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Quantum metrology with generalized cat states
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We show a general relationship between a superposition of macroscopically distinct states and sensitivity in
quantum metrology. Generalized cat states are defined by using an index which extracts the coherence between
macroscopically distinct states, and a wide variety of states, including a classical mixture of an exponentially
large number of states, has been identified as the generalized cat state with this criterion. We find that if we
use the generalized cat states for magnetic field sensing without noise, the sensitivity achieves the Heisenberg
scaling. More importantly, we even show that sensitivity of generalized cat states achieves the ultimate scaling
sensitivity beyond the standard quantum limit under the effect of dephasing. As an example, we investigate
the sensitivity of a generalized cat state that is attainable through a single global manipulation on a thermal
equilibrium state and find an improvement of a few orders of magnitude from the previous sensors. Clarifying
a wide class that includes such a peculiar state as metrologically useful, our results significantly broaden the
potential of quantum metrology.
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I. INTRODUCTION

High-precision metrology is important in both fundamental
and applicational senses [1–4]. In particular, magnetic field
sensing has been attracting much attention [5–7] due to the
potential applications in various fields from the determination
of the structure of chemical compounds to imaging of living
cells [8]. Numerous efforts have been made to increase the
sensitivity of the magnetic field sensors [9–26], and vari-
ous types of magnetometers have been studied [27–29]. A
qubit-based sensing [30–38] is an attractive approach where
quantum properties are exploited to enhance the sensitivity.
By using superpositions of states, the standard Ramsey-type
measurement without feedback can be implemented to mea-
sure the magnetic field, where the magnetic field information
is encoded in the relative phase between the states in accor-
dance with the magnetic field strength. If we use N qubits in
separable states, it is known that the uncertainty (that is, the
inverse of the sensitivity) scales as �(N−1/2), which is called
the standard quantum limit (SQL) [39]. On the other hand,
quantum physics allows one to beat the SQL. The ultimate
scalings are known to be �(N−1), i.e., the Heisenberg scaling,
in the absence of noise and �(N−3/4) in the presence of
realistic decoherence [10,12,20,23,24,26,40–42].

In the standard Ramsey-type measurement protocol, the
ultimate scalings seem to be attainable by using the
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quantum superposition. However, a general relationship be-
tween a quantum superposition and sensitivity is not yet
known. Therefore, it is essential to clarify what type of super-
position gives higher sensitivity in metrology than classical
sensors.

Superpositions of macroscopically distinct states, i.e.,
“cat” states, have attracted many researchers due to the fun-
damental interest since its introduction by Schrödinger [43].
Although a cat state contains a superposition, not all types
of superpositions can be considered as the cat state. The
Greenberger-Horne-Zeilinger (GHZ) [44–46] state is one of
the typical cat states. Since this cat state is useful in quantum
metrology, we may expect other cat states to be useful as well.
However, there was no unified criteria to judge if a given state
contains such macroscopically distinct states [47], preventing
the further understanding of the relation between cat states
and sensors. Among many possible measures, we especially
focus on the index q [48]. Importantly, q is defined for both
pure and mixed states, and is measurable in experiments by
measuring a certain set of local observables.

In this paper, we prove that generalized cat states, i.e., the
superposition of macroscopically distinct states characterized
by the index q, are all capable of achieving the ultimate scal-
ings. We give the upper bound of the uncertainty when q = 2
states are used as a sensor state. First, we show the Heisenberg
scaling in the absence of noise. Second, we analyze the case
with a realistic decoherence. We prove that the SQL is still
beaten; the generalized cat states achieve the ultimate scaling
uncertainty �(N−3/4). Third, we present a nontrivial example
and numerically show its advantage. Since there are states
with low purity among the generalized cat states (Fig. 1), wide
varieties of states have the potential to achieve the ultimate
scalings.
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FIG. 1. The relationship between the purity and the scaling of
the uncertainty for given quantum states when we use the quantum
states for the Ramsey-type quantum sensing. The ultimate scaling of
the uncertainty without [with] dephasing is δω = �(N−1) [δωdeph =
�(N−3/4)]. Only special pure entangled states such as GHZ states
are known to achieve such a scaling. The GHZ state is a pure state,
and the uncertainty scales as �(N−1) in the absence of dephasing
and �(N−3/4) in the presence of dephasing. One-axis and two-axis
spin squeezed states [49] are pure states beating the SQL. Separable
states, whether pure or mixed, do not beat the SQL. In this paper, we
show that all the generalized cat states achieve the ultimate scalings,
even if it is a classical mixture of exponentially large number of
states.

II. GENERALIZED CAT STATES

To begin with, we introduce a concept of a generalized cat
state, which is discussed in detail in the Appendix of [50].
We refer to the index q [7,48,51–55], which is a real number
satisfying 1 � q � 2. It is defined as

max
{
N, max

Â,η̂
Tr(ρ̂[Â, [Â, η̂]])

} = �(Nq), (1)

where Â = ∑N
l=1 â(l ) is an additive observable and η̂ is a

projection operator. Since the states with q = 2 have the
interesting features that we would like to focus on in this
paper, we simplify the definition for this case as follows. A
quantum state ρ̂ has q = 2 if there exist an additive observable
Â and a projection operator η̂ such that

Tr(ρ̂[Â, [Â, η̂]]) = �(N2). (2)

We call a state with q = 2 a generalized cat state. By contrast,
e.g., separable states have q = 1.

We can understand the physical meaning of q by expressing
the left-hand side of Eq. (2) as follows: Tr(ρ̂[Â, [Â, η̂]]) =∑

A,ν,A′,ν ′ (A − A′)2〈A, ν|ρ̂|A′, ν ′〉〈A′, ν ′|η̂|A, ν〉, where |A, ν〉
denotes an eigenvector of Â with eigenvalue A, and ν de-
notes the degeneracy. This shows that if ρ̂ has q = 2, there
exist terms such that 〈A, ν|ρ̂|A′, ν ′〉〈A′, ν ′|η̂|A, ν〉 �= 0 for
|A − A′| = �(N ). For N � 1, the term 〈A′, ν ′|ρ̂|A, ν〉 with
|A − A′| = �(N ) corresponds to a quantum coherence be-
tween states that are distinguishable even on a macroscopic
scale. Therefore, the state with q = 2 can be considered to
contain a superposition of macroscopically distinct states.

For pure states, q = 2 guarantees the existence of an addi-
tive observable such that Tr[ρ̂(�Â)2] = �(N2). As suggested
from other measures of macroscopic quantum states [51,56],
such a large fluctuation is available only when ρ̂ has a

superposition of macroscopically distinct states (for details,
see the Appendix of [57]).

As an example, let us consider a state |ψ〉 := (|↓〉⊗N +
|↑〉|↓〉⊗N−1 + |↑〉⊗2|↓〉⊗N−2 + · · · + |↑〉⊗N )/

√
N + 1. Since

this state is much more complicated than the well-known
GHZ state, it may be difficult to intuitively judge whether
this is a cat state, but we can actually show that this state
has q = 2 by taking Â = M̂z and η̂ = |ψ〉〈ψ |. Pure states with
q = 2 are known to have several “catlike” properties, such
as fragility against decoherence and instability against local
measurements [58].

For mixed states, q correctly identifies states that contain
pure cat states with a significant ratio in the following sense
(see, e.g., the Appendix of [50]). Without losing generality, we
can perform a pure-state decomposition of a mixed state with
q = 2 as ρ̂ = ∑N

j=1 λ j |ψ j〉〈ψ j |, where |ψ j〉〈ψ j | has q = 2
(q < 2) for j = 1, 2, . . . , m ( j = m + 1, m + 2, . . . , N) for
0 < m < N . In this case, we can show

∑m
j=1 λ j = �(N0),

and this intuitively means that a mixed state with q = 2
contains a significant (or nonvanishing) amount of pure states
with q = 2. For example, ρ̂ex = w|ψ〉〈ψ | + (1 − w)ρ̂sep has
q = 2 for N-independent w > 0, where ρ̂sep is an arbitrary
separable state.

III. DEFINITION OF SENSITIVITY

Since we will later discuss the relationship between the
generalized cat states and quantum sensing, we review the
concept of quantum metrology. Here we discuss the case
of a spin system to exemplify in the context of magne-
tometry, although our results are, in principle, applicable to
any physical systems, e.g., interferometry in optical systems
[2].

Suppose that a sensor consists of N free spins that inter-
act with a magnetic field with a Hamiltonian Ĥ0(ω) = ωÂ,
where ω denotes the Zeeman frequency shift of the spins
and Â is the sum of local spin operators [hence, ‖Â‖ =
�(N )]. We assume that the frequency has a linear scaling
with respect to the magnetic field B (such as ω ∝ B). Also,
we decompose magnetic field B into the “applied field” B0

(corresponding Zeeman shift ω0) and the “target field” B′
(corresponding Zeeman shift ω′); ω = ω0 + ω′. Here, we
assume that we know the amplitude of the applied magnetic
field B0 while the target small magnetic field B′ is unknown.
For metrological interest, we consider ω′ → 0 throughout
this paper. Also, to include the effect of the dephasing,
we add the noise effect to the total Hamiltonian as Ĥ =
Ĥ0(ω) + Ĥint , where Ĥint denotes the interaction with the
environment.

The following is the standard Ramsey-type protocol to de-
tect the magnetic field by using spins. First, prepare the spins
in the state ρ̂. Second, let ρ̂ evolve under the Hamiltonian
Ĥ for an interaction time tint to become ρ̂(tint ). Third, read
out the state via a measurement described by a projection
operator P̂ . Fourth, repeat these three steps within a given
total measurement time T . We assume that state preparation
and projection can be performed in a short time interval much
smaller than tint. In this case, the number of the repetition is
approximated to be T/tint, and therefore the uncertainty δω of
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the estimation of our protocol is described as

δω =
√

P(1 − P)∣∣ dP
dω

∣∣ 1√
T/tint

, (3)

where P = Tr[ρ̂(tint )P̂] denotes the probability that the pro-
jection described by P̂ occurs at the readout process.

IV. HEISENBERG SCALING IN THE IDEAL
ENVIRONMENT

Here, we show that we can achieve the Heisenberg scaling,
i.e., �(N−1) uncertainty, by using a state with q = 2 as a
sensor of the target field if decoherence is negligible.

Suppose that we have a generalized cat state ρ̂ satisfying
Eq. (2) for an additive observable Â and a projection operator
η̂. If the target field couples with the spins via Â as Ĥ0(ω) =
ωÂ, which induces an energy change, we can use the state with
q = 2 to sensitively estimate the value of ω. By setting the
projection operator for the readout as P̂ = η̂, we can use the
standard sensing protocol described in the previous paragraph.
We find that for a certain positive constant p1, there exist
�1 = �(N0) and N1 > 0 such that

δω �
(
p1 p2

2Ntint
)−1

(
√

T/tint )
−1 (4)

is satisfied for p2 := ωtintN = �(N0) � �1 and N � N1. This
is because the numerator of Eq. (3) satisfies

√
P(1 − P) =

�(N0) for ωtintN = �(N0), whereas |dP/dω| in the denomi-
nator has a lower bound,∣∣∣∣dP

dω

∣∣∣∣ � ∣∣∣∣ωt2
intTr(ρ̂[Â, [Â, η̂]])

∣∣ − ∣∣itintTr(ρ̂[Â, η̂])
∣∣∣∣

− 2tint‖Â‖(e2ωtint‖Â‖ − 1 − 2ωtint‖Â‖). (5)

Since we assume Eq. (2), the term u :=
|ωt2

intTr(ρ̂[Â, [Â, η̂]])| = p2�(tintN ), whereas the term
v := |itintTr(ρ̂[Â, η̂])| � �(tintN ). Therefore, we obtain
|u − v| = p2�(tintN ) by tuning p2 = �(N0) < 1 correctly.
The remaining term in Eq. (5) is −�(tintN )p2

2, which can
be made much smaller than |u − v| by taking p2 � 1. More
precisely, we find that there exists a positive constant �1 � 1
such that ∀p2 = �(N0) � �1 satisfies |dP/dω| � p1 p2

2tintN
for a certain positive constant p1. If we tune ω0 in such a
way that ω = ω0 + ω′ scales as ω = �(N−1), and choose the
interaction time tint = �(N0) as to realize the condition of
ωtintN = �(N0), then we have δω � 1/�(N ), achieving the
Heisenberg scaling.

V. ULTIMATE SCALING IN THE PRESENCE
OF DECOHERENCE

In reality, dephasing is one of the major challenges to
be overcome for beating the SQL. For example, the GHZ
state acquires the information of the target field as a relative
phase exp(iω′tN ) on the off-diagonal terms of the density
matrix. However, the dephasing induces a rapid decay of the
amplitude of such off-diagonal terms, making it nontrivial
whether or not the quantum sensor really has an advantage.

Upon discussing the dephasing, we must take into account
the correlation time τc of the environment. Historically, the

Markovian dephasing was considered for evaluating the per-
formance of the quantum sensor [13,21,59,60]. This implies
that τc was assumed to be much smaller than any other
timescales such as the coherence time T ∗

2 and tint. Then, if we
reasonably assume the independent dephasing, the decay of
the off-diagonal terms behaves as exp(−tN/T ∗

2 ), which is not
slower than the phase accumulation exp(iω′tN ). In this case,
it was concluded that beating the SQL is impossible even with
the optimal interaction time [which is tint = �(1/N )].

However, in most of the solid-state qubits, τc � T ∗
2 in

contradiction to the Markovian dephasing. By taking this
point into account, Refs. [10,12,20,23,26,40] recently found
that tint should be taken in the so-called Zeno regime, i.e.,
tint � τc, where the non-Markovian effect plays a crucial role.
The decay of the off-diagonal terms in this regime behaves
as exp[−(t/T ∗

2 )2N], which is much slower than the decay
in Markovian dephasing. With the optimal interaction time
tint ∼ T ∗

2 /
√

N , it was proven that the GHZ state and spin
squeezed states can beat the SQL, achieving the ultimate
scaling δω ∝ N−3/4 [10,12,20,23,24,26,40]. However, these
investigations were limited to some specific states, leaving an
open question of whether or not there are any other metrolog-
ically useful superpositions. Moreover, although most of the
previous research assumed that pure states can be prepared,
quantum states for sensing may be mixed in experiments. So,
for understanding the full potential of quantum metrology, it
is crucial to explore the sensitivities of sensing using other,
nontrivial and nonideal, states.

Here, we discuss the performance of the generalized cat
states satisfying Eq. (2) as a magnetic field sensor un-
der the effect of dephasing with τc longer than tint. We
model the dephasing by adding Hamiltonian Ĥ0(ω) to the
following interaction with the environment [40,61]: Ĥint =∑N

l=1 λ fl (t )â(l ), where λ denotes the amplitude of the noise
and fl (t )(l = 1, 2, . . . , N ) denotes a random classical vari-
able at the site l . We assume fl (t ) satisfies fl (t ) = 0 and
fl (t ) fl ′ (t ′) = exp(−|t − t ′|/τc)δl,l ′ , where the overline de-
notes the ensemble average. Taking tint � τc, we can ap-
proximate exp(−|t − t ′|/τc) � 1 because |t − t ′| � tint. When
there is such a dephasing, the state after the time evolution
is a classical mixture of exp(−iωÂtint )ρ̂ exp(iωÂtint ) [with a

weight of ( 1+exp(−2λ2t2
int )

2 )N ] and other states. The former state
corresponds to the generalized cat state that has evolved in the
magnetic field without dephasing. Although we have shown
that the former state can achieve the Heisenberg scaling, the
latter state has a complicated form, and so the calculation
of the sensitivity of the latter state is not straightforward.
Fortunately, by tuning p2[= ωtintN = �(N0) � 1] and tint,
the former contribution can be set to be larger than the latter
contribution, and the uncertainty can be bounded as follows:

δωdeph

√
T � (N

√
tint )

−1

⎧⎨
⎩p1 p2

2

(
1 + e−2λ2t2

int

2

)N

− 2e2ωtint‖Â‖ ‖Â‖
N

⎡
⎣1−

(
1 + e−2λ2t2

int

2

)N
⎤
⎦
⎫⎬
⎭

−1

.

(6)
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By taking tint ∝ p2
2/

√
N , we obtain δωdeph

√
T � �(N−3/4),

and this achieves the ultimate scaling beyond the SQL. We
can see the optimality of this scaling as follows. As we
increase tint, the term (N

√
tint )−1 on the right-hand side of

(6) becomes smaller, which contributes to achieve a better
sensitivity. However, since we need to have a finite weight

of exp(−iωÂtint )ρ̂ exp(iωÂtint ), its weight ( 1+e−2λ2t2
int

2 )
N

should
be nonvanishing in the limit of large N , hence scaling of tint

should be �(1/
√

N ) at most. Also, we should tune tint ∝ p2
2

so the right-hand side of Eq. (6) is positive. Thus we find
tint ∝ p2

2/
√

N is optimal. Then the scaling of the sensitivity
is enhanced N1/4 times more than that of the SQL, agreeing
with Refs. [10,12,20,23], in which the GHZ beats the SQL by
a factor of N1/4 with tint ∝ 1/

√
N . Other works also showed

that this scaling is the best in the presence of dephasing
[41,42]. Therefore, we have proven that the generalized cat
states can achieve the sensitivity with δωdeph = �(N−3/4)
that is considered as the ultimate scaling under the effect of
dephasing.

VI. EXAMPLE

We now discuss a possible application of our results to
realize a sensitive magnetic field sensor by using a current
technology. Recently, it was found that a single measurement
of the total magnetization M̂z converts a certain thermal equi-
librium state into a generalized cat state [50]. The conversion
procedure consists of two steps: (1) apply a magnetic field
along a specific direction (that we call the x axis) and let
the system equilibrate, (2) perform a projective measurement
η̂z on M̂z = M subspace, where the z axis is defined as
an orthogonal direction to the applied magnetic field. Then
the postmeasurement state has q = 2 for M �= ±N + o(N ).
Obviously, for finite temperature, the premeasurement state is
a mixture of exp[�(N )] states because it is a Gibbs state, and
the projection measurement is a projection onto a subspace
with dimension of exp[�(N )]. This means that the postmea-
surement state is a mixture of an exponentially large number
of states. Since this state can be prepared from a thermal
equilibrium state, this protocol has a potential of generating
metrologically useful states easily at moderate temperature.
Below we discuss the sensitivity when we use this state for
the sensing M̂x with the readout projection η̂z.

Let us consider phosphorus donor electron spins with the
density of ∼1015 cm−3 in a 28Si substrate with a size of
32 × 32 × 1 μm. Then there are approximately N = 106 elec-
tron spins in the substrate. We assume the applied magnetic
field is 10 mT and the temperature is 10 mK, where the
thermal energy (kBT/2π � 208 MHz) is comparable with the
Zeeman splitting (gμbB/2π � 280 MHz) so that the spin is
not fully polarized. Via a projective measurement of the total
magnetization (that can be implemented by a superconducting
circuit, for example), we can prepare the generalized cat
state with q = 2. With the coherence time of one electron
in this system being around 10 s [62], we numerically opti-
mize the interaction time and find that the uncertainty takes
its minimum δωdeph

√
T = 5.2 × 10−5/

√
Hz at tint = 5.4 ms,

which corresponds to δB
√

T = 0.30 fT/
√

Hz. The optimal
interaction time tint = 5.4 ms is consistent with our theoretical

prediction that tint should be comparable with the coherence
time divided by

√
N . As a comparison, we consider using

a thermal equilibrium state in the same conditions as above
without converting it into the generalized cat state, and we
obtain δωdeph

√
T = 9.8 × 10−4/

√
Hz. This shows that the use

of the generalized cat states provides us with 20 times better
sensitivity than the classical states with this system, which
demonstrates the practical advantage of the metrology using
the generalized cat states.

Let us compare our results with known theoretical results.
If a fully polarized separable state with the same electron
spins is used, δωdeph

√
T = 8.1 × 10−4/

√
Hz is estimated

[23]. Also, by squeezing the fully polarized spin state via
nonlinear interactions, it is, in principle, possible to achieve
a sensitivity of δωdeph

√
T = 7.1 × 10−5/

√
Hz [23], and this

sensitivity is comparable to our results. However, these pro-
posals can be implemented only if a perfect initialization of
the electron spins is available, which could be difficult due
to the small Zeeman energy of the electron spins. On the
other hand, the sensor state we discuss in this section, i.e., a
generalized cat state in the Si substrate at finite temperature, is
initially a thermal equilibrium spin state with the polarization
ratio around 0.6, which is more feasible to prepare. This
clearly shows the advantage to use our generalized cat states.
According to the size of the substrate, the spatial resolution of
the sensor is ∼10−5 m. Experimentally achieved sensitivities
with similar spatial resolution are as follows. A superconduct-
ing flux qubit, a superconducting quantum interference device
(SQUID), and an ensemble of NV centers showed sensitivities
of 3.3 pT/

√
Hz with 5 μm resolution [33], 1.4 pT/

√
Hz

with 100 μm resolution [63], and 150 fT/
√

Hz with 100 μm
resolution [8,35], respectively.

Therefore, we can conclude that our proposed sensor has
a sensitivity of at least a few orders of magnitude better than
those of the previous sensors.

VII. DISCUSSION

Although we have mainly discussed the scaling of δωdeph,
the quantitative upper bound of δωdeph can be obtained by
evaluating the formula (D1) in the Appendix.

Let us discuss the relation with the quantum Fisher in-
formation (QFI). For a given state, the QFI gives the lower
bound of δω as δω � 1/

√
QFI, i.e., the Cramer-Rao inequal-

ity [9]. The equality is satisfied by some optimal positive-
operator valued measure (POVM) operators. However, such
operators are generally unknown for mixed states, and so is
the physical measurement process to construct the POVM.
Hence, practically, the QFI gives δω > 1/

√
QFI, which does

not ensure the ultimate scaling even when QFI = �(N2).
In comparison, we have derived the upper bound of δω as
δω � �(N−1) or �(N−3/4) for states with q = 2 assuming
a known measurement: the simple Ramsey-type protocol and
reading out with the projection η̂. That is, the way of achieving
the ultimate scaling sensitivity is explicitly given.

In addition, the dynamical aspects in the presence of noise
are not clear enough for the QFI because in the Cramer-
Rao inequality, the QFI is of the state after the noisy time
evolution, which is not directly related to the QFI of the initial
state. By contrast, we have obtained the upper bound of δω in
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terms of q of the initial cat state, which is actually prepared
in experiments. Such a practical bound is derived because q is
directly connected to the equation of motion.

VIII. CONCLUSION

Summing up, we have shown that the sensitivity of gener-
alized cat states composed of N spins can achieve the Heisen-
berg scaling δω = �(N−1) if they are used to measure a mag-
netic field without dephasing. Moreover, even in the presence
of independent dephasing, we obtained the ultimate scaling
δωdeph = �(N−3/4) beyond the standard quantum limit. For
example, the sensitivity of a generalized cat state converted
from a thermal equilibrium state at finite temperature is found
to be a few orders of magnitude better than the previous
sensors, implying that the difficulty of state preparation could
be drastically lifted. Providing a wide class that includes
such a peculiar state, our work paves the way to broaden the
applications of quantum metrology.
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APPENDIX A: DERIVATION OF (6)

If only a single qubit dephases, the Hamiltonian is

Ĥ0 + Ĥint1(t ), (A1)

where

Ĥ0 = ω

N∑
l=1

â(l ) = ωÂ, (A2)

Ĥint1(t ) = λ fl (t )â(l ). (A3)

Since [Ĥ0, Ĥint1(t )] = 0, the interaction picture is convenient:

ρ̂I (t ) = eiĤ0t ρ̂(t )e−iĤ0t , (A4)

d ρ̂I (t )

dt
= −i[Ĥint1(t ), ρ̂I (t )]. (A5)

Then we have

ρ̂I (tint ) = ρ̂(0) +
∞∑

n=1

(−iλ)n
∫ tint

0

∫ t1

0
· · ·

∫ tn−1

0
dt1dt2 · · · dtn{Ĥint1(t1), [Ĥint1(t2), · · · [Ĥint1(tn), ρ̂(0)]]}. (A6)

Taking the average over the ensemble of the noise, we obtain

ρ̂I (tint ) − ρ̂(0) =
∞∑

n=1

(−iλ)n fl (t1) fl (t2) · · · fl (tn)
∫ tint

0

∫ t1

0
· · ·

∫ tn−1

0
dt1dt2 · · · dtn[â(l ), ρ̂(0)]n. (A7)

Here, we define [Ô1, Ô2]k as [Ô1, Ô2]k+1 = [Ô1, [Ô1, Ô2]k] and [Ô1, Ô2]0 = Ô2. Since we assume f j (t ) fk (t ′) = δ j,k and the
m(> 2)th cumulants are zero for Gaussian noise, fl (t1) fl (t2) · · · fl (tn) can be decomposed into

fl (t1) fl (t2) · · · fl (t2n) =
∑

all combination

f (t ′
1) f (t ′

2) f (t ′
3) f (t ′

4) · · · f (t ′
2n−1) f (t ′

2n) (A8)

= (2n − 1)(2n − 3) · · · 3 · 1 = (2n − 1)!! (A9)

and

fl (t1) fl (t2) · · · fl (t2n+1) =
∑

all combination

f (t ′
1) f (t ′

2) f (t ′
3) f (t ′

4) · · · f (t ′
2n−1) f (t ′

2n) f (t ′
2n+1) (A10)

= 0. (A11)

Therefore, we have

ρ̂I (tint ) − ρ̂(0) =
∞∑

n=1

(−iλ)2n(2n − 1)!!
∫ tint

0

∫ t1

0
· · ·

∫ tn−1

0
dt1dt2 · · · dt2n[â(l ), ρ̂(0)]2n (A12)

=
∞∑

n=1

(−λ2)n(2n − 1)!!t n
int

1

(2n)!
[â(l ), ρ̂(0)]2n (A13)

=
∞∑

n=1

(−λ2tint )
n 1

2nn!
[â(l ), ρ̂(0)]2n. (A14)
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By assuming â(l )2 = 1̂, which holds for ±σ̂x,y,z, we can simplify the commutation:

[â(l ), ρ̂(0)]2n = 22n

2
[ρ̂(0) − â(l )ρ̂(0)â(l )]. (A15)

This gives us

ρ̂I (tint ) − ρ̂(0) =
∞∑

n=1

(−λ2tint )
n 1

2nn!

22n

2
[ρ̂(0) − â(l )ρ̂(0)â(l )] (A16)

= 1

2

∞∑
n=1

(−2λ2tint )n

n!
[ρ̂(0) − â(l )ρ̂(0)â(l )] (A17)

= 1

2

∞∑
n=0

(−2λ2tint )n

n!
[ρ̂(0) − â(l )ρ̂(0)â(l )] −

[
ρ̂(0) − â(l )ρ̂(0)â(l )

2

]
(A18)

= e−2λ2tint

2
[ρ̂(0) − â(l )ρ̂(0)â(l )] − ρ̂(0) − â(l )ρ̂(0)â(l )

2
, (A19)

ρ̂I (tint ) = ρ̂(0) + e−2λ2tint − 1

2
ρ̂(0) + 1 − e−2λ2tint

2
â(l )ρ̂(0)â(l ) (A20)

= 1 + e−2λ2tint

2
ρ̂(0) + 1 − e−2λ2tint

2
â(l )ρ̂(0)â(l ). (A21)

When N spins dephase, i.e., Ĥint (t ) = ∑N
l=1 λ fl (t )â(l ), ρ̂I (tint ) can be expressed as

ρ̂(tint )
I = εN [εN−1 · · · ε1(ρ̂(0))], (A22)

where

ε j (ρ̂(0)) = 1 + e−λ2t2
int

2
ρ̂(0) + 1 − eλ2t2

int

2
â( j)ρ̂(0)â( j) (A23)

since [â(l ), â(k)] = 0 for arbitrary pair of (l, k). Explicitly expressing, we have

ρ(tint )
I =

(
1 + e−λ2t2

int

2

)N

ρ̂(0) +
(

1 + e−λ2t2
int

2

)N−1(
1 − e−λ2t2

int

2

)
N∑

j=1

â( j)ρ̂(0)â( j)

+ · · · +
(

1 − e−λ2t2
int

2

)N

âN âN−1 · · · â1ρ̂(0)â1 · · · âN−1âN , (A24)

ρ̂(t ) = e−iĤ0tint

⎡
⎣(

1 + e−λ2t2
int

2

)N

ρ̂(0) +
(

1 + e−λ2t2
int

2

)N−1(
1 − e−λ2t2

int

2

)
N∑

j=1

â( j)ρ̂(0)â( j)

+ · · · +
(

1 − e−λ2t2
int

2

)N

âN âN−1 · · · â1ρ̂(0)â1 · · · âN−1âN

⎤
⎦eiĤ0tint . (A25)

For

ρ̂ ′ := ρ̂(tint ) −
(

1 + e−λ2t2
int

2

)N

e−iĤ0tint ρ̂(0)eiĤ0tint (A26)

= e−iĤ0tint

⎡
⎣(

1 + e−λ2t2
int

2

)N−1(
1 − e−λ2t2

int

2

)
N∑

j=1

â( j)ρ̂(0)â( j)

+ · · · +
(

1 − e−λ2t2
int

2

)N

âN âN−1 · · · â1ρ̂(0)â1 · · · âN−1âN

⎤
⎦eiĤ0tint (A27)

=: e−iĤ0tint ρ̂ ′
0eiĤ0tint , (A28)
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we have ∣∣∣∣dTr(ρ̂ ′η̂)

dω

∣∣∣∣ =
∣∣∣∣∣ d

dω

∞∑
k=0

(iωtint )k

k!
Tr(ρ ′

0[Â, η̂]k )

∣∣∣∣∣ (A29)

� 2‖Â‖tinte
2ωtint‖Â‖‖ρ ′

0‖ (A30)

= 2‖Â‖tinte
2ωtint‖Â‖ ×

∥∥∥∥∥∥
(

1 + e−λ2t2
int

2

)N−1(
1 − e−λ2t2

int

2

)
N∑

j=1

â( j)ρ̂(0)â( j)

+ · · · +
(

1 − e−λ2t2
int

2

)N

âN âN−1 · · · â1ρ̂(0)â1 · · · âN−1âN

∥∥∥∥∥∥ (A31)

= 2‖Â‖tinte
2ωtint‖Â‖

⎡
⎣

(
1 + e−λ2t2

int

2

)N−1(
1 − e−λ2t2

int

2

)(
N

1

)
+ · · · +

(
1 − e−λ2t2

int

2

)N(
N

N

)⎤
⎦ (A32)

= 2‖Â‖tinte
2ωtint‖Â‖

⎡
⎣1 −

(
1 + e−λ2t2

int

2

)N
⎤
⎦. (A33)

Here, we used the following formulas:

eiωÂtint η̂e−iωÂtint =
∞∑

k=0

(iωtint )k

k!
[Â, η̂]k, (A34)

|Tr(ρ̂[Â, η̂]k )| � 2k‖Â‖k . (A35)

The derivation of (A34) is as follows:

eiωÂt η̂e−iωÂt =
∑

m,m′,ν,ν ′
eiωÂt |m, ν〉〈m, ν|η̂|m′, ν ′〉〈m′, ν ′|e−iωÂt (A36)

=
∑

m,m′,ν,ν ′
eiωAmt |m, ν〉〈m, ν|η̂|m′, ν ′〉〈m′, ν ′|e−iωAm′ t (A37)

=
∑

m,m′,ν,ν ′
eiω(Am−Am′ )t |m, ν〉〈m, ν|η̂|m′, ν ′〉〈m′, ν ′|, (A38)

∞∑
k=0

(iωt )k

k!
[Â, η̂]k =

∞∑
k=0

(iωt )k

k!

∑
m,m′,ν,ν ′

|m, ν〉〈m, ν|[Â, η̂]k|m′, ν ′〉〈m′, ν ′| (A39)

=
∞∑

k=0

(iωt )k

k!

∑
m,m′,ν,ν ′

|m, ν〉
k∑

k′=0

(−1)k′ 〈m, ν|Âk−k′
η̂Âk′ |m′, ν ′〉〈m′, ν ′| (A40)

=
∞∑

k=0

(iωt )k

k!

∑
m,m′,ν,ν ′

|m, ν〉
k∑

k′=0

(−1)k′
Ak−k′

m Ak′
m′ 〈m, ν|η̂|m′, ν ′〉〈m′, ν ′| (A41)

=
∞∑

k=0

(iωt )k

k!

∑
m,m′,ν,ν ′

(Am − Am′ )k|m, ν〉〈m, ν|η̂|m′, ν ′〉〈m′, ν ′| (A42)

=
∑

m,m′,ν,ν ′
eiωt (Am−Am′ )|m, ν〉〈m, ν|η̂|m′, ν ′〉〈m′, ν ′|, (A43)

where Â|m, ν〉 = Am|m, ν〉 and ν labels the degeneracy.
So the denominator of the sensitivity is

√
T/tint

∣∣∣∣dTr[η̂ρ̂(tint )]

dω

∣∣∣∣ � √
T/tint

⎧⎨
⎩

∣∣∣∣∣dTr[η̂e−iωÂtint ρ̂(0)eiωÂtint ]

dω

∣∣∣∣∣
(

1 + e−λ2t2
int

2

)N

−
∣∣∣∣dTr(η̂ρ̂ ′)

dω

∣∣∣∣
⎫⎬
⎭ (A44)

�
√

T/tint

⎧⎨
⎩

∣∣∣∣dP

dω

∣∣∣∣
(

1 + e−λ2t2
int

2

)N

− 2‖Â‖tinte
2ωtint‖Â‖

⎡
⎣1 −

(
1 + e−λ2t2

int

2

)N
⎤
⎦

⎫⎬
⎭, (A45)
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where∣∣∣∣dP

dω

∣∣∣∣ � ∣∣∣∣ωt2
intTr{ρ̂(0)[Â, [Â, η̂]]}∣∣ − ∣∣itintTr{ρ̂(0)[Â, η̂]}∣∣∣∣

− 2tint‖Â‖(e2ωtint‖Â‖ − 1 − 2ωtint‖Â‖). (A46)

Using the result of the case where there is no noise, we obtain
(6)

δωdeph

√
T � (N

√
tint )

−1

{
p1 p2

2

(
1 + e−2λ2t2

int

2

)N

− 2e2ωtint‖Â‖ ‖Â‖
N

[
1 −

(
1 + e−2λ2t2

int

2

)N
]}−1

.

(A47)

APPENDIX B: THE SCALING OF THE UNCERTAINTY
OF THE ESTIMATION

In the standard setup of the quantum metrology, general-
ized cat states always give the scalings either δω = �(N−3/4)
with a finite dephasing rate or δω = �(N−1) with a zero
dephasing rate. (For convenience, we express the uncertainty
as δω regardless of the existence of dephasing in this section.)
We do not obtain the intermediate scaling such as δω =
�(Nk ) with −1 < k < −3/4 even with a small dephasing. In
this section, we explain the reason by considering a GHZ state

1√
2
(|0〉⊗N + |1〉⊗N ) of N qubits as an example.

When we try to estimate ω of Ĥ = ∑N
j=1

ω
2 σ̂

( j)
z , we (1)

prepare the GHZ state, (2) let the state evolve for time tint,
(3) read out, and (4) repeat from (1) to (3) for T/tint times
(assuming the state preparation and the readout are done
instantaneously). Here, T is the total measurement time which
we can freely fix at some finite value. In the presence of
non-Markovian dephasing, the uncertainty δω is calculated as
[20]

δω = e
Nt2

int
(T2 )2

N
√

T tint
, (B1)

where T2 is the coherence time of a single qubit determined by
the physical system. Our aim is to minimize δω

√
T by tuning

tint, and to see how it scales with N .
For finite T2, δω

√
T has the minimum value

√
2 exp(1/4)
N3/4

√
T2

at

tint = T2/2
√

N . As we can see from Fig. 2, the minimum value
of δω

√
T moves to the right as T2 increases. In the limit of no

dephasing, i.e., T2 → ∞, δω
√

T no longer has a minimum
value. Instead, we find δω

√
T → 1

N
√

tint
, which scales as N−1

for tint = �(N0).
The intuitive reason why δω

√
T has a minimum value with

T2 < ∞ is that while larger tint gives more phase accumula-
tion, which contributes to a better sensitivity, the amplitude of
the state maintaining useful coherence for sensing diminishes
with the increase of tint because of the noise. When there is
no noise, on the other hand, the latter does not occur. Hence
the sensitivity keeps improving with the increase of tint when
T2 → ∞.

FIG. 2. Log-log plot of δω
√

T against tint for N = 10. From
the left, green, orange (dot-dashed), blue (dotted), and red (dashed)
curves correspond to T2 = 1, T2 = 10, T2 = 102, T2 = 103, respec-
tively. The gray (thick) line corresponds to T2 → ∞. The minimum
value varies in accordance with T2, but it always scales as N−3/4 as
long as T2 is finite. However, when T2 → ∞, δω

√
T takes the form

1/N
√

tint and keeps decreasing (without minimum values), giving
another scaling N−1 for the optimal uncertainty.

Although we describe the case with the GHZ state as an
example, the same conclusion can be drawn with the field
sensor with the generalized cat states.

Therefore, for the reason described above, we do not obtain
the intermediate scaling such as δω = �(Nk ) with −1 < k <

−3/4.

APPENDIX C: CONSTRUCTION OF η̂

In this section, we explain how to judge whether a given
state is useful in metrology and show how to construct a
projection η̂ for a given state. For an arbitrary ρ̂, we can
judge whether it is helpful in sensing ω of ωÂ as follows:
Find the eigenvalue and eigenstate of [Â, [Â, ρ̂]]. If the sum
of the positive eigenvalues is �(N2), then it is a generalized
cat state of Â, i.e., there exists a projection operator satisfying
Tr{ρ̂[Â, [Â, η̂]]} = �(N2).

The projection operator η̂ for the Ramsey-type measure-
ment with the ultimate scaling can be constructed using the
eigenstates:

η̂ =
∑
en>0

|n〉〈n|, (C1)

where ρ̂|n〉 = en|n〉.
Let us give an example. Let |ψλ〉 be the following state

similar to the Schrödinger’s cat state, but differs by the λth
spin,

|ψλ〉 := 1√
2
|↓〉⊗(λ−1)|↑〉|↓〉⊗(N−λ)

+ 1√
2
|↑〉⊗(λ−1)|↓〉|↑〉⊗(N−λ) (λ = 1, 2, . . . , N ).

(C2)

Then, let ρ̂ex be a mixed state of |ψλ〉’s:

ρ̂ex := 1

N

N∑
λ=1

|ψλ〉〈ψλ|. (C3)
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The eigenstates with positive eigenvalues of [M̂z, [M̂z, ρ̂ex]]
are |ψλ〉’s, and the sum of the eigenvalues is 2(N − 2)2. Hence
the mixed state ρ̂ex can be proven to achieve the ultimate
scaling in measuring M̂z with a projection η̂ = N ρ̂ after
Ramsey-type protocol.

APPENDIX D: DERIVATION OF UPPER BOUND

A numerical upper bound of δωdeph

√
T is obtained through

calculating Tr(ρ̂[Â, η̂]) and Tr(ρ̂[Â, [Â, η̂]]) numerically, and
then minimizing

(N
√

tint )
−1

{
U

(
1 + e−2λ2t2

int

2

)N

− 2e2ωtint‖Â‖
[

1 −
(

1 + e−2λ2t2
int

2

)N
]}−1

(D1)

by tuning tint, where

U :=
∣∣∣∣ |ωtintTr(ρ̂[Â, [Â, η̂]])|

N
− |iTr(ρ̂[Â, η̂])|

N

∣∣∣∣
− 2

‖Â‖
N

(e2ωtint‖Â‖ − 1 − 2ωtint‖Â‖). (D2)

We then find tint ∝ 1/
√

N gives the optimal uncertainty
δωdeph = �(N3/4).

APPENDIX E: RELATION BETWEEN QFI AND q

We would also like to comment that we revealed the
unknown general relation between QFI and q. Fröwis and
Dür claim that the QFI can characterize the macroscopicity
of quantum states [47,51]; if the QFI is of the order of
�(N2), they consider the quantum state as macroscopic. The
relationship between QFI and q for general mixed states was
an open question. Here, we showed 1/

√
QFI � δω � �(N−1)

for q = 2 states, assuring the lower bound of QFI to be large.
Connecting two criteria defined from different aspects, our
results contribute to the further understanding of physics.
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Acín, Phys. Rev. Lett. 111, 120401 (2013).
[12] J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C.

Benjamin, G. A. D. Briggs, and J. J. L. Morton, Science 324,
1166 (2009).

[13] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.
Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).

[14] A. Kuzmich, N. Bigelow, and L. Mandel, Europhys. Lett. 42,
481 (1998).

[15] M. Fleischhauer, A. B. Matsko, and M. O. Scully, Phys. Rev. A
62, 013808 (2000).

[16] J. M. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi,
Phys. Rev. Lett. 91, 250801 (2003).

[17] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini,
W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science
304, 1476 (2004).

[18] M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E.
Stalnaker, A. O. Sushkov, and V. V. Yashchuk, Phys. Rev. Lett.
93, 173002 (2004).

[19] J. A. Dunningham, Contemp. Phys. 47, 257 (2006).
[20] Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Phys. Rev. A

84, 012103 (2011).
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073043 (2013).
[61] K. Hornberger, in Entanglement and Decoherence, edited by

A. Buchleitner, C. Viviescas, and M. Tiersch (Springer, Berlin,
Heidelberg, 2009), pp. 221–276.

[62] A. Tyryshkin, S. Tojo, J. Morton, H. Riemann, N. Abrosimov, P.
Becker, H. Pohl, T. Schenkel, M. Thewalt, K. Itoh, and S. Lyon,
Nat. Mater. 11, 143 (2012).

[63] F. Baudenbacher, L. Fong, J. Holzer, and M. Radparvar, Appl.
Phys. Lett. 82, 3487 (2003).

032318-10

http://arxiv.org/abs/arXiv:1711.10148
https://doi.org/10.1103/PhysRevB.80.115202
https://doi.org/10.1103/PhysRevB.80.115202
https://doi.org/10.1103/PhysRevB.80.115202
https://doi.org/10.1103/PhysRevB.80.115202
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nphys1969
https://doi.org/10.1038/nphys1969
https://doi.org/10.1038/nphys1969
https://doi.org/10.1038/nphys1969
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1021/nl300350r
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1103/PhysRevLett.116.120801
https://doi.org/10.1103/PhysRevLett.116.120801
https://doi.org/10.1103/PhysRevLett.116.120801
https://doi.org/10.1103/PhysRevLett.116.120801
https://doi.org/10.1103/PhysRevA.92.010102
https://doi.org/10.1103/PhysRevA.92.010102
https://doi.org/10.1103/PhysRevA.92.010102
https://doi.org/10.1103/PhysRevA.92.010102
https://doi.org/10.1007/BF01491914
https://doi.org/10.1007/BF01491914
https://doi.org/10.1007/BF01491914
https://doi.org/10.1007/BF01491914
https://doi.org/10.1119/1.16243
https://doi.org/10.1119/1.16243
https://doi.org/10.1119/1.16243
https://doi.org/10.1119/1.16243
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature09416
https://doi.org/10.1038/nature09416
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/RevModPhys.90.025004
https://doi.org/10.1103/PhysRevLett.95.090401
https://doi.org/10.1103/PhysRevLett.95.090401
https://doi.org/10.1103/PhysRevLett.95.090401
https://doi.org/10.1103/PhysRevLett.95.090401
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.97.012124
https://doi.org/10.1103/PhysRevA.97.012124
https://doi.org/10.1103/PhysRevA.97.012124
https://doi.org/10.1103/PhysRevA.97.012124
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1088/1367-2630/14/9/093039
https://doi.org/10.1103/PhysRevA.81.010101
https://doi.org/10.1103/PhysRevA.81.010101
https://doi.org/10.1103/PhysRevA.81.010101
https://doi.org/10.1103/PhysRevA.81.010101
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.012
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1016/j.optcom.2014.07.017
https://doi.org/10.1103/PhysRevB.93.195127
https://doi.org/10.1103/PhysRevB.93.195127
https://doi.org/10.1103/PhysRevB.93.195127
https://doi.org/10.1103/PhysRevB.93.195127
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.1103/PhysRevA.94.052105
https://doi.org/10.7566/JPSJ.82.054801
https://doi.org/10.7566/JPSJ.82.054801
https://doi.org/10.7566/JPSJ.82.054801
https://doi.org/10.7566/JPSJ.82.054801
https://doi.org/10.1103/PhysRevLett.89.270403
https://doi.org/10.1103/PhysRevLett.89.270403
https://doi.org/10.1103/PhysRevLett.89.270403
https://doi.org/10.1103/PhysRevLett.89.270403
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1038/nphys1958
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1088/1367-2630/15/7/073043
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1063/1.1572968
https://doi.org/10.1063/1.1572968
https://doi.org/10.1063/1.1572968
https://doi.org/10.1063/1.1572968

