
PHYSICAL REVIEW A 100, 032308 (2019)

Automated distribution of quantum circuits via hypergraph partitioning

Pablo Andrés-Martínez* and Chris Heunen†

Informatics Forum, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom

(Received 29 November 2018; published 5 September 2019)

Quantum algorithms are usually described as monolithic circuits, becoming large at modest input size.
Near-term quantum architectures can only manage a small number of qubits. We develop an automated method
to distribute quantum circuits over multiple agents, minimizing quantum communication between them. We
reduce the problem to hypergraph partitioning and then solve it with state-of-the-art optimizers. This makes our
approach useful in practice, unlike previous methods. Our implementation is evaluated on five quantum circuits
of practical relevance.

DOI: 10.1103/PhysRevA.100.032308

I. INTRODUCTION

Quantum computation [1–3] employs the laws of quantum
mechanics to design systems capable of outperforming classi-
cal computers in certain problems [4–6]. Over the past couple
of decades, this idea has rapidly developed from theoretical
results into actual quantum technology [7–9].

Although there are other approaches [10], the dominant
way to present a quantum algorithm is as a quantum cir-
cuit [11]: a description of how quantum devices, chosen from
a fixed finite set, are applied to different parts of the input
system; see Fig. 1 for an example. Each of the “wires” that
quantum devices act upon typically consist of a two level
quantum system called a quantum bit or qubit. The qubit count
grows with the input size, and for relevant problems such
as the unique shortest vector problem (with applications in
cryptography [12]) the circuit grows large: lattice dimension
3 already requires 842 qubits and 95 624 gates [13].

Near-term quantum computing architectures are not capa-
ble of executing such large circuits. We are currently entering
the era of noisy intermediate-scale quantum (NISQ) technol-
ogy [14], being able to fabricate small quantum computing
units (QPU for short) ranging from 10 to almost 100 qubits.
Much effort is being dedicated to further increase the number
of qubits that QPUs can manage, but as the number of
qubits grows, the challenge of addressing each qubit indi-
vidually and shielding them from unwanted interactions and
decoherence rapidly becomes unmanageable [15]. To scale
up beyond this point, researchers are proposing distributed
quantum architectures [16,17] that integrate multiple smaller
QPUs that cooperate to simulate a larger circuit. This requires
QPUs to coordinate, making it necessary to allocate resources
for communication and establishing a trade-off: the more
processors we wish to use to perform the computation, the
larger the communication cost will be. In the extreme case,
one could imagine each individual qubit being managed by a
separate QPU, so every multiqubit gate would require inter-
QPU communication.

*p.andres-martinez@ed.ac.uk
†chris.heunen@ed.ac.uk

Quantum communication is performed more profitably by
photonics, whereas in-processor communication is easier with
cold matter or solid-state architectures. Let us mention two
examples.

(i) Some of the currently most advanced quantum architec-
tures are hybrids, that connect small units of matter degrees
of freedom (such as quantum dots, ion traps, or nitrogen
vacancy centers) into a network using photonic degrees of
freedom [17–19].

(ii) Part of the aim of the quantum internet alliance [20] is
to establish a network between several parties, each of whose
nodes have limited quantum capabilities in the order of 10–
20 qubits [21]. In this view, questions of routing information
along the quantum network become important [22,23].

Although distributed quantum computing is being dis-
cussed for scalability purposes [15], and experimental dis-
tributed architectures have been proposed [16,17], the stan-
dard approach of quantum programers remains designing
quantum algorithms as monolithic circuits. But how do you
execute, for example, the quantum circuit in Fig. 1, using a
pair of two-qubit QPUs? This document develops an auto-
mated method that distributes any circuit across any number
of quantum processing units, while minimizing the quan-
tum communication between them. We reduce the problem
to hypergraph partitioning, which has been extensively re-
searched in computer science literature and has fast heuristic
solvers [24,25].

We first discuss distributed quantum computing in more
detail; then we reduce the problem of distributing a cir-
cuit across multiple QPUs to hypergraph partitioning. We
briefly discuss some implementation details, namely pre- and
postprocessing routines, to improve the circuit distribution.
Finally, we evaluate our results on five quantum circuits from
the literature that are of interest to quantum computing.

II. DISTRIBUTED QUANTUM COMPUTING

This section describes the essential characteristics of any
distributed architecture and identifies communication across
QPUs as the main bottleneck. We then detail the problem
at hand and discuss related work from the literature. Finally,

2469-9926/2019/100(3)/032308(11) 032308-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.032308&domain=pdf&date_stamp=2019-09-05
https://doi.org/10.1103/PhysRevA.100.032308


ANDRÉS-MARTÍNEZ AND HEUNEN PHYSICAL REVIEW A 100, 032308 (2019)

we describe the standard way nonlocal multiqubit gates are
executed across QPUs, which will be required when building
distributed circuits.

A. Distributed quantum architectures

We claim that any distributed quantum architecture (DQA
for short) shares the following essential features.

(i) Multiple QPUs, each of which holds a limited number of
workspace qubits. It should be possible to prepare these qubits
to hold the input data of a program and read output from them
through measurements.

(ii) A classical communication network that the QPUs may
send classical messages through when measuring their qubits
and receive messages over when applying corrections.

(iii) Ebit generation hardware. An ebit is a maximally
entangled bipartite quantum state shared across two QPUs.
In this paper, we choose the Bell state 1√

2
|00〉 + 1√

2
|11〉 as

the initial state for every ebit. Each ebit comprises two qubits,
called ebit halves, that are stored in different QPUs. An ebit
should be understood as a resource that a QPU may use
to communicate a single qubit to another QPU. Each QPU
may have its own hardware to create and share ebits, or a
separate device may generate ebits centrally. Depending on
the technology, this may involve entanglement distillation
and error correction of a noisy quantum channel [26,27]. A
promising way to create ebits is to excite the qubits we wish
to entangle so that they each release a photon, which are
then made to interfere at a beam splitter; the outcome of the
interference heralds the creation of entanglement between the
qubits [28].

(iv) Ebit memory space on each QPU, dedicated to the
storage (and possibly generation) of ebit halves. These are the
qubits that will interact with the rest of the QPUs, and are thus
likely to require a different physical realization than the rest
of the qubits used as workspace for the computation. QPUs
should support the application of two-qubit gates between ebit
and workspace qubits, so that the entanglement can be spread
within the QPU.

A DQA using ion traps has been proposed [16] where
each ion trap holding up to 100 qubits acts as a QPU. Ebit
generation is achieved either by creating Bell states locally in
one QPU and shuttling one of the qubits towards another QPU
or by the photon-heralded entanglement generation routine
previously described [28]. The authors argue that, to reduce
undesired crosstalk, the ions used for ebit generation will
likely need to be of a different atomic species than those used
for workspace qubits. Moreover, while they assume the cost of
classical communication to be negligible, the authors estimate
that the generation of ebits will be roughly 300 times more
costly than the application of a two-qubit gate locally within
a QPU.

Other DQAs have been proposed using different tech-
nologies, for instance, via semiconductor nanophotonics [17]
where qubits are encoded by quantum dots that interact
with their nearest neighbors within cavities. Each of these
nearest-neighbor groups of quantum dots corresponds to the
workspace qubits of a QPU, while entanglement across QPUs
is generated by laser pulses through strategically positioned
waveguides that affect the quantum dots closer to it. For

H

H

H

H

A

B

C

D

α

β

γ

δ η

FIG. 1. Example quantum circuit, applying Hadamard gates H
and CZ gates α, β, γ , δ and η to four input qubits A, B,C, D.

this DQA too, the authors claim that ebit generation is the
bottleneck of the architecture. In general, this is to be expected
for any distributed architecture: entanglement across distant
parties is harder to achieve than interactions between neigh-
boring qubits. Thus our objective when implementing circuits
on a distributed architecture will be to minimize the amount
of ebits required; this is the focus of the present paper.

There is no clear choice of the technology to be used
to implement the essential DQA features listed above. For
generality’s sake we therefore choose not to make any further
assumptions on the specification of DQAs, ignoring details
that could vary across different technologies.

B. Nonlocal quantum gates

Quantum circuits are built from devices known as gates
that apply operations to the qubits (see Fig. 1). A universal
gate set is a collection of gates that can be used to implement
any circuit up to arbitrary accuracy. The Solovay-Kitaev the-
orem [29] ensures that any circuit can be approximated (up to
arbitrary precision ε) using only gates from any chosen uni-
versal gate set. This translation is efficient (polylogarithmic
with respect to 1/ε) both in time and circuit depth. Therefore,
without loss of generality, we assume that every circuit we
are tasked to distribute is built up from one-qubit gates and
controlled-Z (CZ) gates exclusively. This gate set is known to
be universal, as it is locally equivalent to the Clifford+T gate
set. We choose CZ over the more usual controlled-NOT (CNOT)
gate because of its symmetry on inputs, which simplifies some
details of our algorithm.

When distributing a circuit, one-qubit gates require no
communication across QPUs and are therefore trivial from
our point of view. In contrast, communication is required to
implement any CZ gate acting on a pair of qubits that live in
different QPUs, in which case we call the gate nonlocal. To
distribute quantum circuits we need to be able to implement
nonlocal CZ gates.

We use an approach pioneered by Gottesman and
Chuang [30] to implement multiqubit gates across distant
qubits using entangled mutipartite states and measurements.
In particular, we will use the scheme proposed in [31] which,
using a single ebit, implements any number of contiguous
nonlocal CZ gates that act on a common qubit, as shown in
Fig. 2. To do so, a specialized entangling device first shares
the state of the common qubit with the remote QPU, which
requires the use of an ebit; then, the CZ gates are locally
performed on the remote QPU and finally the disentangling
device destructively measures the remaining ebit half to re-
move any residual entanglement.

032308-2



AUTOMATED DISTRIBUTION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 100, 032308 (2019)

meas

X H meas

Z

A

B

C

α

β

meas

X

entangling device

H meas

Z

disentangling device

(b)

A

B

C
α β

(a)

FIG. 2. Implementation, as in [31], of a group of nonlocal CZ gates that share a common qubit. Circuit (a) is the original circuit; (b) is the
distributed version. The dashed line indicates how the circuit is separated into two QPUs. The bent wire on the left of (b) represents an ebit.
The measurement outcomes are communicated through a classical network.

Another option would be to use standard qubit teleporta-
tion [32] to send the qubit that the CZ gates share to the remote
QPU; then the CZ gates may be applied locally, and afterwards
the qubit can be sent back to its original QPU through another
teleportation. The scheme in Fig. 2 uses a single ebit, whereas
the teleportation approach just described would use two ebits
to accomplish the same result, as each teleportation consumes
an ebit. However, if it so happens that the teleported qubit
is not required in its original QPU any more, we could
skip the second teleportation and thus use a single ebit.
This rather trivial remark is relevant in the discussion of
Appendix B.

C. Circuit distribution problem

Our objective is to minimize the number of ebits required to
distribute a given quantum circuit. We will assume ebits may
be generated to entangle any pair of QPUs in the architecture,
i.e., we consider no restriction on the ebit connectivity
between QPUs. In practice, constraints are likely to exist but,
as shown in Fig. 3, whenever two QPUs may not be directly
entangled through the generation of an ebit, another QPU
may act as intermediary and create the desired entanglement
using two physically realizable ebits. A simple yet reasonable
topological arrangement of QPUs is a hypercube, where N
QPUs may be connected directly with log N other QPUs, and
indirectly through at most log N physically realizable ebits by
repeatedly using the method from Fig. 3. Although relevant,
this log N factor (e.g., seven ebits for a 128 QPU computer) is
not the main bottleneck of the architecture; considering direct
generation of ebits may already be up to 300 times more

H

H

meas

meas

Z

Z

QPQ U A

QPQPUU BB

QPU C

FIG. 3. Initially, a pair of ebits (bent wires) entangle QPU A with
C and QPU B with C. At the end of the circuit, the two unmeasured
qubits form an ebit between QPU A and B. Two ebits and two
classical communications are used.

costly than local two-qubit operations (as estimated by the
authors of the ion trap DQA [16]), the immediate concern is to
reduce the overall use of ebits any distributed circuit requires,
independent of whether each ebit can be generated directly
or not.

On a similar note, we assume that the QPUs have no
internal topological constraints, i.e., each one of them is
capable of applying CZ gates upon any pair of qubits it holds;
this idealization can be accounted for at a later stage. Recent
research has provided automated methods for efficiently sim-
ulating any circuit on topologically constrained QPUs, either
by finding the least amount of qubit swappings required [33]
or by redesigning the circuit from scratch using, for instance,
Steiner trees [34,35]. In practice, any of these methods may
be used to simulate each of the circuits our algorithm (see
Sec. III) allocates to each QPU, so the QPUs may actually be
topologically constrained.

Although similar at first glance, the problem we focus
on (quantum circuit distribution—QCD for short) is fun-
damentally different from that of simulation of circuits on
topologically constrained QPUs [33–35] (TC for short). Let
us stress the differences between these two problems.

(i) In TC, two-qubit operations are either realizable on
the QPU topology or not. In QCD, the operations are all
realizable, but are either local (cheap) or nonlocal (requir-
ing expensive ebit communication). The outcome of TC is
a circuit that only uses realizable operations, while QCD’s
outcome uses both local and nonlocal operations.

(ii) TC attempts to find the shallowest equivalent circuit,
whereas QCD only focuses on reducing the number of non-
local (communication) operations. The most efficient circuit
communicationwise may not be the smallest depthwise.

(iii) TC is a local optimization problem: for each unre-
alizable operation, the optimal way to simulate it must be
found, which may depend on the way the operations in its
immediate neighborhood are implemented. In QCD, rather
than optimizing each nonlocal operation separately, the focus
is on the global interaction between qubits, as we need to
group highly interacting qubits together, so that communica-
tion across QPUs is minimal.

The problem of distribution of quantum circuits has not
received much attention in the literature. Some authors have
previously proposed a solution using standard graph par-
titioning [36]. However, in that work, an additional ex-
haustive search is applied to decide how each two-qubit

032308-3



ANDRÉS-MARTÍNEZ AND HEUNEN PHYSICAL REVIEW A 100, 032308 (2019)

quantum gate should be implemented. This increases the
runtime exponentially compared to the input size, making it
futile in practice. The algorithm we propose in Sec. III en-
codes all possible choices of distribution in a hypergraph, and
so our optimization procedure relies solely on a hypergraph
partitioner. The latter programs have been extensively studied
and perfected in the computer science literature to perform
efficiently even for large inputs [24,25]. Unlike the former
work [36], our approach may distribute circuits across any
number of QPUs, thus answering an open problem proposed
by the previous authors.

The idea of treating quantum circuits as graphs has been
previously used in the literature. For instance, graphs have
been employed to represent the causal structure of circuits for
applications such as the recycling of circuit wires [37]. Certain
results on classical simulation of quantum circuits have been
found through graph-theoretic approaches [38].

III. AUTOMATED CIRCUIT DISTRIBUTION

In this section we describe how the problem of quan-
tum circuit distribution can be solved using hypergraph
partitioning. We discuss some aspects of its practical
implementation. Further technical details are given in
Appendixes A and B.

A. Reduction to hypergraph partitioning

A hypergraph consists of a set V of vertices and a set H
of hyperedges, each hyperedge being defined as the subset
of vertices it connects ∀h ∈ H, h ⊆ V . The hypergraph parti-
tioning problem has as input a hypergraph (V, H ), a parameter
k giving the number of blocks (subhypergraphs) we wish to
partition the hypergraph into, and a parameter ω known as the
load-imbalance tolerance. The output is a labeling f : V →
{1, 2 . . . k} of vertices to blocks, satisfying the following two
criteria.

(i) Load balance: for all i = 1, 2, . . . , k,

|{v ∈ V | f (v) = i}| < (1 + ω)
|V |
k

, (1)

which implies that a valid labeling f must assign roughly the
same amount of vertices to each block, with ω acting as a
tolerance parameter.

(ii) Minimal number of cuts: given a way to assign a score
χg ∈ N to a labeling g : V → {1, 2, . . . , k}, the score of the
output χ f should be the lowest possible, ∀g, χ f � χg. The
score may be calculated in several ways, corresponding to
variations of the hypergraph partitioning problem. We use
χg = ∑

h∈H λg(h), where

λg(h) = |{i ∈ N | ∃v ∈ h, g(v) = i}| − 1. (2)

Equation (2) calculates, for each hyperedge h ∈ H , the num-
ber of different blocks its vertices have been assigned to,
and subtracts one in order to obtain the number of times the
hyperedge is cut; e.g., if all the vertices of h are in the same
block, λ(h) = 0.

We reduce the problem of efficiently distributing quantum
circuits to the problem of hypergraph partitioning along the
following intuition:

Hypergraph partitioning Circuit distribution

Vertices Wires (qubits)
Hyperedges Groups of CZs
Partition Distribution
Blocks QPUs
Load balance (1) Load balance
Fewest cuts (2) Fewest ebits used

The algorithm in Fig. 4 encodes all information about how
the circuit’s CZ gates may be grouped together (i.e., when
they may share the same ebit; see Fig. 2) by representing
such groups as a single hyperedge. The algorithm runs in
time linear O(n) in the number n of gates of the input circuit.
Figure 5 shows an example execution. Each vertex in the
hypergraph corresponds to either a wire or a CZ gate; we will
refer to them as wire vertices and CZ vertices, respectively.
The following theorem is the key insight that makes our
approach successful.

Theorem. Given a circuit, each of its possible distributed
implementations (without altering the gate set or the gate
order) corresponds to a unique partition of its hypergraph
(given by Fig. 4) whose number of cuts equals the number
of ebits required.

The theorem implies that we may use third-party hyper-
graph partitioners to produce circuit distributions with low
ebit count. We now explain the intuition behind the theorem.
First, observe that any distribution is described by a hyper-
graph partition: assigning a wire vertex to a block indicates
in which QPU the corresponding wire is allocated. Similarly,
assigning a CZ vertex to a block determines which QPU will
perform the CZ operation. Accordingly, the CZ gate will be
local or require communication (i.e., ebits) to access its target
wires. Notice that in Fig. 5 each hyperedge connects a wire
vertex with multiple CZ vertices: it represents all the locations
where the wire’s state is required. The number of cuts of a
given hyperedge corresponds to the number of extra blocks
it reaches (2), and for each of them an ebit is needed so

input : c i r c u i t
output : (V,H)
beg in

V ← ∅

H ← ∅

foreach wire in c i r c u i t do
V ← V ∪ {wire }
hedge ← {wire }
foreach gate in wire do

i f isCZ ( gate ) then
V ← V ∪ { gate }
hedge ← hedge ∪ { gate }

e l s e
H ← H � {hedge}
hedge ← {wire }

H ← H � {hedge}
end

FIG. 4. Pseudocode for the algorithm that translates a quantum
circuit into a hypergraph containing all relevant qubit interaction
information.

032308-4



AUTOMATED DISTRIBUTION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 100, 032308 (2019)

A

α

A B

α β

δ η

A B

C

α β

δ η

A B

C

α β

γ

δ η

A B

C D

α β

γ

δ η

FIG. 5. Step by step execution of the algorithm in Fig. 4 with input the quantum circuit of Fig. 1. Each hyperedge is represented as a
collection of line segments that all meet at one end, while their other ends reach each of the hyperedge’s vertices. Greek letters represent CZ

vertices; Latin letters represent wire vertices.

the wire’s state is accessible. Therefore, the number of cuts
corresponds precisely to the number of ebits. Appendix A
gives a detailed proof of the theorem.

To build the distributed circuit, add a pair of entangling
and disentangling devices for each cut, and then allocate all
CZ gates to their corresponding QPU, connecting the relevant
wires and ebit halves. This translation takes O(cuts + gates)
steps. However, by construction of the hypergraph, we know
that cuts � 2gates, and thus this transformation takes time
O(n), i.e., linear in the number n of gates from the original
circuit.

B. Implementation

Reducing the problem to hypergraph partitioning lets us
use third-party solvers such as KaHyPar [24]. We imple-
mented this approach in the quantum circuit description lan-
guage Quipper [39]; the code is available at [40].

Apart from extracting a hypergraph out of the input circuit
(Fig. 4) and building the distributed circuit from the resulting
partition, we include some additional preprocessing and post-
processing phases.

(i) Preprocessing 1: transform the input circuit into an
equivalent one using only one-qubit gates and CZ gates; Quip-
per provides specialized functionality to do so.

(ii) Preprocessing 2: use the well-known rules from Fig. 6
to reorder CZ gates and some one-qubit gates, pulling CZ gates
as early in the circuit as possible. This brings CZ gates closer
together, letting our algorithm implement larger groups of
nonlocal CZ gates using a single ebit. As shown in Fig. 6,
doing so may create new one-qubit gates, namely Pauli X
gates. Using the same rules, these by-product gates can be
pushed to the end of the circuit, where they will cancel out
with other by-product gates, so the overhead is bounded by at
most a single pair of extra Pauli (X and Z) gates per wire.

(iii) Preprocessing 3: in many circuits, the main group of
qubits that another qubit interacts with varies between the
different stages of the circuit. Then, if we were to use the
hypergraph of the whole circuit, the different connectivities of
each stage would be confounded, preventing the hypergraph
partitioner from properly optimizing them. To account for
this, we first run a procedure that detects significant changes
in the circuit’s qubit connectivity and splits the circuit into
multiple segments accordingly. Each of these segments is
then distributed using the approach presented in Sec. III A.
Appendix B details this extra preprocessing procedure.

(iv) Postprocessing: reduce the required ebit storage space
by garbage management while building the distributed circuit;
immediately after performing the last CZ gate of a group that
involves an ebit, apply its disentangling device. This destroys
the ebit so its space can be reused to store a newly created ebit.

IV. RESULTS

Our algorithm was evaluated on five quantum circuits
provided by Quipper’s library [39]. These circuits imple-
ment algorithms that have been discussed in the literature as
examples where quantum computers achieve computational
speedup. Their default configuration was used unless stated
otherwise.

(i) Boolean formula (BF) [41]: the circuit fragment imple-
menting the quantum walk, the core of the algorithm.

(ii) Binary welded tree (BWT) [42]: tree height set to 200
(from five by default).

(iii) Ground-state estimation (GSE) [43]: number of preci-
sion qubits increased to 150 (from three by default).

(iv) Unique shortest vector (USV-R) [12]: the subprob-
lem called “R”, with lattice dimension three (from five by
default).

r r
=

for r any z-axis rotation

g g

X
=

∀g ∈ {X, Y }(a) (b)

FIG. 6. Well-known cases where a one-qubit gate can be pushed through a CZ gate. In case (b) a by-product gate is created. These by-
product gates can in turn be pushed through other CZs.

032308-5



ANDRÉS-MARTÍNEZ AND HEUNEN PHYSICAL REVIEW A 100, 032308 (2019)

TABLE I. Original number of qubits and CZ gates of each of the
circuits. We distributed each of them across k different QPUs, with
4 � k � 16. Columns “Ebit space overhead” and “Time” show the
worst value among these distributions.

Ebit space
Circuit Qubits CZ gates Time overhead

BF 105 25 590 23.00 s 4.8%
BWT 614 261 456 389.39 s 1.1%
GSE 156 237 750 307.75 s 2.6%
USV-R 842 377 695 282.32 s 2.4%
QFT 201 199 000 327.48 s 4.0%

(v) Quantum Fourier transform (QFT) [2]: using 200
qubits.

Table I shows the number of qubits and CZ gates of each
circuit. These circuits require more qubits than the number
a single near-term QPU can handle, making them meaning-
ful examples on which to evaluate the distribution approach
proposed in this paper. The times shown in the table indicate
how long it took to obtain the distributed circuit using our
implementation (available at [40]), running it on a standard
desktop computer. The fact that circuits of this size can be
distributed in a few minutes shows that our approach is useful
in practice.

The last column from Table I shows the percentage of extra
quantum memory required to store the ebit halves used for
communication. The proportion is calculated by counting the
maximum number of ebit halves stored simultaneously, and
dividing it by the number of qubits in the original circuit. This
overhead was considerably reduced from previous versions of
our approach by limiting the number of gates allowed to be
applied between two nonlocal CZ gates sharing an ebit, so that
the corresponding ebit does not need to be stored over a long
period of time.

Figure 7 shows the proportion of ebits required when
each circuit was distributed. In all cases, over 60% of the
CZ gates could be implemented either locally or “for free”
using already existing ebits. Naturally, as the number of QPUs
used to distribute the circuit increases, more communication
is required among them and a larger number of ebits is

BF BWT GSE USV-R QFT
0

0.2

0.4

0.6

0.8

1

E
bi

ts
/

to
ta

l
C

Z
s

FIG. 7. Each bar shows the proportion of ebits required over the
total number of CZs. For each circuit and from left to right, the bars
correspond to distributing the circuit across 4, 6, 8, 10, 12, 14, and
16 QPUs with an equal number of qubits allocated to each.

BF BWT GSE USV-R QFT
0

0.2

0.4

0.6

E
bi

ts
/

to
ta

l
C

Z
s

FIG. 8. Gray bar indicates the proportion of ebits required in
the distribution found using hypergraph partitioning. The bar on top
indicates the extra ebits if standard graphs were used instead. For all
circuits, the data corresponds to distributing them across eight QPUs.

used. In practice, the number of QPUs each circuit should
be distributed across will be determined by the circuit size;
for instance, GSE may be distributed across eight QPUs, each
managing 20 qubits.

To put the quality of these results into perspective, Fig. 8
compares our approach with a simplified version using stan-
dard graph partitioning instead of hypergraph partitioning.
The use of hypergraphs is the main contribution of our
approach: in previous works [36] the optimization of the
number of nonlocal gates that are implemented “for free” was
achieved by exhaustively exploring the space of all possible
configurations, which is exponential in size and therefore not
workable in practice. Thanks to state-of-the-art hypergraph
partitioners, this optimization can be achieved in a practical
amount of time by letting heuristics guide the search, instead
of trying each possible configuration. The proportion of “Ebits
saved” as labeled in Fig. 8 corresponds to the number of CZ

gates that were implemented “for free” using our approach. In
some cases, such as GSE, we are saving approximately half
of the number of ebits; in other cases, such as USV-R, the
improvement is almost unnoticeable because most CZ gates
are already implemented locally.

Bonus: Distributing CCZ gates

For certain DQAs, it has been discussed that local Toffoli
gates could be computed at approximately the same cost as
a local CZ gate [16]. Toffoli gates are three-qubit gates ex-
tensively used in quantum circuits and, in most architectures,
they are implemented by decomposing each one into multiple
one-qubit gates and six CNOT gates [44]. Interestingly, we can
easily adapt our approach to distribute CCZ gates, which are
locally equivalent to the Toffoli gate by applying one-qubit
Hadamard gates.

To extend our approach to this setting, it suffices to realize
that the approach from Fig. 2 can be used to implement groups
of nonlocal CCZ gates together with CZ gates; for instance, if
CZ gate α from Fig. 2 is replaced by a CCZ gate acting on the
three qubits, the same entangling and disentangling devices
allow us to implement both the CCZ gate and CZ gate β using
a single ebit. After all, these entangling and disentangling
devices are compatible with the qubit basis the CCZ gate acts
upon (which is the same as CZ). If a CCZ gate has each of

032308-6



AUTOMATED DISTRIBUTION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 100, 032308 (2019)

BF BWT GSE USV-R QFT
0

0.2

0.4

0.6

E
bi

ts
/

to
ta

l
C

Z
s

FIG. 9. Gray bar indicates the proportion of ebits required when
using the extension where CCZ gates are distributed. The bar on top
indicates the extra ebits if the CCZ gates are decomposed into CZ

gates instead. In both cases, hypergraph partitioning is used. For all
circuits, the data corresponds to distributing them across eight QPUs.

its three wires allocated to different QPUs, two ebits will be
required to implement it, so that the quantum information in
each of the wires can be accessed by the QPU where the CCZ

is actually applied. When building our hypergraph from the
circuit (as in Fig. 4), CCZ vertices are created in the same way
CZ vertices are, but in this case each of them would be reached
by three hyperedges: one per wire the gate acts upon. The rest
of the approach works exactly the same as described before,
consuming an ebit whenever a cut appears in the hypergraph
partition, regardless of whether it reaches a CCZ vertex.

If an architecture allows implementing local CCZ gates
directly, this extended approach would yield distributed cir-
cuits requiring fewer ebits: the three qubits of a CCZ only
interact once, whereas if the CCZ gate is implemented us-
ing six CZ gates, the communication required is increased.
Figure 9 shows that distributing CCZ gates saves a remarkable
proportion of ebits for circuits using n-qubit gates (with n >

2) extensively: BF and BWT. Naturally, this extension does
not change the result when only two-qubit gates are applied
between qubits, such as in QFT.

V. DISCUSSION AND FURTHER WORK

The Lemma from Appendix A states that, in a similar way,
we may use hypergraph partitioning to solve the problem of
quantum circuit distribution; the other way around is also
feasible. This implies that if someone could devise an opti-
mization procedure that beats our distribution approach (i.e.,
gives better results and takes less time), we could immediately
convert such a procedure into a hypergraph partitioner that
beats KaHyPar [24], the state-of-art hypergraph partitioner we
used. Considering that hypergraph partitioning has been ex-
tensively studied by experts in algorithm design [24,25,45], it
is unlikely that a dramatically better approach to quantum cir-
cuit distribution exists unless some of the constraints we im-
posed are lifted. These constraints are described below; they
constitute the open problems that should be addressed in order
to reduce the communication cost of distribution even further.

(i) Gate set. Our chosen gate set contained every one-qubit
gate and a single two-qubit gate: the CZ gate. Gate sets where
other multiqubit gates are allowed may bring better results.
Our approach is easily adapted to use other gate sets, as shown

in Sec. IV, where the CCZ gate was included in our gate
set. The question of which gate set is best for distribution is
left as an open problem, and we point out that this may be
architecture dependent.

(ii) Rearranging multiqubit gates. The procedure labeled
preprocessing 2 in Sec. III B rearranges one-qubit gates in the
circuit to create larger groupings of CZ gates, which can reduce
the number of ebits required to distribute the circuit. It is likely
that, by rearranging multiqubit gates, the connectivity of the
circuit may be changed in a way that favors distribution.

It is important to stress that hypergraph partitioners are
not expected to provide the optimal partition of the input hy-
pergraph: that problem is intractable on a classical computer
(namely, it is NP-hard [45]). Instead, we work with close to
optimal solutions that can be found efficiently by classical
computers. The results discussed in Sec. IV were obtained
using such suboptimal partitions. These allow us to reduce the
communication cost of distributing circuits, and thus help us
compute problems that are not tractable in classical computers
(not even suboptimally) and whose quantum circuits would
require more qubits than the number a near-term QPU can
handle.

Apart from the restricted number of qubits a QPU can
manage, there is another fundamental limit to scalability we
have overlooked up to this point: the short lifespan of qubits
due to decoherence. NISQ computers will only be able to
store and manipulate quantum information for a short period
of time, which means we should not expect to be able to
execute more than 1000 consecutive two-qubit gates [14].
This means that optimizing the depth of the circuit (i.e.,
reducing the largest chain of consecutive gates) is considered
essential. There are many different methods that reduce the
depth of circuits [46,47], and we propose these should be used
to optimize the input circuit before distributing it with our
approach. An interesting line of research is exploiting how
parallelism may be employed to further reduce the circuit
depth: if a circuit is distributed across different QPUs, the
QPUs may perform simultaneous computations, reducing the
total time the quantum information needs to be coherently
stored.

We have seen that distributed quantum architec-
tures [16,17] have been proposed as a feasible approach
to increase the size of quantum computers. Circuits that are
too large to be performed in near-term quantum processing
units may be run on distributed quantum architectures at
the cost of quantum communication. We have presented an
automated method for distributing quantum circuits across
multiple agents, minimizing the quantum communication
between them. In this last section we have discussed the
limitations of our approach and pointed out further lines of
research that would improve it. Our approach was evaluated
favorably on five test circuits of interest to the quantum
computing literature. These circuits are too large to fit in a
single near-term QPU and thus need to be distributed in order
to be implemented.

ACKNOWLEDGMENTS

P.A.-M. was supported by the CDT in Pervasive Paral-
lelism, funded by the EPSRC (Grant No. EP/L01503X/1)

032308-7



ANDRÉS-MARTÍNEZ AND HEUNEN PHYSICAL REVIEW A 100, 032308 (2019)

and the School of Informatics (University of Edinburgh).
C.H. was supported by EPSRC Research Fellowship No.
EP/R044759/1. Some of the work was done during a visit
to Dalhousie University; the visit was partially funded by
the host institution. Both authors thank Petros Wallden, Pe-
ter Selinger, and Neil Julien Ross. Discussions with Peter
Selinger led to the extension of the algorithm described in
Appendix B and improvements on the implementation. Neil
Julien Ross suggested looking into CCZ gate distribution.

APPENDIX A

In this Appendix we prove the theorem presented in
Sec. III A and related results also discussed in that section.

Theorem. Given a circuit, each of its possible distributed
implementations (without altering the gate set or the gate
order) corresponds to a unique partition of its hypergraph
(given by Fig. 4) whose number of cuts is equivalent to the
number of ebits required.

Proof. First, we provide a bijection between the trivial
configurations: a partition of the hypergraph where all vertices
are in the same block corresponds one to one to the whole
circuit being executed in a single QPU.

Then, we extend the bijection to any configuration by
defining two primitive transformations for each problem,
which allow us to move vertices around. The wire primitive
moves wire vertices: given a partition of the hypergraph,
moving wire vertex x to block i corresponds one to one to
picking wire x and allocating it to QPU i.

The CZ primitive moves CZ vertices: given a partition of the
hypergraph, moving CZ vertex α to block i corresponds one to
one to picking CZ gate α and allocating it to be carried out in
QPU i.

Any partition or distribution can be described as a sequence
of primitives: starting from the trivial configuration, first move
all CZs to their corresponding block or QPU using the CZ prim-
itive once per CZ gate, then do the same for the wires using
the wire primitive. The one-to-one correspondence between
primitives then gives us a bijection between the set of all
possible distributions of the circuit and all possible partitions
of its hypergraph. It remains to prove this bijection satisfies
that the ebit count λe of a distribution and the cut count λc of
its corresponding hypergraph partition are always equivalent
λc = λe.

(1) The trivial configuration of both problems has λc =
0 = λe. We impose that the block or QPU where all ver-
tices are allocated on the trivial configuration is an aux-
iliary one that will not hold any vertices or wires on the
final configuration. Thus it is just an artifact to simplify
the proof.

(2) By construction, each CZ vertex is connected to exactly
two hyperedges. When a CZ primitive is applied, the number
of cuts λc will increase by one if and only if, in the block
where it is reallocated, there is no other CZ vertex with
whom it shares a hyperedge. The same happens for the ebit
count λe: if, in the QPU where it is reallocated, there is no
CZ with whom it shares a wire, then an ebit is required to
remotely access it; otherwise, the channel already exists and
no additional ebit is required. Thus we may reallocate all CZ

gates while preserving λc = λe.

(3) Applying wire primitives to the current configuration
will always decrease λc and λe. When wire-vertex x is reallo-
cated to block i, the number of cuts λc will decrease by one
per hyperedge x shares with a CZ vertex in block i. The ebit
count λe will decrease under the same circumstances, because
the CZs corresponding to those CZ vertices will be able to
access the wire locally, and therefore will not require ebits
to do so. Thus we may reallocate all wires while preserving
λc = λe.

The strategy of allocating all CZ gates first and then allo-
cating wires is chosen for simplicity. Although tedious, it is
straightforward to check case by case that the argument above
holds independent of the order at which we allocate CZ gates
and wires. �

The following Lemma shows that, in a similar way as
to how the problem of quantum circuit distribution can be
reduced to hypergraph partitioning, the dual notion is also
true: hypergraph partitioning can be solved using a quantum
circuit distributer. This insight has no direct application in
practice, but it is valuable from a theoretical point of view,
as stated in the corollary that follows.

Lemma. The problem of hypergraph partitioning can be
reduced to the problem of quantum circuit distribution.

Proof. We need to show how an optimal partition of any
hypergraph can be obtained by finding an optimal distribution
of a dummy circuit. Given any hypergraph, create a circuit
that has one wire per vertex in the hypergraph and, for each
hyperedge h, (1) take the subset of vertices it reaches and the
corresponding subset of wires Wh, (2) pick (at random) one
of these wires and apply CZ gates between it and each of the
other wires in Wh, and (3) apply a Hadamard gate on each of
the wires in Wh.

Notice that this process takes a polynomial number of steps
with respect to the number of vertices and hyperedges in the
hypergraph. An example of a hypergraph and its resulting
dummy circuit is given in Fig. 10.

We then use the algorithm from Fig. 4 to obtain a new
hypergraph [see Fig. 10(c)], which is similar to the original
one, but not the same. We call this hypergraph the extended
hypergraph. Notice that the only difference is the addition of
CZ vertices and standard edges. If we merge each CZ vertex
with the wire vertex the standard edge connects it to, the
resulting hypergraph is the same as the one given as input [see
Fig. 10(c)]. It is trivial to check that this will always be the
case due to the way we build the dummy circuit.

If an optimal distribution of the dummy circuit is found,
we can use the bijection provided in the proof of the the-
orem above to obtain an optimal partition of the extended
hypergraph. We can then remove the CZ vertices by merging
them, obtaining a partition of the input hypergraph. When the
vertices to be merged are in the same block it is clear that
merging does not affect the optimality of the partition. When
they live in different blocks, reallocating the CZ vertices so
they are on the same block can never increase the cut count:
either that cut is simply moved from the standard edge to the
hyperedge or the cut is no longer needed because another ver-
tex in the hyperedge is already on that block. But because the
partition of the extended hypergraph is optimal, this particular
reallocation cannot decrease the cut count either. Thus we
may ignore the CZ vertices altogether. The allocation of the

032308-8



AUTOMATED DISTRIBUTION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 100, 032308 (2019)

A B

C D

(a)

H

H

H

H

H

H

H

H

B

C

D

α

β γ δ

η

(b)
A B

C D

α

β

γ δ

η

(c)

FIG. 10. (a) Arbitrary input hypergraph. (b) A (not unique) dummy circuit built from the hypergraph. (c) The hypergraph obtained by
applying the algorithm from Fig. 4 on the dummy circuit; the hypergraph obtained is an extended version of the input one. We can retrieve the
input hypergraph by merging vertices as indicated by the dotted ellipses.

rest of the vertices provides an optimal partition of the input
hypergraph. �

Corollary. The problem of quantum circuit distribution is
NP-hard.

Proof. The previous Lemma shows that hypergraph
partitioning can be reduced to this problem, with all required
transformations having polynomial time complexity. As
hypergraph partitioning is NP-hard [45], it immediately
follows by the definition of NP-hardness that the problem of
quantum circuit distribution, as defined in this document, is
NP-hard too. �

APPENDIX B

This Appendix presents the procedure labeled prepro-
cessing 3 in Sec. III B that informs how the input circuit
should be split into segments before distributing. The goal
is that, whenever the qubit connectivity within the circuit
changes dramatically, the circuit is divided into two segments:
one ending at some point previous to that change and the
other starting from that point onwards. The different seg-
ments are then distributed using the approach described in
Sec. III A.

The procedure requires two user-defined parameters ω ∈
N and � ∈ [0, 1]. First, the circuit is explored from left
to right, splitting it into preliminary segments containing ω

many CZ gates each. Then, for each segment, (1) obtain the
hypergraph partitions of the current segment and the next one,
(2) obtain their discrepancy score δ computed as in (B1), and
(3) if the discrepancy δ is below the threshold �, view both
segments as a single one (i.e., merge them) and return to step
(1); otherwise, obtain the distributed circuit of the current
segment and continue the procedure until all segments have
been distributed.

Once this process finishes, the distributed circuits are exe-
cuted in the target DQA one after the other. This may require
teleporting qubits [32] between QPUs when progressing from
one segment to the next. Each qubit teleportation makes use
of a single ebit; this cost has been taken into account in
the figures and discussion of Sec. IV. The procedure may
be modified so that parameter � is not required: apply step
(3) only when δ is minimal and repeat the procedure until
merging segments no longer decreases the ebit count. This

modified version is the one used to obtain the results graphed
in Sec. IV.

The discrepancy score δ ∈ [0, 1] between two segments s
and r is calculated as

δ =
∑

w∈W
τ (w)

min{hs(w), hr (w)}
min{Hs, Hr} , (B1)

where W is the set of all wires in the circuit, τ (w) returns
zero if the wire is allocated to the same QPU in both segments
and 1 otherwise, Hs returns the total number of hyperedges
in the hypergraph of segment s (similarly for segment r), and
hs(w) returns the number of hyperedges that reach the vertex
corresponding to wire w within the hypergraph of segment s
(similarly for segment r).

Different discrepancy scores could be used without chang-
ing any other aspect of the algorithm. Equation (B1) was
the score that performed best among the different options
we attempted. It moreover has an intuitive interpretation, as
follows.

(i) If a wire is allocated to the same QPU in both segments,
that wire’s contribution to discrepancy is null, which is why
we multiply by τ (w).

(ii) hs(w) estimates the wire’s relevance in the segment
connectivity and hence should be proportional to the discrep-
ancy score.

(iii) If a wire is allocated to different QPUs in each seg-
ment, but is almost never used in one of them [i.e., hr (w) ≈ 0],
it would be relatively cheap to reallocate that wire to match the
other segment, justifying the use of [min{hs(w), hr (w)}].

(iv) To compare scores fairly they need to be normalized,
which is why we divide by (min{Hs, Hr}).

This procedure uses the hypergraph partitioner multiple
times. At first glance, that may seem to come at a great
cost, as hypergraph partitioning is the most resource intensive
routine in our approach. However, by splitting the circuit
into segments, the hypergraph that is partitioned each time
is much smaller than the hypergraph of the overall circuit.
Considering that hypergraph partitioning is an NP-hard prob-
lem [45], the reduction of the input size improves performance
dramatically. In practice, when using KaHyPar [24] (our
choice of third-party hypergraph partitioner), we found out
this performance improvement overcame the cost of running
the partitioner multiple times.

032308-9



ANDRÉS-MARTÍNEZ AND HEUNEN PHYSICAL REVIEW A 100, 032308 (2019)

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] M. J. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2000).

[3] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[4] P. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM Rev. 41, 303
(1999).

[5] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Annual ACM Symposium on Theory of
Computing (ACM, Philadelphia, Pennsylvania, USA, 1996),
pp. 212–219.

[6] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[7] J. L. O’Brien, A. Furusawa, and J. Vučković, Photonic quantum
technologies, Nat. Photon. 3, 687 (2009).

[8] M. H. Devoret and R. J. Schoelkopf, Superconducting cir-
cuits for quantum information: An outlook, Science 339, 1169
(2013).

[9] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865
(2009).

[10] R. Raussendorf and H. J. Briegel, A One-way Quantum Com-
puter, Phys. Rev. Lett. 86, 5188 (2001).

[11] D. Deutsch, Quantum computational networks, Proc. R. Soc. A
425, 73 (1989).

[12] O. Regev, Quantum computation and lattice problems, SIAM J.
Comput. 33, 738 (2004).

[13] Extracted from Quipper USV-R implementation [39].
[14] J. Preskill, Quantum computing in the NISQ era and beyond,

Quantum 2, 79 (2018).
[15] R. van Meter and S. J. Devitt, Local and distributed quantum

computation, IEEE Comput. 49, 31 (2016).
[16] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.

Maunz, L.-M. Duan, and J. Kim, Large-scale modular quantum-
computer architecture with atomic memory and photonic inter-
connects, Phys. Rev. A 89, 022317 (2014).

[17] R. van Meter, T. D. Ladd, A. G. Fowler, and Y. Yamamoto,
Distributed quantum computation architecture using semi-
conductor nanophotonics, Int. J. Quantum Inform. 8, 295
(2010).

[18] C. J. Ballance et al., Hybrid quantum logic and a test of bell’s
inequality using two different atomic isotopes, Nature (London)
528, 384 (2015).

[19] M. S. Blok, N. Kalb, A. Reiserer, T. H. Taminiau, and R.
Hanson, Towards quantum networks of single spins: Analysis
of a quantum memory with an optical interface in diamond,
Faraday Discuss. 184, 173 (2015).

[20] quantum-internet.team.
[21] S. Wehner, D. Elkouss, and R. Hanson, Quantum inter-

net: A vision for the road ahead, Science 362, eaam9288
(2018).

[22] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner,
Shortcuts to quantum network routing, arXiv:1610.05238.

[23] F. Hahn, A. Pappa, and J. Eisert, Quantum network routing and
local complementation, arXiv:1805.04559.

[24] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, Engineer-
ing a direct k-way hypergraph partitioning algorithm, Proc. Alg.
Eng. Exp. (ALENEX) 19, 28 (2017).

[25] Ü. Çatalyürek and C. Aykanat, Patoh (partitioning tool
for hypergraphs), in Encyclopedia of Parallel Computing,
edited by D. Padua (Springer US, Boston, MA, 2011),
pp. 1479–1487.

[26] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed state entanglement and quantum error correc-
tion, Phys. Rev. A 54, 3824 (1996).

[27] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,
Distributed quantum computation over noisy channels, Phys.
Rev. A 59, 4249 (1999).

[28] C. Simon and W. T. M. Irvine, Robust Long-distance Entan-
glement and a Loophole-free Bell Test with Ions and Photons,
Phys. Rev. Lett. 91, 110405 (2003).

[29] A. Yu. Kitaev, Quantum computations: Algorithms and error
correction, Russian Mathematic. Surveys 52, 1191 (1997).

[30] D. Gottesman and I. L. Chuang, Demonstrating the viability of
universal quantum computation using teleportation and single-
qubit operations, Nature (London) 402, 390 (1999).

[31] A. Yimsiriwattana and S. J. Lomonaco, Jr., Generalized GHZ
states and distributed quantum computing, AMS Contemp.
Math. 381, 131 (2005).

[32] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Teleporting an Unknown Quantum State via
Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.
Rev. Lett. 70, 1895 (1993).

[33] A. M. Childs, E. Schoute, and C. M. Unsal, Circuit transfor-
mations for quantum architectures, in 14th Conference on the
Theory of Quantum Computation, Communication and Cryp-
tography (TQC 2019), edited by W. van Dam and L. Mancin-
ska, Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 135 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019), pp. 3:1–3:24.

[34] A. Kissinger and A. M.-v. de Griend, Cnot circuit ex-
traction for topologically-constrained quantum memories,
arXiv:1904.00633.

[35] B. Nash, V. Gheorghiu, and M. Mosca, Quantum circuit opti-
mizations for nisq architectures, arXiv:1904.01972.

[36] M. Zomorodi-Moghadam, M. Houshmand, and M.
Houshmand, Optimizing teleportation cost in distributed
quantum circuits, Int. J. Theor. Phys. 57, 848 (2018).

[37] A. Paler, R. Wille, and S. J. Devitt, Wire recycling for quantum
circuit optimization, Phys. Rev. A 94, 042337 (2016).

[38] I. L. Markov and Y. Shi, Simulating quantum computation by
contracting tensor networks, SIAM J. Comput. 38, 963 (2008).

[39] http://www.mathstat.dal.ca/∼selinger/quipper/doc.
[40] http://github.com/PabloAndresMartinez/Distributed.
[41] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Spalek, and S.

Zhang, Any and-or formula of size n can be evaluated in time
n1/2+o(1) on a quantum computer, Found. Comput. Sci. (FoCS)
48, 363 (2007).

[42] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and
D. A. Spielman, Exponential algorithmic speedup by quantum
walk, Proc. Symp. Theory Comput. (STOC) 35, 59 (2003).

[43] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Simulation
of electronic structure Hamiltonians using quantum computers,
Mol. Phys. 109, 735 (2011).

032308-10

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1137/S0097539703440678
https://doi.org/10.1137/S0097539703440678
https://doi.org/10.1137/S0097539703440678
https://doi.org/10.1137/S0097539703440678
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1109/MC.2016.291
https://doi.org/10.1109/MC.2016.291
https://doi.org/10.1109/MC.2016.291
https://doi.org/10.1109/MC.2016.291
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1142/S0219749910006435
https://doi.org/10.1142/S0219749910006435
https://doi.org/10.1142/S0219749910006435
https://doi.org/10.1142/S0219749910006435
https://doi.org/10.1038/nature16184
https://doi.org/10.1038/nature16184
https://doi.org/10.1038/nature16184
https://doi.org/10.1038/nature16184
https://doi.org/10.1039/C5FD00113G
https://doi.org/10.1039/C5FD00113G
https://doi.org/10.1039/C5FD00113G
https://doi.org/10.1039/C5FD00113G
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
http://arxiv.org/abs/arXiv:1610.05238
http://arxiv.org/abs/arXiv:1805.04559
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevLett.91.110405
https://doi.org/10.1103/PhysRevLett.91.110405
https://doi.org/10.1103/PhysRevLett.91.110405
https://doi.org/10.1103/PhysRevLett.91.110405
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1090/conm/381/07096
https://doi.org/10.1090/conm/381/07096
https://doi.org/10.1090/conm/381/07096
https://doi.org/10.1090/conm/381/07096
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.70.1895
http://arxiv.org/abs/arXiv:1904.00633
http://arxiv.org/abs/arXiv:1904.01972
https://doi.org/10.1007/s10773-017-3618-x
https://doi.org/10.1007/s10773-017-3618-x
https://doi.org/10.1007/s10773-017-3618-x
https://doi.org/10.1007/s10773-017-3618-x
https://doi.org/10.1103/PhysRevA.94.042337
https://doi.org/10.1103/PhysRevA.94.042337
https://doi.org/10.1103/PhysRevA.94.042337
https://doi.org/10.1103/PhysRevA.94.042337
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
http://www.mathstat.dal.ca/~selinger/quipper/doc
http://github.com/PabloAndresMartinez/Distributed
https://doi.org/10.1137/080712167
https://doi.org/10.1137/080712167
https://doi.org/10.1137/080712167
https://doi.org/10.1137/080712167
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441


AUTOMATED DISTRIBUTION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 100, 032308 (2019)

[44] V. V. Shende and I. L. Markov, On the cnot-cost of Toffoli gates,
Quant. Inf. Comput. 9, 461 (2009).

[45] L. Lyaudet, NP-hard and linear variants of hypergraph partition-
ing, Theor. Comput. Sci. 411, 10 (2010).

[46] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and
S. Sivarajah, Phase gadget synthesis for shallow circuits,

Proceedings of the 16th International Conference on Quantum
Physics and Logic (QPL, Orange, CA, June 2019).

[47] M. Amy, D. Maslov, and M. Mosca, Polynomial-time t-depth
optimization of clifford+ t circuits via matroid partitioning,
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33, 1476
(2014).

032308-11

https://doi.org/10.1016/j.tcs.2009.08.035
https://doi.org/10.1016/j.tcs.2009.08.035
https://doi.org/10.1016/j.tcs.2009.08.035
https://doi.org/10.1016/j.tcs.2009.08.035
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953

