [n]. Note that
in the case of all probabilities being equal, p; = p, we simply
have p; = p!!!. We now derive an explicit expression for the
average waiting time of such an asymmetric repeater with
deterministic swapping.
The transition probabilities read as

0 1¢17

, 48
pigy 1SJ “%)

P(I—>J)={

where J = [n] \ J is the complement of J C [n]. One can
check that

Y PU—>D=) PU—J)

J<|[n] J2oI
=Y g =[[wi+a =1, (49)
J2I iel

for all I C [n], so these probabilities satisfy the Markov chain
property. We now show that the explicit solution of the system

(27) in this case reads as

. YRS
K=Y e (50)

1=
@cicl @

We need to check that these functions satisfy the equalities
(45). Substituting Eq. (50) into Eq. (45), we will get a double
sum, which can be transformed as follows:

2 X =2 2 (5D

J2I @gcyc]  @crcl Icicl

We have
Z pPngy = qr l_[ (pi +q) =qyr, (52)
IcJcy iel\I
so we get
. (_1)|.I'\+1
1+Y PU—> DK =1+ Y. S
J2I ocJ'cl ar
_ Z(—l)‘” N Z (_1)\J/|+1
Jcl ocrcl I=ar
=K(). (53)

Note that if all p; = p are equal, the expression (50) reduces
to Eq. (43), since for each j =1, ..., n — |I| there are ("_j'”)

sets J such that @ C J C I and all these sets correspond to the
same q; = g% = ¢/. In the following subsections we start an-
alyzing the more general and subtle case of nondeterministic
swapping, a < 1, for small repeaters.

D. Two-segment repeater

In the case of a two-segment repeater both parameters p
and a are meaningful. This case has been considered before,
so here we just briefly discuss it. The TPM (without zero-time
transitions) is given by Eq. (15). Note that this matrix can
be obtained by applying the algorithm (36) to the matrix
(37). The fundamental matrix R, = (I — Q»)! can be easily
obtained, and it becomes

1 1 q q
1—a a-+tgq 1—-a)g|. 9

Ro= ——
aP2=P\1-a (1-aq atgqg

For the vector K = R>1 of average values, we have

B 1 14 2q
K=——|1+4+2¢g—aq]. (55)
ap(2 —p) 1429 —aq

It is easy to see that the first element of this vector, K,
coincides with the expression (1) for m = 400, so we have
just reproduced the well-known result for a two-segment
repeater with nondeterministic swapping. The variance now
reads as

»_ g2 2 =30 —2p+4

e TRe 0
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For the ratio of the standard deviation to the average value in

For small a we again have 0,/K, ~ 1. In the more prac-
the typical case of small p, we have

tical situation of large a the standard deviation is smaller
(relative to the average value), but it never becomes smaller
than (v/5/3)K, ~ 0.75K». So, even in this case the random
variable K, cannot be accurately characterized only by its
average value.

(57)

E. Three-segment repeater

This is the first example of a not-power-of-two case. Here we have two fixed schemes (which are statistically equivalent
and represented by the n = 3-scheme in Fig. 3) and one dynamical scheme for performing swappings. The two fixed schemes,
segments 1 and 2 first, then segment 3 and segments 2 and 3 first, then segment 1 are equivalent and have identical statistical
properties. So, effectively, we have only one fixed scheme in this case. The TPM of this scheme can be obtained from the
matrices P' = Py and P” = P, according to the algorithm (36), corresponding to the second scheme (segments 2 and 3 first, then
segment 1). The TPM P; and the corresponding K3 become

¢+ A-apq+all —a)p’ pi* pg* ap’q pi*+A—a)p’ pq pq ap’
(1 —a)pg + a(l — a)p? ¢ 0  apq (1 —a)p? pg 0 a*p?
(1 —a)pg + a(l — a)p? 0 ¢* apg (1 —a)p? 0 pg dap
(1 —a)p 0 0 q 0 0 0 ap
= a(l — a)p? 0 0 0 ¢F+U-ap* pg pg ap|
a(l —a)p 0 0 0 (1 —a)p q 0 azp
a(l —a)p 0 0 0 (1 —a)p 0 q azp
0 0 0 0 0 0 0 1
%, = a*(p* —5p* +10p* — 10p +4) + a2p* — 9p* + 17p> — 16p + 6) — 4p> + 16p> — 23p + 12. 58)

a2p2 — p)a(—=p> +3p2 —4p+2)+2p> —5p+4)
This time the expression for the fundamental matrix is not so compact as in the two-segment case, but this is not a problem for

computer algebra systems. One can compute the standard deviation in the same way as we did it before, but here we present only
the limit of the ratio for small p:

o3 ~/48a* —208a3 + 68a% + 144a + 144

lim =— =
p—~0 K 4a®> + 6a + 12

(59)

For small a we again have o3 /K3 ~ 1, while for large a this ratio ~7/11 ~ 0.64.
We do not have to always follow a fixed way of performing swappings and may also try to swap any ready segments. In this

case we need a different subset of the full set of states to describe this scheme:

000 001 010 O11 100 101 110 T111.

(60)

Note that these coincide with the states (39) for the case of a three-segment repeater with deterministic swapping. This is not

surprising, since in the deterministic swapping case, all schemes are equivalent and thus can be described by the same set of
.=

states. The TPM P{®™ and the corresponding K ; ™ read as

7 +20 —-ap*q+al —a)p* pi*+A—-a)p* pi* ap’q pq* pPq ap’q a*p?

(1 —a)pq +a(l — a)p? +(0—a)p* 0 apg O pg 0 ap

2(1 —a)pg + a(l — a)p* (1 —a)p? ¢ apg 0 0 apg a’p?

pm _ (1 —a)p 0 0 q 0 0 0 ap
’ (1 —a)pg + a(l — a)p? (1—a)p? 0 0 ¢* pg apg ap*|

a(l —a)p (1 —a)p 0 0 0 q 0 a’p

(1 —-a)p 0 0 0 0 0 q ap

0 0 o 0 0 0 0 1

2@ _ a*(p* —4p* +6p* — Sp+2) +aRp* — 10p* +21p*> — 22p+9) — 4p* + 16p* — 22p + 11
: a’p2 — p)la(—p* +2p> —2p+ 1)+ 3p> — Tp+ 5] '

(61)
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In this case we cannot apply the algorithm (36), since this
scheme is dynamical, and the TPM has been computed di-
rectly from the definition of transition probabilities. We high-
light the computation of some matrix elements. For example,
the transition 000 — 000 is possible in four ways: (1) no
entanglement distribution is successful; probability is ¢,
(2) the distribution in segments 1 and 2 was successful, but the
swapping failed; probability is (1 — a)p*q, (3) the distribution
in segments 2 and 3 was successful, but the swapping failed;
probability is (1 — a) p2q, and (4) the distribution in all three
segments was successful, one swapping was also successful,
but the second swapping failed; probability is a(l —a)p’.
Summing the probabilities of all these exclusive possibilities,
we obtain the corresponding element of the TPM. In the case
of a tie, when all segments successfully distribute entangle-
ment simultaneously, we always try to swap segments 1 and
2 first. Since the two possibilities are equivalent, it does not
matter whether we do this or first try to swap segments 2 and
3. We may even randomly choose between these two options.
The matrix is constructed under the assumption that segments
1 and 2 are always tried first, and that is why the probabilities
of the transitions 001 — 001 and 100 — 100 (and some oth-
ers) differ. We can stay in the state 001 in two ways: (1) both
segments 1 and 2 fail to distribute entanglement; probability
is ¢*> and (2) both segments 1 and 2 succeed, but swapping
them fails; probability is (1 — a)p?®. The total probability is
g* + (1 — a)p?. On the other hand, we can stay in the state
100 in only one way: when segments 2 and 3 fail to distribute
entanglement, which happens with probability ¢*>. Had we
chosen to swap segments 2 and 3 first, the corresponding
probabilities for these two transitions would have to be, well,
swapped.

For the limit of the ratio of the standard deviation to the
average value we now have

o™ J12a* —76a> — 5947 + 198a + 121 62)
= 2% +9a+ 11 '

For small a this ratio is close to 1, and for large a itis &7/11 ~
0.64, as in the fixed-scheme case. The ratio of the average
value of the dynamical scheme to that of the fixed scheme is

J
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FIG. 4. The ratio of the dynamical to fixed waiting times for a
three-segment repeater.

shown in Fig. 4. We see that the dynamical scheme is slightly
better, since we do not have to wait for concrete segments and
can start to swap them when they are ready. For a = 1 or for
p = 1 the two expressions for the average value (58) and (61)
coincide [note that for a = 1 both expressions coincide with
(2) for n = 3], so the repeater rates are the same in this case.
For small p and a, we have

D ST
lim — = —, (63)
pa—=0 K3 15

so for small probabilities the dynamical scheme is approxi-
mately 25% faster.

F. Four-segment repeater

The TPM Py of a four-segment repeater with the recursive
scheme can be easily obtained with the algorithm (36). This is
then effectively a fixed, doubling scheme (see Fig. 3 forn = 4,
right). For the average waiting time of this scheme we have

T, — 2a2p*(p — D(2p — 3) — a(20p> — 72p* +93p> — 53p> + 10p + 4) + 33 — 2p)*(2p* — 3p +2)
P a2p2 — p)ap® — (a+2)p+3)(—ap’ + 4p? —6p+4) ‘

For the ratio of the variance to the average value we have

o ou A/ —96a® — 27242 — 1728a + 2916
p—0 K4 54 — 4(1

Not surprisingly, for small a this ratio is also close to 1. For
large a, it is close to 41/125 = 0.328. For four segments
there are more dynamical schemes than there are for three
segments, but the waiting time of each of them can be com-
puted with our method. Another fixed scheme, which is not
doubling, is illustrated by Fig. 3 for n = 4, left.

(64)

(
VI. GEOMETRIC APPROXIMATION

The PDF of the waiting time of a single segment is the clas-
sical geometric distribution, but for two and more segments
this is no longer exactly true. However, we now show that even
in this case the PDF can be well approximated by a geometric
distribution with appropriately chosen parameters. This fact is
easy to establish for the deterministic swapping case. In fact,
the probability that a single segment will finish in k or less
steps is equal to 1 — g* (because

l—qk k—1
1—q"=p1_q=2pq’, (66)
i=0
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or, more simply, the probability that a segment is not ready
in k steps is g*), so the probability that n segments will finish
in k or less steps is (1 — ¢*)". The probability p; = P(K, =
k) that the n segments will finish in exactly k steps is then
equal to

pe=(10—¢" -1 —g"y, (67)

for all k > 1. Expanding the sums and making a simple
transformation of the terms, we obtain

" . n . .
pe=q""Y (=) (j)q”‘—”“—”a —q).  (68)
j=1

In the limit k — —+o00 the sum on the right tends to n(1 — g) =
np, so we have

pr ~ npg!, (69)

so for large k the probability p; can be approximated by the
geometric distribution with ratio g.

Non-deterministic swapping requires more sophisticated
tools. A matrix A is now called nonnegative (positive) if
all its elements are nonnegative (positive). A nonnegative
matrix A is called stochastic if all its row sums are equal to
one. If at least one of these inequalities is strict, then A is
called substochastic. A square matrix A is called primitive
if some of its power A" are positive. The Perron-Frobenius
Theorem [37] states that for any nonnegative primitive matrix
A there is a real eigenvalue A; with multiplicity one such
that all other eigenvalues XA; (which can be complex) are
strictly smaller by absolute value, |A;| < A for j > 2. If, in
addition, A is stochastic, then A; = 1. If A is substochastic,
then Ay < 1. It is easy to show that in the case of a < 1
(nondeterministic swapping) the matrix Q of any scheme is
primitive and substochastic and thus is subject to the Perron-
Frobenius Theorem. Substochasticity is obvious, so we need
only to prove that it is also primitive.

We show that all elements of Q? are strictly positive.
In fact, let {sy,..., sy} be the states (a subset of the full
set of Fp,,; states) that implement the given scheme with-
out zero-time transitions. As usually, we assume that the
state s; = 0...0 is initial. Then we have (QZ),-j =P(s; —>
s1)P(s; — s;) + - - -, where dots stand for other terms, which
are nonnegative. Since i is not the absorbing state we have
P(s; — s1) > 0, because there is always a chance that the last
swapping fails, be it a fixed scheme or a dynamical one (it is
at this point that we need the assumption a < 1), and from
the initial state we can go to any other state with nonzero
probability, so we also have P(s; — s;) > 0. It follows that
(Qz)i j = 0.

Applying the Perron-Frobenius Theorem, we can or-
der the eigenvalues of Q as A; > |Ay| = -+ = |Ay—1], and
let vi,...,vy_; be the corresponding linearly independent
eigenvectors. We can express the vector u from the decom-
position (16) as a linear combination of these eigenvectors,

u =C/1V1 +"'+C;\1_1VN—1~ (70)

We just have to solve the linear system V¢’ = u, where V is
the matrix whose columns are the eigenvectors v;, which is
nondegenerate due to the linear independence of v;. We then

have
pe =0 u=cT v+ AT e (7D

We need only the first element py, of this vector, so we finally
obtain

pr=ciAl ey, (72)

where ¢; = c} v? and v? is the first element of v;. For large k,
we clearly have

i~ (73)

because the largest eigenvalue A and its corresponding eigen-
vector are unique. Compare this expression with Eq. (69),
where it is possible to find A; = g and ¢; = np explicitly.
In both cases, starting from some sufficiently large k the
probabilities p; are well described by a geometric distribu-
tion, similar to those for a single repeater segment. To our
knowledge, this has never been shown explicitly. In fact, the
common wisdom seems to be that not only a single segment,
but an entire quantum repeater follows exactly a geometric
distribution. We showed that this holds only approximately.

VII. FINITE MEMORY

Let us first show that the Markov chain method can repro-
duce Eq. (1), which gives the waiting time of a two-segment
repeater with nondeterministic swapping and arbitrary mem-
ory cutoff. We introduce auxiliary states 01’ and 10, i =
1, ..., m. The superscript denotes the time the segment waits
in the ready state. When this time exceeds the limit, m time
units, the segment is forcefully reset to the initial state. The
corresponding Markov chain is shown in Fig. 5. It is easy to
construct the TPM corresponding to this chain and, with the
help of a computer algebra system, to verify that this TPM
leads to Eq. (1) for the average waiting time.

In the following, we show how to apply the Markov chain
approach to repeaters with deterministic swapping, a = 1,
and finite memory cutoff, m. In this case, we need another
full set of states describing such a quantum repeater and
Markov chains with several absorbing states. The states are
the tuples (iy, ..., i,) with i; =0, ..., m such that there is
at leastone j =1, ...,n with i; = 0 or i; = 1. Totally, there
are N = (m + 1)" — (m — 1)" such states. Each component i;
denotes the time passed since the jth segment has successfully
distributed entanglement. The condition that there must be a
component with value 0 or 1 means that a valid state is one
that is either not ready (some component is 0) or has just
become ready (no zero components but at least one is equal to
1). Tuples with all components larger than 1 are not needed;
they describe those states where all the segments are in the
ready state for longer than necessary. Tuples with at least one
zero component are nonabsorbing states, and all the others
are absorbing. There are Ny = (m + 1)" — m" nonabsorbing
states and Ny = m" — (m — 1)" absorbing ones. If we follow
our usual convention and put all absorbing states at the end,
then the PTM of this Markov chain can be decomposed as

follows:
_(Q U
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o1m

¢+ (1—a)p?

FIG. 5. Markov chain of a two-segment repeater with finite memory cutoff and arbitrary swapping probability.

where Q is an Ny x Ny matrix (whose elements are probability
transitions between nonabsorbing states), U is an Ny x N;
matrix, 0 is the zero Ny x Ny matrix and I = Iy, is the N; x N;
identity matrix. As before, R = (I — Q)™ is the fundamental
matrix of the chain (where I = Iy, is the Ny x Ny identity
matrix). According to the general result, Ref. [35], the ab-
sorption time as usual reads as R1 (so it does not matter how
many absorbing states there are). We only need to compute the
TPM P.

If fact, we only need to compute the matrix Q. Consider
a nonabsorbing state (i, ..., i,). Denote by n, = |{jli; =
0}| the number of its zero components. Since the state is
nonabsorbing, n, > 0. If for some j we have i; =m, ie,
at least one segment has reached the maximal allowed time,
then such a state can go only into two other states: to the
absorbing state (i}, .. ., i) (where i} =1i;ifi; > 0and t’] =1
if i; = 0) with probability p", or to the initial state (0, ..., 0)
with probability 1 — p™. If none of the segments have reached
the maximal time, then

P((i1, ooy in) = (s eesin))
=P@; — i})...Pl, > i), (75)

where PO - 0)=1—-—p,PO— )=p,P(—-i+1)=1,
and all other probabilities are zero. It is straightforward to
construct this TPM programmatically in a computer algebra
system for given parameters p, n, and m, where, recall, we
have set a = 1. With the help of such a system, it is easy to
verify that the average waiting time produced by this TPM
gives exactly the expression (3), f:m, i.e., the average waiting
time for deterministic swapping and finite memory cutoff. Our
formalism can also be used to treat the most general case of
arbitrary a and m.

VIII. CLASSICAL COMMUNICATION

In this section we add classical communication to the basic
scheme considered before. Note that classical communication
times in a general quantum repeater with probabilistic swap-
ping have been considered before, e.g., in Ref. [25], however,
once again, those existing schemes are approximate depend-
ing on the usual assumptions, as discussed in Sec. II. We
assume that the number of segments is a power of two, n = 24
and on each level i = 2, ..., d it typically takes 2! units of
time to reinitiate the segments in the case of swapping failure
(because 27/2 = 2/~1). We also need classical communication

to communicate success of a swapping operation, but for
simplicity we only consider the case of failure. The idea is to
introduce additional states that correspond to these additional
2i=! time units. In the case of d = 1 we need one additional
state, which we denote by dot. The corresponding Markov
chain of a two-segment repeater with classical communication
is shown in Fig. 6. Each transition in this figure takes exactly
one unit of time. The corresponding TPM reads as

# pg pg (1—ap* ap?

0 g¢ 0 (d-ap ap

P=10 0 q (Il—a)p ap|. (76)
1 0 O 0 0
0O 0 O 0 1

‘We now show how to construct TPMs for larger repeaters.

We describe an algorithm to “double” a given repeater with
the TPM P and the classical communication time of ¢ time
units. The original repeater can employ any kind of scheme.
Applying our algorithm recursively all the way down, we can
compute the TPM of a repeater with n = 2¢ segments and
classical communication at all levels.

Given a quantum repeater with the TPM P, we want to
construct a quantum repeater of double length, performing the
last swapping exactly in the middle of the new repeater, and
assuming that restarting the process in the case of failure takes
c time units. If the original repeater is described by the states
S, ..., SNy, the doubled repeater without classical communi-
cation is described by the N2 states sisj, 1, j=1,...,N. To

0

FIG. 6. Markov chain of a two-segment repeater with classical
communication.
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FIG. 7. The ratio of the waiting time with classical communication to the waiting time without for n = 8 (left) and n = 16 (right) segments.

include the classical communication into the scheme we need
¢ additional states, which we denote as e, ..., o, so the full
set of states contains N> + ¢ elements. We arrange these states
in the following order: s;s; for all i, j except the state sysy,
then o;, i = 1, ..., ¢, and finally sysy. The “doubled” TPM
P; can then be partitioned into nine blocks as

Pss Pso PSN
Pd = P.S P.o PoN . (77)
0 0 1

We give explicit expressions the first six blocks. Let partition
P ® P be as follows:

_(Qa uy
P®P_(0 1). (78)

Then we simply have P;; = Qg since the transition probability
between nonabsorbing states s;,s;, and s;,5;, is the product of
transition probabilities s; — s;, and s; — s;,. For the next
block we have

P = | (1 —a)uy O , (79)

because when the last swapping fails, we have to go to the
state o; and then restart the process through the sequence of
transitions e; — --- — e. — s151. Each of these transitions
happens with probability one, so we also have

0 0 - 0 0
0 0 - 0 0
Po=1 . ,
0 0 0 0
1 0 0 0
0 1 0 0
0 0 - 0 0
Po=| ... . (80)
0 0 --- 0 1
0 0 0 0

The other blocks are just Py = au, and P,y = 0. This gives
us the full TPM of the doubled repeater with classical com-
munication. One can easily check that the matrix (76) can be
obtained from the matrix (37) with this algorithm with ¢ = 1.
Figure 7 illustrates the effect of classical communication as
the ratio of the averaged waiting time with classical commu-
nication to that without. One can see that the maximal effect of
classical communication grows with the number of segments,
and also, as one would expect, for larger probabilities p and
a where the absolute waiting times decrease and so the net
effects of classical communication become more pronounced.
For small p and a, waiting times are so long anyway that the
addition of classical communication times hardly makes a dif-
ference. This is why in the regime of the commonly used ap-
proximation, the classical communication times are typically
neglected on higher levels. However, for a practical quantum
repeater with moderate p and significantly larger a, for many
segments, the classical communication should be included. In
the case a = 1, itis already implicitly included via the elemen-
tary time unit for the initial entanglement distribution. Note
that once memory cutoffs and even explicit memory errors
(such as dephasing) are included, classical communication
times become relevant even for small repeaters.

IX. GENERATING FUNCTIONS

An alternative approach to obtain the average waiting
time is to use the method of generating functions [38]. In
general, this method is inferior to the Markov chain method,
since numerically it is much easier to deal with matrices and
vectors than with functions. On the other hand, generating
functions can be useful in more complicated situations, where
the Markov chain approach cannot be easily applied. We shall
give an example for this in this section.

If X is a random variable taking only nonnegative integer
values, then its probability generating function (PGF) g(¢) is
defined by

+o00
gty =Y PX =k~ 81)

k=0
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Any PGF g(t) satisfies the equality g(1) = 1. The PGF g(z)
contains full statistical information about the corresponding
random variable X, for example, the average value X and
the variance 02 = X2 — X~ via X = g and 0 =g'(1) +
g (1) — g (1)%. We now show how to reproduce Theorem 1.
Consider a chain with N states s;, i = 1, ..., N, and single
absorbing state sy. For any state i = 1, ..., N we introduce an
integer-valued random variable K;, which is defined to be the
number of steps it takes to get to the absorbing state starting
in the state s; (note that Ky = 0 since we are already in the
absorbing state). Let g;(r) denote the PGF of K; and g(¢) =
(g1@),..., gN_l(t))T be the vector of these PGFs. They are
connected by the following system of linear equations

N
git) =Y pijtijg;(0), (82)

j=1

where t;; =t if the transition s; — s; takes one time unit and
tij=11if 5; — s; is a zero-time transition. It is clear that
gn(t) = 1. In the matrix notation it reads as

g(t) = Q()g(r) +u(), (83)

where Q(t) is the matrix Q when each element is multiplied
by t except zero-time transitions elements, which are left
unchanged. The vector u(z) is obtained in a similar way from
u, where Q and u are defined by the decomposition (16). The
solution of this system reads as

gt) =[E — 0] "u@). (84)

This expression can be applied to an arbitrary absorbing chain
with a single absorbing state and zero-time transitions. In
the case of a Markov chain without zero-time transitions all
elements are multiplied by 7, so we have Q(¢) =1Q, u(t) =
tu, and the solution becomes

g(t)=1(E —tQ) 'u. (85)
It is easy to see that
gH=E-Q u=E-Q E-Q1=1(86)

so this solution satisfies the basic property of a PGF. The
derivative g'(¢) is easy to compute. We have

(E —1Q)g(r) =1(E — O)1. (87)
Differentiating this relation we get
—Q0g(1) +(E —tQ)g'() = (E — O)L. (88)

Substituting r = 1 and taking into account that g(1) =1 we
obtain the relation

K=g()=( -0)'1=R1 (89)
The second moment can be computed as
K? =g'()+g/(1)= 2R- DK, (90)

which coincides with Eq. (19).

We now compute the probabilities p; using the generating
functions approach. Let us denote p; = P(K > k) and intro-
duce the corresponding generating function (GF)

+o0
HOEDN O1)
k=0

It is easy to see that the standard PGF can be expressed in
terms of the standard generating function as

gt) =1—(1—1)g). 92)

For the random variables under discussion we explicitly get
this GF from Eq. (85)

g0 =(E-1Q)7'L 93)
For the kth derivative we have
g0 = kI(E -1 V0", 94)
from which we immediately obtain the probabilities

k) 0
Pr = gk—f) = 0M1. 95)

The probabilities p; can be computed as
=D~ =0 E-Q1=0""u. (%)

which is exactly the expression (18).

As a concrete example, let us compute the PGF of a two-
segment repeater. According to Eq. (15), the matrix Q and the
vector u read as

+0—ap* pg pq
0= (I—-a)p g 0],
(I—-a)p 0 ¢
u= (apz, ap, ap)T. 97

From Eq. (85) we obtain

ap’t(l + qt)

1-[2=-3p+ Q2 —a)p*t +q(1 —2p+ap*)t*’
(98)

gt) =

where g(7) is the first element of the vector g(7). It is easy to
check that ¢'(1) = K, and

g +g0)—g1) =0}, (99)

where the variance 022 is given by Eq. (56).

Up to now we have always assumed that all time intervals
can be expressed in terms of one common time unit. Let
us consider a more general problem, where restarting the
process takes the time t’, which is independent of t (while, for
simplicity, here we again ignore the classical communication
times when the swapping succeeds, though this can be also
easily included). Figure 8 shows the Markov chain of such
a repeater. All transitions marked by black arrows take the
time t. The transition marked by a blue arrow takes the time
7’. The time for the transition marked by the blue dashed
arrow (swapping success) is ignored. The absorption time now
reads as

T =Kt + L7, (100)

where the random variable K is the number of black transi-
tions and L is the number of blue transitions.

We mark different transitions by different variables (¢, as
before, marks attempts to distribute entanglement and v marks
unsuccessful attempts to perform swapping corresponding to
the blue line in the figure). The matrix Q with this information
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included reads as

The PGFs of the absorption times are given by

t(1—p)?* tp(l—p) tp(l—p) tp? 6t ) = [E — 0. v~ 'u(t. v
0 t(1—p) 0 tp » V) =B — » U » V),
o@t,v) = (102)
0 0 t(l—p) tp u(t, v) = (0,0,0,a)".
v(l —a) 0 0 0
(101) For the first component, g = g(¢, v), we have
|
2
g, v) = apt(1 +41) (103)

If we set v =1 in this expression, i.e., if we ignore the
additional information, we get the less detailed PGF given by
Eq. (98). Taking into account that

K=g,1), L=g1,1), (104)

we obtain
1—a

T =Kt + T’ (105)

The variance o> can be computed in the usual way, and the

only new part is computing the correlation
2(1 —a)3 —2p)
a*(2—pp

It is easy to see that for small p and a the main contribution to
T is given by the first term, K, 7.

KL=g/,(1,1)= (106)

X. LUMPABILITY

The full set of states needed to describe an n-segment quan-
tum repeater with infinite memory is F,+; = O(2.61...").
The doubling scheme requires less states, namely 2”. Here we
show that if the scheme has some symmetry, this symmetry
can be exploited to greatly reduce the number of states [39].
We emphasize that the method presented here is just an imple-
mentation trick and in no way influences the result produced
by the original algorithm. It just makes this algorithm much
more practical than it otherwise would be.

FIG. 8. The Markov chain for a two-segment repeater with dif-
ferent timescales.

1—Q2=3p+ 1+ —awlt+q(l —2p+ p*1 — (1 —ap)lt?

(

The basic idea of the trick is the observation that in the
absorption time problem we are interested only in the number
of steps from an initial state to the (or a) absorbing state. If,
on the way to absorption, some intermediate states give the
same contribution to the number of states, it makes sense
to combine them into one large state and work with this
more coarse Markov chain. This idea to replace the original
Markov chain by a coarser one which still correctly describes
the desired property (the number of steps in this case) is
formalized by the lumpability property.

Let the states of the Markov chain be s, ..
a partition of this set of states,

., sy. Consider

{Sl,...,SN}=S1U~'~USM, (107)

so that §;NS; = @ for i # j. If this partition satisfies the
condition that the probability

P(S;i—> S) =Y Plsy— s)

S[ESj

(108)

does not depend on s,, € S;, then the chain is called lumpable
with respect to the partition (107). This is illustrated by Fig. 9,
where the sums of solid and dashed lines must be equal and
their common value is considered to be the new probability
transition, denoted by the bold line. We can construct a new
Markov chain with the states Sy, ..., Sy and the transition
probabilities between them are given by Eq. (108). The new,
coarser Markov chain has fewer states and thus is easier to
deal with, so if it preserves the information we need, we can
work directly with this new chain instead of the original, larger
one. We now give two concrete examples of lumpability of
Markov chains in the context of quantum repeaters.

FIG. 9. Illustration of the lumpability condition.
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A. Deterministic swapping

Consider a general quantum repeater with n segments
(which is not necessarily a power of two) with deterministic
swapping. In a previous section we studied the properties of
such a repeater with a Markov chain with 2" states, which
correspond to n-digit binary numbers. We show that it is
possible to compress this chain to the size of n+ 1 and it
will still contain the complete information about the waiting
time of the corresponding repeater. Because swapping never
fails, all states with the same number of ready segments are
equivalent. Let S;, i =0, 1, ..., n, be the set of all n-binary
digits with exactly i components equal to one. Obviously,
these sets form a partition of the quantum repeater’s set of
states. The transition probabilities read as

P(S S 0 = (109)
i i) = —i i on—i . .
B (VA AN

We claim that the average waiting time of the repeater that
started in the state S; is given by

. n—i s 1
R0-Eor () ity

=1

(110)

which coincides with Eq. (43) for any subset I C [n] with
|I| = i. We need to check that these functions satisfy the linear
equations

1+ZP(S,~ — SHK(j) = K(i). (111)
j=i

This can be easily done with the help of the following sym-

bolic relation:

n—i J n—i—l

> = (112)
j=0 1

In this case the original Markov chain had a lot of symmetry,
which was exploited to reduce its size from exponential with
respect to the number of segments to a linear size. In the next
subsection we show that a reduction in size is also possible
with less symmetric chains, though to a lesser degree.

T

n—i
I= 1

1 j=0

B. Doubling

Consider a quantum repeater with nondeterministic swap-
ping and a power-of-two number of segments n = 2¢ with
the standard doubling scheme. Before we demonstrated that
this scheme requires a number of N, = 2" states. This size is
better than the number of all states, O(2.61 ..."), but it is still
impractical for n > 8. We now show that we can describe this
scheme by a Markov chain with O(1.34...") states. This is
still exponential with respect to the number of segments, but
it allows one to compute the exact rate of a quantum repeater
with up to 32 segments.

Let us start with the simplest, two-segment repeater. The
doubling scheme in this case requires four states: s; = 00,
s, = 01, s3 = 10, and s4 = 11. Because the two halves of the
repeater are independent in this scheme, the states 01 and 10
are equivalent and can be grouped into one class. So, instead
of four states, three are enough: S; = {00}, S, = {01, 10},

¢+ (1 —a)p* [ S
FIG. 10. The compressed Markov chain of a two-segment repeater.

and S3 = {11}. The corresponding Markov chain is shown
in Fig. 10. The four-segment repeater can thus be described
by nine states S;S;, i, j =1,...,3 instead of sixteen s;s;,
i,j=1,...,4. But we can go even further: the states S;S; for
i # j are equivalent and can be combined into one group, so
six states are enough. These states are {5151}, {152, $251},
{51S3,S351}, {SzSz}, {S2S3,S3SQ}, and {S3S3}. This process
is repeated on higher levels. Instead of the recursive relation
N, = N2, we now have the relation

There is no exact expression for the numbers defined by this
recursive rule, but they can be well approximated as N, & 2 x
1.34..." [40]. For n = 32 the original Markov chain would
have more than 4 x 10° states, while the new, compressed
chain has only 26 796 states. Solving the corresponding
system of linear equations requires around 20 Gb of RAM
and takes approximately one minute of time on a modern
eight-core processor. Direct treatment of the original chain is
intractable with the current technology.

XI. VERIFICATION

Here we present a simple algorithm for Monte Carlo sim-
ulation of a quantum repeater with a power-of-two number
of segments, n = 24 and a doubling scheme, which will
allow us to validate our analytical results obtained before.
First, we need a function that simulates a single entanglement
distribution over the quantum repeater. Its input parameters
are the level d, probabilities p and a and the boolean parameter
cc which says whether to include classical communication or
not. The output is the number of steps it took to distribute

0.04 PDE ‘ ‘
K
0.03 — -
Poisson
0.02 — =
0.01 — =
W i [ [ i L k
200 300 400 500 600 700 800

FIG. 11. The PDF of K¢ (blue) with p = a = 0.5 vs the Poisson
PDF (red) with the same average value K ;¢ (vertical).
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entanglement in this concrete run, so the output will vary from
run to run.

Algorithm 1: function K(d, p, a, cc)

input : The number of nesting levels d
The entanglement distribution success
probability p
Swapping success probability a
Boolean flag cc indicating whether to include
classical communication or not

output: The number of steps it took to distribute
entanglement over n = 24 segments

k < 0;

if d = 0 then

while true do
k—k+1;
if RAND < p then

| break;
end

end

else

while true do

ki « K(d - 1,p, a, cc);
ko « K(d - 1,p,a,cc);

k—k+ max(kl, kz);

if RAND < a then
| break;
else
if cc then
‘ k — k+ 291,
end

end
end

end
return k;

The function RAND here is a generator of pseudorandom
numbers, uniformly distributed in the interval [0, 1]. The
function K implements the random variable K. To obtain the
average waiting time, we need to call this function many times
and compute the average value of its output. One can also
compute the variance and other higher moments. Using this
simple function, it is possible to verify that our analytical
results are in very good agreement with the results of the
simulation.

This function can also be used to demonstrate the large
variance of the waiting time. The results of calling it 200
times (10 series of experiments with 20 runs each) for a
16-segment quantum repeater are shown in the lower part of
Fig. 11. For comparison, we also plotted the same number
of steps generated with a Poisson random number generator
with the same average. We can see the dramatic difference
in the behavior of the two random variables. The Poisson
variable is compactly located around its average. On the other
hand, the waiting time varies widely around the average,
and even in such a small number of experiments one can
expect much shorter or much longer waiting times. The short

times are not problematic, but long waiting times can lead
to failures of memory-based components. The upper half of
the figure shows the distributions of these random variables.
The Poisson distribution has a well-known bell shape, while
the waiting time distribution significantly deviates from this
shape. As a consequence, its average value alone is not
sufficient to give an acceptable characteristic of the waiting
time random variable.

XII. LARGE REPEATERS

The Markov chain approach developed above can give an
exact result for small repeaters (n ~ 2—4), a numerical result
for medium-size repeaters (n ~ 4-32), but it is intractable
for large repeaters (n > 32). For the latter class of repeaters,
we develop a family of approximations, where we can trade
simplicity for accuracy and vice versa.

Generally, approximations are not necessary if we can
compute exact values, but they are unavoidable when we
cannot obtain the result precisely. A simple way to get an
approximation in the power-of-two case n = 2 is to consider
an n-segment repeater as a n/2-segment one where each
segment of the new repeater is a pair of the old repeater’s
segments. Each new segment can be assigned an effective
probability p’ = 1/K», and we have an approximate relation

(114)

2

_ — 1

Kn(l?, a) ~ Ko [— ,(1:|.
K>(p, a)

This scheme can be repeated and finally we have an

approximation

_ _ 1
Ko (p, 01)“1{2|:——1 ,a:|,
Ka(z7509)

where on the right-hand side there are d nested K, ’s. A similar
approach is used in Ref. [41] and also E; in Eq. (9) is based on
this kind of approach, however, with the lowest-level waiting
time approximated for small p. If K, is the only average
waiting time that we know, then this approximation is the
best that we can construct. If we know other averages K4, K3,
..., then we can construct other, better approximations. For

example, we have
eyt el
= ,a %K4 = ,al,
Ka(p, a) K4(p, a)

and several others, where K’s subindices are 2|8, 2|4|2, 2|2|4,
2|2|2]2, and 4|2|2. To compare the quality of different approx-
imations, we shall use the quantity

(115)

El6(pa a) ~ E8|:

approx.

E= 100‘ —1), (116)

exact

which is the relative error measured in percents. In Fig. 12
we plot these approximations for some practical values of
p = e to/lat with L, = 22km (corresponding to Ly = 100,
50, 22, and 10 km, respectively, assuming deterministic local
state preparations). As Fig. 12 illustrates, the least precise
approximation is 2| ... |2, the most accurate is n/2|2 (where
we introduce effective probabilities only at the lowest level),
and all other variants are in between these two (in Fig. 12
this area is shaded). The approximation given by Eq. (9)
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FIG. 12. The relative error of different approximations as a function of a for some values of p, with n = 16 (left) and n = 32 (right)

segments.

is the least precise. As one can see, the quality of the best
approximation, n/2|2, degrades not so quickly as that of the
other approximations.

We considered approximations to K ;, which we can com-
pute exactly, only to demonstrate the quality of different ap-
proximations. For n > 64 the problem of computing K, with
the Markov chains method is intractable, so we have to use
approximations. As we have shown, the best approximation
is obtained by nesting exact values of K,, with as large n’ as
possible. Moreover, inner " should not exceed outer ones. The
best available approximation to K 1004 Teads as

Kia(p, a) ~ Esz[— (117)

_r ai|.
K3 (p, a)

The inverse, 1 /E1024 (p, a), gives us the best available approx-
imation to the distribution rate. Generally, increasingly better
lower bounds on the (raw) repeater rates can be obtained by
our method. Depending on L, which typically is 10-100 km,
n = 1024 segments cover the distance L = nLy > 10000 km.
Using free-space satellite links to bridge these repeaters, it is
probably unnecessary to use more than 1024 segments, and
thus we will never need more than two nesting levels in the
approximations of this form.

XIII. CONCLUSIONS

In summary, in addition to satellite-based long-distance
quantum communication links, fiber-based quantum repeaters
are necessary for creating reliable large-scale quantum com-

munication networks. Memory-based quantum repeaters are
starting to be experimentally realized. Up to now knowledge
about the random waiting time of a general quantum repeater
has been incomplete and imprecise. Here we completely
solve the problem of its probability distribution function and
demonstrate that, contrary to common belief, the waiting time
cannot be accurately characterized by its average value alone.
Our approach is applicable to general quantum repeaters,
including repeaters with finite memory effects and waiting
times spent for classical communication, and it allows one
to obtain the full probability distribution of the waiting time,
which to a good approximation in a certain regime turns out
to behave like a geometric progression. We expect that precise
knowledge about the waiting-time statistics also has a signif-
icant impact on the treatment of errors in a quantum repeater
such as those arising from memory dephasing. Additional
probabilistic entanglement manipulations, such as entangle-
ment distillation for suppressing the propagation of errors,
can also be incorporated into a repeater rate analysis using
our formalism. In the QKD context, in order to determine
the secret key rate in a quantum repeater system, the raw
rates must be calculated and errors must be included via the
secret key fraction. In our work, putting it in this context,
the focus has been on repeater raw rates which are highly
nontrivial to compute in a general quantum repeater with
arbitrary, probabilistic entanglement swapping. Not only did
we solve a long-standing problem, eventually allowing for the
assessment and creation of truly robust and reliable quantum
devices, we also presented a method for compressing Markov
chains that can be useful for other applications as well.
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