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In a recent work [Pallister, Linden, and Montanaro, Phys. Rev. Lett. 120, 170502 (2018)], Pallister et al.
proposed an optimal strategy to verify nonmaximally entangled two-qubit pure states under the constraint that
the accessible measurements are locally projective and nonadaptive. Their good result leads naturally to the
following question: What is the optimal strategy among general local operations and classical communication
(LOCC) measurements? In this paper, we answer this problem completely for two-qubit pure states. To be
specific, we give the optimal strategy for each of the following available classes of measurements: (i) local oper-
ations and one-way classical communication (one-way LOCC) measurements; (ii) local operations and two-way
classical communication (two-way LOCC) measurements; and (iii) separable measurements. Surprisingly, our
results reveal that for the two-qubit pure state verification problem two-way LOCC measurements remarkably
outperform one-way LOCC measurements and have the same power as the separable measurements.
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I. INTRODUCTION

On the way to the quantum era, quantum devices for
generating particular states have been extensively studied and
widely used [1–4]. As such, it becomes necessary to verify
that these devices truly work as they are specified reliably and
efficiently with measurements that are accessible. A standard
approach is to estimate the output states with quantum state to-
mography [5–12]. However, this method is both time consum-
ing and computationally difficult; even verifying a few-qubit
photonic state is already experimentally challenging [13,14].
State discrimination can be used only when the true state is re-
stricted to a limited set of known candidates [15], which is far
from the practical verification setting. State detection [16] and
state estimation are not applicable for this purpose [17,18],
either. Only state verification can guarantee the quality of the
generated state in the practical setting. Various studies have
been designed for this task [19–23], using only local measure-
ments. Though these methods achieve considerable efficiency,
no optimal method except for the maximally entangled state
[24–27] is known so far although the optimality gives the
ultimate performance for this problem.

Given the intrinsic difficulty in state verification, in this
paper we focus on verifying the nonmaximally entangled two-
qubit pure states, in hopes of gaining deeper understanding
of the verification problem. In fact, nonmaximally entangled
states are generally easier to prepare experimentally and are
still useful for various quantum protocols. Moreover, pure
nonmaximally entangled states are more useful for several
purposes in quantum information theory than maximally
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entangled states (e.g., detection of nonlocality [28–30]), mak-
ing their verification important both from the theoretical and
the experimental points of view. Importantly, we construct
optimal strategies when different classes of measurements are
available: one-way local operations and classical communica-
tion (LOCC) measurements, two-way LOCC measurements,
and separable measurements. We find that for the problem
under consideration two-way LOCC measurements achieve
the same performance as separable measurements, while out-
performing one-way LOCC measurements dramatically.

Before presenting the results, we review the notations. We
denote by |+〉 ≡ (|0〉 + |1〉)/

√
2 and |−〉 ≡ (|0〉 − |1〉)/

√
2

the eigenstates of the Pauli X operator, and we denote by
|�〉 ≡ (|0〉 + i|1〉)/

√
2 and |⊥〉 ≡ (|0〉 − i|1〉)/

√
2 the eigen-

states of the Pauli Y operator. When measuring a qubit with
a Pauli operator, the outcome is written as (−1)i where i ∈
{0, 1}. We denote by H the two-qubit composite system and
by 1 the identity operator on H. We call a positive operator T
with 0 � T � 1 a one-way LOCC (local operations and only
one-way classical communication) positive operator-valued
measure (POVM) element on H if the two-outcome POVM
{T, 1 − T } can be implemented by one-way LOCC. We also
define a two-way LOCC (local operations and two-way clas-
sical communication) POVM element and a separable POVM
element in the same way by using the two-way LOCC and the
separable operations, respectively. Interested readers might
refer to [31] for details on these operations. We write the set
of one-way LOCC from Alice to Bob, one-way LOCC from
Bob to Alice, two-way LOCC, and separable POVM elements
as T→, T←, T↔, and Tsep. These classes satisfy the relation
T→(T←) ⊆ T↔ ⊆ Tsep. The condition T ∈ Tc is equivalent to
the condition 1 − T ∈ Tc, where c ∈ {→,←,↔, sep}. For a
positive operator � on H, λi(�) denotes the ith eigenvalue of
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� and λ
↓
i (�) denotes the ith largest eigenvalue of �, where

i = 1, 2, 3, 4.

II. TWO-QUBIT PURE STATE VERIFICATION

Consider a quantum device that is designed to produce the
two-qubit pure state

|�〉 = √
1 − λ|00〉 +

√
λ|11〉, (1)

where λ ∈ [0, 1/2]. However, it might work incorrectly and
actually output states σ1, σ2, · · · , σN in N runs. It is guar-
anteed that the fidelity 〈�|σ j |�〉 either is 1 or satisfies
〈�|σ j |�〉 � 1 − ε for all j for some ε > 0. The task is to
determine which is the case. The conclusion is useful if we
assume the next state σN+1 has the same behavior as the
previous ones.

To achieve this task, we perform two-outcome measure-
ments from a set of accessible measurements to test the state.
Each two-outcome measurement {Tl , 1 − Tl} is specified by
an operator Tl , which corresponds to passing the test, and is
performed with probability pl . We require that the target state
|�〉 always passes the test, that is, Tl |�〉 = |�〉 for all Tl . In
the bad case, the maximal probability that σ j passes the test is
given by [23,32]

max
〈�|σ j |�〉�1−ε

Tr(�σ j ) = 1 − [1 − λ
↓
2 (�)]ε,

where � = ∑
l plTl is called a strategy. After N runs, σ j in the

bad case can pass all tests with probability at most [1 − [1 −
λ

↓
2 (�)]ε]N . Hence to achieve confidence 1 − δ, it suffices to

have [32]

N � ln δ

ln[1 − [1 − λ
↓
2 (�)]ε]

≈ 1

[1 − λ
↓
2 (�)]ε

ln
1

δ
. (2)

The optimal strategy is obtained by minimizing the second
largest eigenvalue λ

↓
2 (�). If there is no restriction on the

accessible measurements, the optimal strategy is given by
the measurement {|�〉〈�|, 1 − |�〉〈�|}, under which � =
|�〉〈�|, λ

↓
2 (�) = 0, and N ≈ ε−1 ln δ−1. This efficiency can-

not be improved if collective measurements are allowed
[23]. However, it is difficult to perform such measurements
experimentally when |�〉 is entangled. It is thus meaning-
ful to devise efficient (or even optimal) strategies based on
measurements satisfying reasonable constraints. Owari and
Hayashi [33] studied the case where the incorrect states are
the maximally mixed state, with the target to minimize the
trace of �. They derived optimal strategies when one-way
LOCC and separable measurements are available, and showed
that two-way LOCC measurements remarkably improve the
performance compared to one-way LOCC measurements.
Recently, Pallister, Linden, and Montanaro [32] proposed an
optimal strategy �PLM to verify |�〉, under the constraint that
the accessible measurements must be locally projective and
nonadaptive. The strategy �PLM [34] has the second largest
eigenvalue:

λ
↓
2 (�PLM) = 2 + 2

√
λ(1 − λ)

4 + 2
√

λ(1 − λ)
. (3)

Note that the set of accessible measurements in [32] forms a
strict subset of T→.

These interesting results lead to the following question:
What is the optimal strategy when general LOCC measure-
ments, i.e., adaptive choices of local measurements, are avail-
able? In this paper, we investigate this problem comprehen-
sively. We derive optimal strategies for verifying |�〉 when
the following different classes of measurements are available:
T→, T←, T↔, and Tsep. In the following, we say a strategy �

is in Tc and written � ∈ Tc if � = ∑
l plTl and Tl ∈ Tc for all

l , and a strategy � is optimal in Tc if � ∈ Tc and for arbitrary
�′ ∈ Tc satisfying �′|�〉 = |�〉, λ

↓
2 (�) � λ

↓
2 (�′).

Here we discuss some general properties of arbitrary strat-
egy �. Consider the product of local unitaries Uθ ⊗ U−θ ,
where Uθ = |0〉〈0| + eiθ |1〉〈1| and θ ∈ [0, 2π ]. Let |�⊥〉 =√

λ|00〉 − √
1 − λ|11〉, then {|�〉, |�⊥〉, |01〉, |10〉} are the

four eigenstates of Uθ ⊗ U−θ . Using this property we can
simplify the form of � by averaging, where the averaged
strategy is defined as

�a := 1

2π

∫ 2π

0
(Uθ ⊗ U−θ )�(Uθ ⊗ U−θ )†dθ.

Since the second largest eigenvalues of �a and � are the ma-
trix norms of P⊥�aP⊥ and P⊥�P⊥ with P⊥ := 1 − |�〉〈�|,
we have λ

↓
2 (�a) � λ

↓
2 (�). That is, averaging over θ cannot

make the strategy worse. As 1 � �a � |�〉〈�| and the vec-
tors |01〉 and |10〉 of Uθ ⊗ U−θ have different eigenvalues
from those of |�〉 and |�⊥〉, after averaging �a can be
expressed as

�a = |�〉〈�| + λ2|�⊥〉〈�⊥| + λ3|01〉〈01| + λ4|10〉〈10|
(4)

for some λ2, λ3, λ4 ∈ [0, 1). We also consider the fact that
|�〉 is invariant under qubit swapping. Using the swapping
operation s for the roles of Alice and Bob, the resulting
strategy �a := 1

2�a + 1
2 s(�a) has performance at least as

good as that of �a and admits the form

�a = |�〉〈�| + λ2|�⊥〉〈�⊥| + λ3(|01〉〈01| + |10〉〈10|)
(5)

for some λ2, λ3 ∈ [0, 1). We should be careful when using the
swapping invariance property, as to implement the strategy �a

an extra step of messaging is required.
The above-discussed framework is nonadversarial in the

sense that the malicious device produces incorrect states
randomly and independently. One may also consider the ad-
versarial scenario where the malicious device may produce
an arbitrary state ρ on the whole system HN+1. The task is
then to ensure that the reduced state on one system has fidelity
larger than 1 − ε by performing N tests on other systems. We
remark that minimizing the second largest eigenvalue leads to
the optimization of the strategy even in this scenario [23, Sec.
III.E].

III. STRATEGY USING ONE-WAY LOCC
MEASUREMENTS

First we propose a strategy in T→. Then we show it is
optimal when only T→ are available.

Let |v±〉 = √
1 − λ|0〉 ± √

λ|1〉. Alice performs the X
measurement on the target state and sends outcome i to Bob.
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If i = 0, Bob performs measurement {|v+〉〈v+|, 1 − |v+〉〈v+|}
and accepts if the outcome is v+. If i = 1, Bob performs mea-
surement {|v−〉〈v−|, 1 − |v−〉〈v−|} and accepts if the outcome
is v−. The corresponding POVM element T1 (passing the test)
has the form

T1 = |+〉〈+| ⊗ |v+〉〈v+| + |−〉〈−| ⊗ |v−〉〈v−|.
We define two other POVM elements T2 and T3 similarly to
T1 but with the X measurement replaced by the Y and Z mea-
surements on Alice’s side, respectively. These two elements
read

T2 = |�〉〈�| ⊗ |w−〉〈w−| + |⊥〉〈⊥| ⊗ |w+〉〈w+|,
T3 = |0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|, (6)

where |w±〉 = √
1 − λ|0〉 ± i

√
λ|1〉. It holds that Tj |�〉 =

|�〉 and Tj ∈ T→ for j = 1, 2, 3.
The one-way strategy goes as follows. In each round,

Alice chooses a measurement from {T1, T2, T3} with a priori
probability { 1−p

2 ,
1−p

2 , p} to test the state, where p ∈ [0, 1] is
a free parameter. The strategy has the form

�→ = 1 − p

2
T1 + 1 − p

2
T2 + pT3

= |�〉〈�| + p|�⊥〉〈�⊥| + (1 − p)λ|01〉〈01|
+ (1 − p)(1 − λ)|10〉〈10|.

Minimizing λ
↓
2 (�→) with respect to p ∈ [0, 1], we get p =

1−λ
2−λ

and

�→ = |�〉〈�| + λ→
2 |�⊥〉〈�⊥| + λ→

3 |01〉〈01|
+ λ→

2 |10〉〈10|,
where λ→

2 = 1−λ
2−λ

and λ→
3 = λ

2−λ
. Obviously, �→ ∈ T→.

Now we show the optimality of �→. Let |t, s〉 :=√
t |0〉 + eis

√
1 − t |1〉, where t ∈ [0, 1] and s ∈ [0, 2π ].

When a one-way LOCC strategy � detects |�〉 with
certainty, the strategy is composed of Alice’s POVM∫

2|t, s〉〈t, s|PT S (dtds) with some probability distribution PT S

and Bob’s two-outcome measurements {|t, s, B〉〈t, s, B|, 1 −
|t, s, B〉〈t, s, B|}, where |t, s, B〉 is the normalized vector of√

t (1 − λ)|0〉 + e−is
√

(1 − t )λ|1〉. Then, the strategy � is
written as

� = 2
∫

|t, s〉〈t, s| ⊗ |t, s, B〉〈t, s, B|PT S (dtds). (7)

Following the averaging argument in Eq. (4), we get �a,
obtained from �. For the analysis of �a, we treat the variable
t in Eq. (7) as the random variable T subject to PT S , and
focus on the expectation ET under the marginal distribution
PT . To guarantee that Alice’s measurement in �a is a POVM,
ET [T ] = 1

2 needs to hold. In Appendix A we show that �a

satisfies Eq. (4) with

λ2(�a) = 1 − �, λ3(�a) = �λ, λ4(�a) = �(1 − λ),

where � := 2ET [ T (1−T )
T +λ−2λT ] � 0. As λ3(�a) � λ4(�a),

λ
↓
2 (�a) is minimized when λ2(�a) = λ4(�a). Solving the

equation, we get � = 1
2−λ

and λ
↓
2 (�a) = 1−λ

2−λ
. This concludes

the optimality of �→.

Alice

Bob

Alice

η|0 0| (1 − η)|0 0| + |1 1|

|0 0| |1 1| |+ +| | |

τ0 − τ0 τ1 − τ1

FIG. 1. The two-way measurement {T A→B
1 , 1 − T A→B

1 }. Alice
first performs measurement {δ|0〉〈0|, (1 − δ)|0〉〈0| + |1〉〈1|} and
sends the outcome to Bob. Conditioned on the outcome, Bob adopts
different measurements on his postmeasurement state and sends the
outcome to Alice if necessary. Alice then performs the corresponding
two-outcome measurement {τ j, 1 − τ j} to detect the final state she
holds.

Switching the role between Alice and Bob, we get a sym-
metric version �← of �→. Consider the new strategy �̂↔ =
(�→ + �←)/2. Minimizing the second largest eigenvalue of
�̂↔ with respect to p gives

�̂↔ = |�〉〈�| + 1
3 (1 − |�〉〈�|). (8)

This two-way two-step strategy outperforms �→ in the small
regime of λ. More details on �̂↔ can be found in Appendix B.

IV. STRATEGY USING TWO-WAY LOCC
MEASUREMENTS

First we describe two measurements both detecting |�〉
correctly. They are inspired by the two-way LOCC test given
in [33]. Then we show that an appropriate convex combination
of these measurements achieves optimality even if separable
measurements are available. In what follows, we assume η =
1 −

√
λ

1−λ
and p = λ

1+√
λ(1−λ)

.
Consider the following measurement procedure.
(1) Alice performs measurement {M0 ≡ η|0〉〈0|, M1 ≡

(1 − η)|0〉〈0| + |1〉〈1|} and sends the measurement outcome
Mi to Bob.

(2) Conditioning on i, Bob does the following. If i = 0,
Bob performs Z measurement and accepts when the outcome
is zero. If i = 1, Bob performs X measurement and sends
outcome j ∈ {0, 1} to Alice.

(3) Conditioning on j, Alice performs measurement
{τ j, 1 − τ j} to check the state she holds, where τ j is the
postmeasurement state on Alice’s system when the input state
is |�〉. If she detects τ j , she accepts.

The corresponding POVM element T A→B
1 (passing the test)

has the form

T A→B
1 =η|0〉〈0| ⊗ |0〉〈0| + |̃v+〉〈̃v+| ⊗ |+〉〈+|

+ |̃v−〉〈̃v−| ⊗ |−〉〈−|,
where |̃v±〉 = √

(1 − η)A|0〉 ± √
B|1〉, A := (1−λ)(1−η)

1−η+λη
, and

B := λ
1−η+λη

. Note that |̃v±〉 are not normalized. See Fig. 1

for illustration of this measurement. Note that T A→B
1 |�〉 =

|�〉 and T A→B
1 ∈ T↔. The superscript A → B of T1 indicates

that T1 begins with Alice sending the outcome to Bob. A
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symmetric element T B→A
1 is obtained by switching the role

between Alice and Bob. We define another POVM element
T A→B

2 analogous to T A→B
1 but with the X measurement re-

placed by the Y measurement on Bob’s side, which reads

T A→B
2 = η|0〉〈0| ⊗ |0〉〈0| + |w̃−〉〈w̃−| ⊗ |�〉〈�|

+ |w̃+〉〈w̃+| ⊗ |⊥〉〈⊥|,
where |w̃±〉 = √

(1 − η)A|0〉 ± i
√

B|1〉. By construction,
T A→B

2 |�〉 = |�〉 and T A→B
2 ∈ T↔.

Our two-way strategy is given by the following proce-
dure. In each round, Alice chooses a measurement from
{T A→B

1 , T A→B
2 , T B→A

1 , T B→A
2 , T3} with a priori distribution

{ 1−p
4 ,

1−p
4 ,

1−p
4 ,

1−p
4 , p} to verify the state, where T3 is defined

in Eq. (6). If T A→B
i is chosen, Alice executes the measure-

ment; if T B→A
i is chosen, Alice sends notification to Bob to ask

Bob to execute the measurement. The corresponding strategy
is given by

�↔ = p − 1

4

(
T A→B

1 + T A→B
2 + T B→A

1 + T B→A
2

) + pT3

= |�〉〈�| + λ∗(1 − |�〉〈�|), (9)

where

λ∗ =
√

λ(1 − λ)

1 + √
λ(1 − λ)

.

By construction, �↔|�〉 = |�〉 and �↔ ∈ T↔. In
Appendix C, we show how the magic values of η and p
are chosen.

Our strategy �↔ can be implemented by two-way LOCC,
using up to three-step classical communication. This makes
it possible for experimental implementation. When λ = 0,
|�〉 = |00〉, the optimal strategy of which is provably given by
the measurement {|00〉〈00|, 1 − |00〉〈00|}. Our strategy �↔
reduces exactly to this optimal measurement when λ = 0,
which means our two-way strategy is globally optimal for
|00〉. However, all other strategies – �PLM, �→, �←, and �̂↔
– do not share this property.

Now we show the optimality of �↔ among strategies
using separable measurements. Since a two-way LOCC mea-
surement is a separable measurement, this optimality also
shows the optimality using two-way LOCC measurements.
The proof is divided into two parts: first we prove all optimal
strategies in Tsep are homogeneous, then we construct explic-
itly an optimal homogeneous strategy in Tsep.

A strategy � for |�〉 is homogeneous if it has the form

� = |�〉〈�| + κ (1 − |�〉〈�|), (10)

where κ ∈ [0, 1]. As examples, the strategies �̂↔ and �↔ are
homogeneous. It turns out that the optimal strategies using
separable measurements are always homogeneous. Following
the arguments in Eq. (5), we know optimal strategies � in
Tsep can always be written as Eq. (5) for some λ2, λ3 ∈ [0, 1).
Assuming on the contrary λ2 �= λ3, we then construct ho-
mogeneous strategies with smaller second largest eigenvalues
than that of �, which in turn violates the optimality of �. In
Theorem 1 of [33], the authors proposed a separable test of
the form

T4 = |�〉〈�| +
√

λ(1 − λ)(|01〉〈01| + |10〉〈10|).

In case λ2 > λ3, we consider a convex combination between
� and T4 such that the combination is homogeneous. The new
strategy has a smaller second largest eigenvalue than that of
�. We can show the opposite case in the same way using T3

defined in Eq. (6) instead of T4.
We are left to derive an optimal homogeneous strategy in

Tsep. We are actually interested in the following optimization
problem:

min κ

such that 0 � κ � 1,�= |�〉〈�| + κ (1− |�〉〈�|), �∈Tsep.

As the separability condition is equivalent to the positive
partial transpose condition for two-qubit operators [35,36],
this problem can be analytically solved. Denote by �TB the
partial transpose of � on system B. The eigenvalues of �TB

are

λ1 = 1 − λ + λκ, λ2 = λ + κ − λκ,

λ3 = κ + (1 − κ )
√

λ(1 − λ), λ4 = κ − (1 − κ )
√

λ(1 − λ).

As λ1, λ2, λ3 � 0 for λ ∈ [0, 1/2] and κ ∈ [0, 1], the condi-
tion �TB � 0 is then equivalent to λ4 � 0, resulting in

κ � κ∗ :=
√

λ(1 − λ)

1 + √
λ(1 − λ)

.

The optimal homogeneous strategy then has the form

�sep = |�〉〈�| + κ∗(1 − |�〉〈�|).

Together with the fact that optimal strategies in Tsep are always
homogeneous, we completely solve the problem of verifying
|�〉 using separable measurements. Moreover, as λ

↓
2 (�↔) =

λ
↓
2 (�sep), the optimality can be achieved by two-way LOCC

measurements.

V. COMPARISON

In Fig. 2, we compare the number of measurements re-
quired to verify |�〉 within ε = 0.01 and δ = 0.1 using the
four described strategies: �PLM, �→, �̂↔, and �↔, as a func-
tion of λ, which is the Schmidt coefficient of |�〉. The number
of measurements is computed using Eq. (2). One can see that
our proposed strategies give remarkable improvements over
�PLM for the full range of λ, which witnesses the advantage
of adaptivity in state verification: allowing conditional mea-
surements can markedly improve the verification efficiency.
Intuitively, one might expect that the more entangled the |�〉
the harder to verify it using local measurements. The two-way
strategies �̂↔ and �↔ justify this intuition. However, the
one-way strategy �→, though it achieves optimality when
|�〉 is maximally entangled, has inefficient performance in the
small regime of λ, where |�〉 is less entangled. This is due to
the fact that in the one-way case the symmetric role between
Alice and Bob cannot be utilized. The strict gaps among �→,
�̂↔, and �↔ reveal the power of classical communication in
state verification: with just an extra step of messaging, one can
significantly boost the performance.
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0 0.1 0.2 0.3 0.4 0.5
200

300
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FIG. 2. The number of measurements required to verify the two-
qubit pure state |�〉 using various strategies – �PLM, �→, �̂↔,
and �↔ – as a function of λ. Here, ε = 0.01 and δ = 0.1. These
parameters are chosen in accordance with Fig. 1 of [32] for better
comparison.

VI. CONCLUSION

In this paper, we studied the two-qubit pure state verifi-
cation problem in depth. We constructed optimal strategies
when the following classes of measurement are accessible:
(i) one-way LOCC, (ii) two-way LOCC, and (iii) separa-
ble measurements. Our proposed strategies are dramatically
more efficient than all known candidates based on local
measurements and are comparable to the optimal strategy
when there is no restriction on the accessible measurement
at all. Our results revealed that for this problem the two-way
LOCC measurement remarkably outperforms the one-way
LOCC measurement and achieves the same performance as
the separable measurement. In principle, the technique used
here to construct strategies for verifying two-qubit pure states
can be generalized to pure states of more qubits and higher
dimensions. However, it might be rather difficult to get the
optimal strategies.
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APPENDIX A: OPTIMAL STRATEGY USING ONE-WAY
LOCC MEASUREMENTS

In this section we give more details on the proof that our
proposed one-way LOCC strategy is optimal. As is shown in
the main text, a general one-way LOCC strategy for verifying
|�〉 can be written as

� = 2
∫

|t, s〉〈t, s| ⊗ |t, s, B〉〈t, s, B|PT S (dtds). (A1)

To analyze �, we treat the variable t in Eq. (A1) as the random
variable T subject to the marginal distribution PT and use ET

to denote the expectation under PT . The constraint that Alice’s
measurement in � must be a POVM induces

�A = TrB � = 2

(
ET [T ] ∗

∗ ET [1 − T ]

)
= 1.

Focusing on the diagonal terms, we have the condition
E[T ] = 1

2 . Here, we do not use the condition for the off-
diagonal terms. By letting � := 2ET [ T (1−T )

D ] with D :=
T (1 − λ) + (1 − T )λ, the condition gives the following two
relations:

2ET

[
T 2

D

]
(1 − λ) + λ�

= 2ET

[
T [T (1 − λ) + (1 − T )λ]

D

]
= 1,

2ET

[
(1 − T )2

D

]
λ + (1 − λ)�

= 2ET

[
T [T (1 − λ) + (1 − T )λ]

D

]
= 1.

We then get �a from �, using the averaging technique de-
scribed in the main text. When expressed in the standard basis,
�a satisfies

�a =

⎛
⎜⎜⎝

1 − λ� 0 0 �
√

λ(1 − λ)
0 �λ 0 0
0 0 �(1 − λ) 0

�
√

λ(1 − λ) 0 0 1 − (1 − λ)�

⎞
⎟⎟⎠

= |�〉〈�| + λ2|�⊥〉〈�⊥| + λ3|01〉〈01| + λ4|10〉〈10|,
with λ3 = 〈01|�a|01〉 = �λ, λ4 = 〈10|�a|10〉 = �(1 − λ),
and

λ2 = 〈�⊥|�a|�⊥〉
= [1 − λ�]λ − 2λ(1 − λ)� + [1 − (1 − λ)�](1 − λ)

= 1 − [λ2 + 2λ(1 − λ) + (1 − λ)2]�

= 1 − �.

APPENDIX B: STRATEGY USING TWO-WAY TWO-STEP
LOCC MEASUREMENTS

Here we explain in detail the two-way two-step LOCC
strategy �̂↔, given in Eq. (8) of the main text. We first de-
scribe its construction and then prove its optimality when only
two-step classical communication is allowed. Considering the
symmetric role between Alice and Bob, we construct from
�→ a strategy which outperforms �→ in the small regime
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of λ. The strategy �→ is implemented by Alice sending
measurement outcomes to Bob and Bob performing condi-
tional measurements. We then get a symmetric version �←
of �→ by switching the role between Alice and Bob. The new
strategy goes as follows. In each round, Alice first tosses a fair
coin: if it is heads up, they use �→; if it is tails up, they use
�←. The corresponding strategy then has the form

�̂↔ = 1

2
�→ + 1

2
�←

= |�〉〈�| + p|�⊥〉〈�⊥| + 1 − p

2
(|01〉〈01| + |10〉〈10|).

Minimizing the second largest eigenvalue of �̂↔ with respect
to p ∈ [0, 1], we get p = 1

3 and

�̂↔ = |�〉〈�| + 1
3 (1 − |�〉〈�|).

We remark that, differently from �→ and �←, �̂↔ must
be implemented by two-way two-step LOCC. This is due to
the symmetrization technique we used to construct �̂↔ from
�→ and �←. Alice and Bob need an extra step of classical
communication to agree on which strategy (�→ or �←) is
used in the current round. Comparing the performance of �→
(�←) and �̂↔, one sees the power of classical communication
in verification: with just one extra bit of messaging, �̂↔
outperforms �→ (�←) significantly.

We can actually prove that the strategy �̂↔ is the best we
can hope for when only two-step classical communication is
allowed. Any two-step strategy can be written as a convex
combination of one-way LOCC strategies from Alice to Bob
and one-way LOCC strategies from Bob to Alice. In Theorem
3 of [33] it was proved that, for any one-way LOCC strategy �

satisfying 1 � � � |�〉〈�|, Tr � � 2 holds. Hence, the sec-
ond largest eigenvalue of � is no smaller than 1

3 , concluding
the optimality of �̂↔.

APPENDIX C: OPTIMIZATION OF STRATEGY USING
TWO-WAY LOCC MEASUREMENTS

When constructing the strategy �↔ in the main text, we

prefix two magic variables η = 1 −
√

λ
1−λ

and p = λ

1+√
λ(1−λ)

.

Here we show that they are actually chosen so that the second
largest eigenvalue of �↔ is minimized. From now on we
assume η ∈ [0, 1] and p ∈ [0, 1] are two free parameters to

be optimized. By construction, �↔ is given by

�↔ = p − 1

4

(
T A→B

1 + T A→B
2 + T B→A

1 + T B→A
2

) + pT3.

It can be shown that �↔ admits the following spectral decom-
position:

�↔ = |�〉〈�| + λ2(η, p)|�⊥〉〈�⊥|
+ λ3(η, p)(|01〉〈01| + |10〉〈10|),

where

λ2(η, p) = p(1 − η) + λη

1 − η + λη
,

λ3(η, p) = (1 − p)[λ + (1 − λ)(1 − η)2]

2(1 − η + λη)
.

Our target is to minimize λ
↓
2 (�↔), the second largest eigen-

value of �↔, over the free parameters η and p for fixed λ. This
optimization problem then is given by

λ
↓
2 (�↔) := min

η∈[0,1],p∈[0,1]
max{λ2(η, p), λ3(η, p)}.

λ
↓
2 (�↔) is minimized for fixed λ when the derivatives with

respect to η and p vanish. As λ2(η, p) is monotonically
increasing with p while λ3(η, p) is monotonically decreasing
with p in the range p ∈ [0, 1], and λ2(0, η) < λ3(0, η) for
η ∈ [0, 1], λ

↓
2 (�↔) is minimized when λ2(η, p) = λ3(η, p).

Solving this equation with respect to p, we get

p∗ = −λη2 + η2 − 2η + 1

2λη − λη2 + η2 − 4η + 3
,

λ2(η) = λ3(η) = 2λη − λη2 + η2 − 2η + 1

2λη − λη2 + η2 − 4η + 3
,

where p∗ is the solution of the equation, which is also the
optimal choice of p. We minimize λ2(η) with respect to η.
The partial derivative is given by

∂λ2

∂η
= − 2(1 − λ)(η − η−)(η − η+)

(2λη − λη2 + η2 − 4η + 3)2
,

where η± = 1 ±
√

λ
1−λ

. Solving the equation ∂λ2/∂η = 0

in the range η ∈ [0, 1] gives the optimal choice η∗ = η− =
1 −

√
λ

1−λ
. Substituting η∗ into p∗, we get p∗ = λ

1+√
λ(1−λ)

expressed in terms of λ solely. Substituting in the optimal
choices of η∗ and p∗ gives the desired optimal strategy.
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