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Quantum algorithm for nonhomogeneous linear partial differential equations
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We describe a quantum algorithm for preparing states that encode solutions of nonhomogeneous linear partial
differential equations. The algorithm is a continuous-variable version of matrix inversion: it efficiently inverts
differential operators that are polynomials in the variables and their partial derivatives. The output is a quantum
state whose wave function is proportional to a specific solution of the nonhomogeneous differential equation,
which can be measured to reveal features of the solution. The algorithm consists of three stages: preparing fixed
resource states in ancillary systems, performing Hamiltonian simulation, and measuring the ancilla systems.
The algorithm can be carried out using standard methods for gate decompositions, but we improve this in two
ways. First, we show that for a wide class of differential operators, it is possible to derive exact decompositions
for the gates employed in Hamiltonian simulation. This avoids the need for costly commutator approximations,
reducing gate counts by orders of magnitude. Additionally, we employ methods from machine learning to find
explicit circuits that prepare the required resource states. We conclude by studying two example applications of
the algorithm: solving Poisson’s equation in electrostatics and performing one-dimensional integration.
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I. INTRODUCTION

Following the discovery of quantum algorithms for factor-
ing, database search, and universal simulation of quantum sys-
tems [1–3], decades of work have led to the uncovering of nu-
merous quantum algorithms capable of outperforming exist-
ing classical methods. Examples include quantum algorithms
for algebraic problems such as Pell’s equation and the Jones
polynomial [4–7], semidefinite programing [8,9], machine
learning [10–12], and ordinary differential equations [13–21].
Quantum computers also excel at solving linear systems of
equations [22–26]. Here, given an N × N sparse matrix A
and a vector b = (b1, . . . , bN ), the goal is to find a vector
x = (x1, . . . , xN ) satisfying the equation Ax = b. Quantum
algorithms for this problem take as input the quantum state
|b〉 = ∑N

i=1 bi|i〉 and efficiently perform matrix inversion to
prepare the state |x〉 = A−1|b〉 encoding the solution of the
linear system of equations.

We study a continuous version of this problem where
the inputs are a function f (x) over RN and a differen-
tial operator A. In its most general form, A is expressed
as a function of the variables and their partial derivatives:
A = A(x1, . . . , xN , ∂

∂x1
, . . . , ∂

∂xN
). The task is to find a func-

tion ψ (x) satisfying the linear partial differential equation
Aψ (x) = f (x), which is said to be nonhomogeneous when-
ever f (x) �= 0. In direct analogy to the case of a linear system
of equations, a specific solution to the nonhomogeneous prob-
lem can be found by obtaining the inverse operator A−1 and
computing the function ψ (x) = A−1 f (x).
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In this work, we present a quantum algorithm for finding
solutions to nonhomogeneous linear partial differential equa-
tions. More specifically, we show how to solve equations of
the form Aψ (x) = f (x), where A is a polynomial in the vari-
ables and their partial derivatives. We describe the algorithm
in the continuous-variable (CV) model of quantum computing
[27,28], but the algorithm can be implemented in any model
for universal quantum computing. Similar to quantum algo-
rithms for linear systems of equations, the algorithm takes
as input a state | f 〉 encoding the nonhomogeneous function
and outputs a state |ψ〉 whose wave function is proportional
to a specific solution of the partial differential equation. In
this sense, the algorithm is a continuous-variable version of
the quantum algorithm for linear systems of equations. For
differential equations of fixed order, the runtime is polynomial
in the dimension—an exponential improvement over the best
known classical techniques for solving partial differential
equations.

The algorithm consists of three stages: preparing fixed
resource states in ancillary systems, performing Hamiltonian
simulation, and measuring the ancilla systems. Although the
algorithm can be carried out using standard methods for gate
decompositions, we improve on this in two ways. First, for
several cases of interest, we introduce exact decomposition
formulas that circumvent the use of commutator approxima-
tions for Hamiltonian simulation, leading to shorter circuits
by orders of magnitude. Additionally, based on recent results
on state preparation using quantum neural networks [29–31],
we show how short-depth quantum circuits can be directly op-
timized to prepare required resource states with high fidelity.
Finally, we validate the performance of the algorithm through
numerical simulations by studying two example applications:
solving Poisson’s equation in electrostatics and performing
one-dimensional integration.
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II. QUANTUM ALGORITHM

The algorithm takes as inputs (i) a classical description
of a linear differential operator A and (ii) a quantum state
| f 〉 of N registers with wave function 〈x| f 〉 = f (x), where
|x〉 = |x1〉 . . . |xN 〉. For definiteness, we consider the registers
to be modes of the quantized electromagnetic field with as-
sociated position X̂ and momentum P̂ quadrature operators.
This choice is for convenience: the algorithm can in principle
be carried out in any physical model of quantum computing.

The quadrature operators X̂k and P̂k acting on mode k
can be defined in terms of their action on an arbitrary state:
X̂k

∫
dxNψ (x)|x〉 = ∫

dxN xkψ (x)|x〉 and P̂k
∫

dxNψ (x)|x〉 =
− i

2

∫
dxN ∂

∂xk
ψ (x)|x〉 for all k = 1, . . . , N , where we have

set h̄ = 1/2. Note that the action of the momentum operator
is equivalent to differentiation with respect to position. A
linear differential operator A can thus be equivalently cast as
an operator Â on the Hilbert space of an N-mode quantum
system. The operator Â is then a polynomial of the position
and momentum operators. We focus on Hermitian operators,
in which case Â can be viewed as a Hamiltonian for the
N-mode system.

We follow the Fourier decomposition technique of
Ref. [25], but note that the methods proposed in Ref. [32] for
solving linear systems of equations using continuous-variable
quantum computers could also potentially be adapted to solv-
ing partial differential equations. Let g(x) be an odd function
satisfying

∫ ∞
0 g(x)dx = 1. It holds that a−1 = ∫ ∞

0 g(ax)dx for
a �= 0. Choosing g(x) = x e−x2/2 and writing g(x) in terms of
its Fourier transform g(x) = i√

2π

∫ ∞
−∞ dy y e−y2/2eixy we have

a−1 = i√
2π

∫ ∞

−∞
dx �(x)

∫ ∞

−∞
dy y e−y2/2e−iaxy, (1)

where �(x) is the Heaviside step function. Let {|a〉} be the
eigenbasis of Â with corresponding eigenvalues a ∈ R. Since
Â−1 and e−iÂxy are both diagonal in the basis {|a〉}, Eq. (1)
implies that Â−1 can be expressed as

Â−1 = i√
2π

∫ ∞

−∞
dx dy �(x) y e−y2/2e−iÂxy. (2)

To implement the action of Â−1 on a target state | f 〉, consider
the unnormalized two-mode resource state

|s〉|1〉 :=
∫ ∞

−∞
dx �(x)|x〉

∫ ∞

−∞

i√
2π

dy y e−y2/2|y〉. (3)

We refer to the state |s〉 as a step function state. In its
current form, |s〉 is unnormalizable, but as we discuss shortly,
this can be remedied by employing a step function of finite
length. Additionally, we recognize y e−y2/2 as the unnormal-
ized wave function of a single photon and consequently |1〉 as
a single-photon state up to a global phase and normalization.

Given an input state | f 〉, the algorithm starts by preparing
the resource states of Eq. (3). A global unitary e−iÂX̂Ŷ is
subsequently applied to all systems, where X̂ and Ŷ are
respectively the position operators of the two resource modes.
This transformation is equivalent to performing evolution
under a Hamiltonian Ĥ = ÂX̂Ŷ for unit time. The result is

|s〉
e−iÂX̂Ŷ

p 0

|1〉 p 0

|f〉 Â−1 |f〉

FIG. 1. Schematic representation of the quantum algorithm. The
state | f 〉 is given as input. Two resource states are prepared: a single
photon |1〉 and a step function state |s〉. A global unitary e−iÂX̂Ŷ is
applied to all three systems, which is equivalent to evolution under
the Hamiltonian ÂX̂Ŷ for unit time. This is followed by a homodyne
momentum measurement on the resource modes. Postselecting on
the outcome p = 0 on both modes yields the desired output state
Â−1| f 〉.

the output state

|�〉 = i√
2π

∫ ∞

−∞
dx dy �(x) y e−y2/2e−iÂxy| f 〉|x〉|y〉. (4)

Performing a momentum homodyne measurement on both
resource modes and postselecting on observing the outcome
p = 0 on both modes, i.e., projecting onto the state |0px 〉|0py〉,
yields(

1⊗∣∣0px

〉〈
0py

∣∣ ⊗ ∣∣0px

〉〈
0py

∣∣)|�〉

=
(

i√
2π

∫ ∞

−∞
dx dy �(x) y e−y2/2e−iÂxy| f 〉

)∣∣0px

〉∣∣0py

〉
= (

Â−1| f 〉)∣∣0px

〉∣∣0py

〉
, (5)

where we have used the relation 〈0px |x〉 = 〈0py |y〉 = 1. The
output is thus the desired state |ψ〉 = Â−1| f 〉 with wave
function ψ (x) = A−1 f (x) up to normalization. The algorithm
is depicted in Fig. 1. An ideal step function state is unphysical
since its wave function is not square integrable. Instead, we
consider a step function state of finite width L given by

|sL〉 = 1√
L

∫ L

0
dx|x〉. (6)

The result of employing this state in the algorithm is an output
state

|ψ〉 = i√
2π

∫ L

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxy| f 〉. (7)

In this case, instead of the ideal inverse operator Â−1, the
operator being applied to | f 〉 is a truncated Fourier decom-
position of Â−1. Here and henceforth we use Â−1

approx to denote
any approximation to the ideal inverse operator. The effect of
a finite width is best understood by considering the action of
Â−1

approx on an eigenstate |a〉:

Â−1
approx|a〉 = i√

2π

∫ L

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxy|a〉

=
(

1

a
− e−a2L2

a

)
|a〉. (8)

The effect of a truncated step function is an exponentially
small correction from the ideal result a−1|a〉. The correction is
only significant for small eigenvalues such that a � 1/L, i.e.,
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the value of L determines the smallest eigenvalue a for which
the approximation is adequate. This result can then be used to
analyze the effect of the approximation on an arbitrary state
| f 〉 whenever it is possible to express it in the eigenbasis of Â:
| f 〉 = ∫

da φ(a)|a〉.
Even a step function of finite width is an idealization since

it is not continuous at either x = 0 or x = L: any physical
wave function will exhibit a smooth transition around these
points. The effect of this finite rise time can be modeled by
approximating the ideal step function in terms of a continuous
function. Here we consider the error function 1

2 (1 + erf[kx])
as an approximate step function, where the approximation
improves with larger k > 0. We then have

Â−1
approx|a〉 = i√

8π

∫ ∞

0
dx(1+erf[kx])

∫ ∞

−∞
dy y e−y2/2e−iÂxy|a〉

= 1

a

⎛
⎝ √

2√
2+ a2

k2

⎞
⎠|a〉 = 1

a

[
1 − a2

2k2
+ O

(
a4

k4

)]
|a〉.

(9)

This induces another correction from the ideal scenario, but in
this case the effect is significant only for large eigenvalues a
such that a � k. Thus approximations to an ideal step function
state lead to deviations that are relevant only for very small or
very large eigenvalues.

Finally, physical homodyne measurements have finite pre-
cision, whose effect on the resulting output state must be
taken into account. We model the finite-precision homodyne
measurement as a projection onto finitely squeezed states,
as opposed to momentum eigenstates which are infinitely
squeezed. This is the same strategy employed, for example,
in classical simulators [33]. The state corresponding to the
p = 0 outcome of a homodyne measurement with precision �

is |�〉 = 1
π1/4

√
�

∫
d p e−p2/2�2 |p〉. The resulting output state is

given by

(1⊗|�〉〈�| ⊗ |�〉〈�|)|�〉

= i√
2π

∫ ∞

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxyg(x, y,�)| f 〉|�〉|�〉

=
(

Â−1
approx| f 〉

)
|�〉|�〉, (10)

where

g(x, y,�) = 1√
π�

∫ ∞

−∞
d p dq e−p2/2�2−ipxe−q2/2�2−iqy

= e−(x2+y2 )�2/2. (11)

As before, the approximation of the inverse operator is best
expressed in terms of its action on the eigenstate |a〉:

Â−1
approx|a〉 = i√

2π

∫ ∞

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxyg(x, y,�)|a〉

= 2a
√

π�√
1 + �2(a2 + �2 + �4)

|a〉

=
[

2
√

π�

a
+ O

(
�3

a3

)]
|a〉. (12)

Up to normalization, this state is equal to the desired state
a−1|a〉 except for a correction O(�3/a3) that is only relevant
when a � �.

Comparing to Eq. (8), the dominant error for small values
of a arises from the finite width of the step function state,
whose effect is exponential in a for a � 1/L.

By expressing the state | f 〉 in terms of the eigenbasis {|a〉}
of Â, we note that the action of Â−1

approx on | f 〉 introduces an
overall constant factor 2

√
π� and therefore the probability of

successfully projecting onto the desired output state satisfies
Pr(success) = ‖Â−1

approx| f 〉‖2 = O(�2). In the Appendixes, we
discuss how coarse-graining measurement outputs can also be
used to increase the probability of success at the cost of an
increase in the approximation error.

Combining the effects of a finite-width step function and a
finite-precision measurement leads to an approximation

Â−1
approx|a〉 = i√

2π

∫ L

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxyg(x, y,�)|a〉

= 2a
√

π�(1 − eL2(a2+�2+�4 )/2(1+�2 ) )√
1 + �2(a2 + �2 + �4)

|a〉

= 2
√

π�F (a)|a〉, (13)

where

F (a) := a(1 − e−L2(a2+�2+�4 )/2(1+�2 ) )√
1 + �2(a2 + �2 + �4)

|a〉, (14)

which is an approximation to a−1.
The imprecision of the algorithm arises due to the differ-

ence between the ideal inverse operator Â−1 and the resulting
approximation Â−1

approx. We can express Â in its eigenbasis

as Â = ∑
a

∑m(a)
k=1 a|a, k〉〈a, k|, where Â|a, k〉 = a|a, k〉 and

m(a) is the multiplicity of eigenvalue a. We then have

Â−1 =
∑

a

m(a)∑
k=1

1

a
|a, k〉〈a, k|, (15)

Â−1
approx =

∑
a

m(a)∑
k=1

F (a)|a, k〉〈a, k|. (16)

The relationship between F (a) and a−1 is illustrated in Fig. 2
for L = 7 and � = 0.1.

Finally, the error in the approximation can be quantified in
terms of the distance between the resulting output states. More
precisely, let

|ψ〉 = Â−1| f 〉 =
∑

a

m(a)∑
k=1

1

a
ca,k|a, k〉, (17)

|ψ̃〉 = Â−1
approx| f 〉 =

∑
a

m(a)∑
k=1

F (a)ca,k|a, k〉 (18)

be unnormalized output states. Defining the error as ε :=
‖|ψ〉 − |ψ̃〉‖1 we obtain

ε =
∑

a

m(a)∑
k=1

|ca,k|
∣∣∣∣1

a
− F (a)

∣∣∣∣. (19)
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FIG. 2. Function a−1 (solid green) and the approximation F (a)
(dashed red) for L = 7 and � = 0.1. The inset shows a closeup of the
two functions for larger values of a. The approximation is excellent
except for small values of a.

This error is significant if there are terms in the sum for
which both |ca,k| and |1/a − F (a)| are large. For a 
 1,
it holds that |1/a − F (a)| ≈ (a2 + 2)�2/(2a3) + O(�4) =
O(�2/a). This error is bounded even for large a. For a � 1/L
we have F (a) ≈ 0 and therefore |1/a − F (a)| ≈ 1/a, which
can be very large for small a. This is the dominant source of
error arising from the approximation of the inverse operator.

To choose L, for a given δ > 0, we define the ef-
fective eigenvalue support of state | f 〉 as suppδ ( f ) = {a :
∃k such that |ca,k| > δ}. Normalizing the differential operator
as ‖Â‖∞ = 1, we define

κδ := max
a∈suppδ ( f )

(1/a) (20)

as the condition number of Â when restricted to the effective
support of | f 〉. Then, we can set the resulting error in the
output state to sufficiently low values by choosing L = O(κ2

δ ).
Overall, the algorithm is valid for any Hermitian differential
operator Â, but special care needs to be taken for input states
that have a large support over the smallest eigenvalues of Â.

III. HAMILTONIAN SIMULATION

The goal of Hamiltonian simulation is to find a quantum
circuit that performs the transformation eiĤt for some Hamil-
tonian Ĥ and time t > 0. The circuit is specified in terms of a
universal gate set, which in this work we take to be the set

{ei π
2 (X̂ 2+P̂2 ), eit1X̂ , eit2X̂ 2

, eit3X̂ 3
, eiτ X̂1⊗X̂2}, (21)

where t1, t2, t3, and τ are adjustable real parameters. The
Fourier transform gate F̂ := ei π

2 (X̂ 2+P̂2 ) has the effect of map-
ping between the quadrature operators: F̂ †X̂ F̂ = −P̂ and
F̂ †P̂F̂ = X̂ . The standard approach for performing Hamilto-
nian simulation is to employ a Trotter-Suzuki decomposition
[34–37] to express the transformation eitĤ = eit

∑M
j=1 Ĥj in

terms of the product eitĤ = ∏M
j=1 (ei t

K Ĥj )
K + O(t2/K ). Fol-

lowing this, a sequence of commutator approximations are
typically employed to decompose each term ei t

K Ĥj into ele-
ments from the universal set [38]. We focus on the case where

the Hamiltonian Â can be expressed as

Â = λ 1+
N∑

j=1

a jX̂ j + b jP̂j + α j X̂
2
j + β j P̂

2
j , (22)

where λ, a j, b j, α j , and β j are real constants. This form en-
compasses a large class of differential operators, including for
instance those defining Poisson’s equation, the heat equation,
and the wave equation.

In the quantum algorithm, we perform evolution under the
Hamiltonian ÂX̂Ŷ for unit time. When Â is of the form of
Eq. (22), after performing a Trotter-Suzuki decomposition,
each term in the product will correspond—up to Fourier trans-
forms exchanging X̂ and P̂—to unitaries of the form eitX̂ j X̂k ,
eitX̂ j X̂k X̂l , or eitX̂ 2

j X̂k X̂l , where the subindices denote which mode
the operators act on. We now show how exact decompositions
can be found for each of these transformations. An extension
of this technique for more general gates can be found in
Ref. [39].

First, note that the transformation eitX̂ j X̂k is already part of
the universal set. For the unitary eitX̂ j X̂k X̂l , it can be shown
(see the Appendixes for details) that the following exact
decomposition holds:

ei2t X̂ j X̂k X̂l = ei2P̂j X̂k ei2P̂j X̂l e
it
3 X̂ 3

j e−i2P̂j X̂l e−i2P̂j X̂k

× ei2P̂k X̂l e
−it
3 X̂ 3

k e−i2P̂k X̂l ei2P̂l X̂ j e
−it
3 X̂ 3

l e−i2P̂l X̂ j

× ei2P̂j X̂k e
−it
3 X̂ 3

j e−i2P̂j X̂k e
it
3 X̂ 3

j e
it
3 X̂ 3

k e
it
3 X̂ 3

l . (23)

Note that gates of the form e−i2P̂j X̂k are equivalent to a
controlled-phase gate up to Fourier transforms on the first
mode. Finally, as shown in the Appendix, for the gate eitX̂ 2

j X̂k X̂l ,
it is possible to derive an exact decomposition

e2iα2X̂ 2
j P̂k P̂l = e2iαX̂ j X̂k X̂l e−iαX̂ 2

j P̂2
k e−2iαX̂ j X̂k X̂l eiαX̂ 2

j P̂2
k e−2iα3X̂ 2

j P̂l .

(24)

Here, unitaries of the form eiαX̂ 2
j P̂2

k and e−2iα3X̂ 2
j P̂l are not part of

the universal set, but exact decompositions can also be derived
for them (see the Appendixes for details). The resulting exact
decomposition for the gate eitX̂ 2

j X̂k X̂l contains 281 gates from
the universal set. It is important to contrast this with the
commutator approximation method [38], which requires 28
gates to decompose eitX̂ 2

j X̂k X̂l , but for a precision of 10−3, it
needs about 106 repetitions for a total of roughly 107 gates.

For any sparse Hamiltonian that is a polynomial of con-
stant degree over the quadrature operators, universal simu-
lation theorems [27,28] state that poly(N ) time is required
to perform Hamiltonian simulation and therefore to run our
quantum algorithm for partial differential equations. This is
an exponential improvement over classical algorithms for
solving PDEs, which scale exponentially with dimension
[40–42]. The runtime of Hamiltonian simulation also scales
polynomially on the operator norm ‖Â‖∞ [3], so care must be
taken to ensure that this norm is well behaved over the support
of the input state | f 〉.
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FIG. 3. (Top) Wave functions of the target step function state
with cutoff d = 41 and width L = 7. (Bottom) The state prepared
by the quantum neural network, with fidelity of 99.36% to the target
state. The network consists of 30 layers for a total of 150 gates.

IV. RESOURCE STATE PREPARATION

We employ results from Refs. [29,30] to find circuits for
preparing the single photon and step function resource states
required in the algorithm. The strategy is to optimize a quan-
tum neural network which takes a single-mode vacuum state
as input and prepares a desired target state as output. A layer L
of the quantum neural network is composed of the sequence of
gates [29]: L := K (κ )D(α)R(φ2)S(r, θ )R(φ1), where R(θ ) is
a rotation gate, D(α) is a displacement gate, S(r) is a squeez-
ing gate, and K (κ ) is a Kerr gate. The rotation, squeezing, and
displacement gates are Gaussian and can be straightforwardly
decomposed in terms of the universal set of Eq. (21). The Kerr
gate can be decomposed using results from [38].

We perform optimization of the gate parameters by em-
ploying the TensorFlow [43] backend of the Strawberry Fields
software platform for photonic quantum computing [33]. This
approach has been pursued in Ref. [30], where it was shown
that a single photon state can be prepared using a quantum
neural network of eight layers, i.e., 40 gates, with fidelity
99.998%. For the target step function state, we consider the
truncated state |sL〉 = 1√

L

∫ L
0 dx|x〉 = ∑∞

n=0 cn,L|n〉, where |n〉
is the Fock state of n photons and cn,L = 〈n|sL〉. For numerical
simulations, we introduce a cutoff dimension d , yielding the
truncated state |sd,L〉 = ∑d

n=0 cn,L|n〉. As an example, we set a
width of L = 7 and a cutoff d = 41, fixing a quantum neural
network with 30 layers (150 gates) to prepare this state. The
result is a network that can prepare a state with 99.36% fidelity
to the target state |s41,7〉. This is shown in Fig. 3, where we plot
the wave function of both states.

As in Sec. II, we evaluate the resulting approximation to
the inverse operator Â−1 by computing the function

G(a) = i√
2π

∫ ∞

−∞
dx

d∑
n=0

γnψn(x)
∫ ∞

−∞
dy y e−y2/2e−iaxy,

(25)

where �p(x) = ∑d
n=0 γnψn(x) is the wave function of the

state |sp〉 = ∑d
n=0 γn|n〉 prepared by the network. As shown

in Fig. 4, G(a) is also an approximation to the ideal case a−1.
However, here the approximation deviates more significantly
from the ideal case for large values of a. As discussed pre-
viously, this can be understood from the fact that the wave
function of the output state is itself an approximation of an
ideal step function state of finite width.

FIG. 4. Function a−1 (solid green) and the approximation G(a)
(dashed red) arising from the use of the step function state prepared
by the quantum neural network.

V. EXAMPLES

In this section, we test the correctness and applicability
of the algorithm by analyzing its performance on two low-
dimensional problems where full classical simulation is pos-
sible.

A. Poisson equation

Poisson’s equation is the nonhomogeneous partial differ-
ential equation

∇2ψ (x) =
n∑

i=1

∂2ψ (x)

∂x2
i

= f (x), (26)

which has applications across several areas of physics and
engineering. Here we consider its relevance to electrostatics,
where it establishes a relationship between a charge distribu-
tion ρ(x) and the electric potential φ(x), namely ∇2φ(x) =
− ρ(x)

ε
, where ε is the permittivity of the medium, whose

value we fix to ε = 1. To apply our quantum algorithm to
this problem, note that under the convention h̄ = 1/2, it holds
that ∂2

∂x2
i

= −4P̂2 and thus we can set Â = −4
∑n

i=1 P̂2
i . We

consider a two-dimensional problem where the charge distri-

bution is given by ρ(x, y) = xy e− x2

2 e− y2

2 , as shown in Fig. 5.
This charge distribution is equivalent, up to normalization, to
the wave function of the two-mode input state | f 〉 = |1〉|1〉
consisting of a single photon in each mode. We compute the
output state by constructing the operator Â−1

approx as in Eq. (13)
with L = 20 and � = 0.01, then applying it to the input state
| f 〉. The wave function of the output state is proportional to
the electric potential φ(x, y), which can be used to compute
the electric field �E (x, y) = −∇φ(x, y). The fidelity between
the output state of the algorithm and the ideal solution state is
99.9%. To illustrate the validity of the solution, the charge
distribution and the electric field are shown in Fig. 5. In a
physical implementation of the algorithm, repeated quadra-
ture measurements of the output state would reveal regions of
large electrostatic potential.

032306-5



JUAN MIGUEL ARRAZOLA et al. PHYSICAL REVIEW A 100, 032306 (2019)

FIG. 5. (Top) Charge distribution ρ(x, y) = xy e− x2
2 e− y2

2 . The
top-right and bottom-left quadrants are regions of positive charge,
while the remaining quadrants are negatively charged. (Bottom)
Electric-field lines reconstructed from the output state of the quantum
algorithm. There are regions of zero electric field in each quadrant
that arise from interfering contributions of the charge clouds sur-
rounding these points. The electric field is also zero at the origin,
as expected from the symmetry of the charge distribution.

B. One-dimensional integration

The simplest nonhomogeneous differential equation is the
one-dimensional equation Aψ (x) := dψ (x)

dt = f (x). A solution
to the equation is

A−1 f (x) =
∫

dx f (x), (27)

i.e., the solution is the indefinite integral of f (x). To apply the
quantum algorithm to this problem we set Â = P̂, in which
case the output of the algorithm is the state |ψ〉 = P̂−1| f 〉
whose wave function is proportional to

ψ (x) = 2i
∫

dx f (x). (28)

This is equal to the desired solution up to a global phase.
In short, the quantum algorithm performs one-dimensional
integration. To calculate the output state of the algorithm, we
numerically compute the operator

Â−1
approx = i√

2π

∫ L

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxyg(x, y,�) (29)

as in Eq. (13) and consequently calculate Â−1
approx| f 〉.

This computation is performed by expressing P̂ in the
Fock basis, truncating to a finite photon number, and approx-
imating the integral by a Riemann sum. The operator Â−1

approx
includes the effects of a finite-width step function state and
limited precision measurement, but not of approximations to
the step function state. We choose f (x) = sin(ωx)e−x2/(2σ 2 )

as the function to integrate. The corresponding input state
| f 〉 = ∑

n cn|n〉 can be obtained by computing the coefficients
cn = ∫ ∞

−∞ dx f (x)ψn(x), where ψn(x) is the wave function of
the Fock state with n photons.

The results are shown in Fig. 6 where we plot f (x) =
sin(ωx)e−x2/(2σ 2 ) and the wave function of the output state.
The output wave function closely reproduces the integral of
f (x), even when considering a finite-width step function state
with parameter L = 7 and measurements with finite precision
� = 0.1.

VI. CONCLUSION

We have presented a quantum algorithm for preparing
quantum states that encode the solution to nonhomoge-
neous linear partial differential equations. The algorithm is
a continuous-variable version of the quantum algorithm for
linear systems of equations. For differential operators of fixed
degree, the runtime is polynomial in the dimension N : an
exponential improvement compared to classical algorithms
that compute the full solution of partial differential equa-
tions. However, there are important differences between this
quantum algorithm and classical approaches: the quantum
algorithm assumes that the input state | f 〉 encoding the non-
homogeneous term of the equation can be efficiently prepared
and the output is not an explicit specification of the solu-
tion, but instead a state whose wave function is proportional
to the solution. It is crucial to identify applications where
input states can be efficiently prepared and where sampling
from the output state—for example to compute expectation
values—is enough for the task at hand. Note also that recent
breakthroughs in classical algorithms for linear systems of
equations [44,45] apply only to low-rank operators, which do
not appear in practice in solving partial differential equations.

Finally, the quantum algorithm provides a specific solu-
tion to the nonhomogeneous equation, but to solve general
boundary problems it is necessary to also incorporate solu-
tions to the homogeneous equation. The solution ψ (x) of
a nonhomogeneous partial differential equation can always
be written as ψ (x) = ψH (x) + ψNH (x), where ψH (x) is a
general solution to the homogeneous equation and ψNH (x) is
a specific solution to the nonhomogeneous equation. The cor-
responding boundary problem can be solved by first finding an
arbitrary solution ψNH (x) to the nonhomogeneous differential
equation, then finding a solution to the homogeneous problem
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FIG. 6. (Top) Function f (x) = sin(ωx)e−x2/(2σ 2 ) (solid green)
with ω = 5 and σ = 1.8. The wave function of the output state of
the algorithm is also shown (dashed red). (Bottom) Function f (x) =
sin(ωx)e−x2/(2σ 2 ) with ω = 5 (solid green) and its integral (dashed
red), which can be computed analytically. The wave function of the
output state of the algorithm is almost identical to integral, as desired.
In both cases we consider an approximate inverse operator Â−1

approx

with parameters L = 7 and � = 0.1, demonstrating that the effect
of a finite-width step function state and finite measurement precision
does not significantly affect the correctness of the algorithm.

satisfying the boundary conditions. Through sampling from
the solution state, the quantum algorithm can provide infor-
mation that aids in solving the nonhomogeneous problem,
which is usually the most challenging part. Once this has
been achieved, the full solution can be obtained by solving
the corresponding homogeneous boundary problem.
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APPENDIX A: EXACT DECOMPOSITIONS

We use the convention [X̂ , P̂] = i/2 and begin with the
decomposition below:

ei2δX̂ j X̂k X̂l = ei2P̂j X̂k ei2P̂j X̂l e
iδ
3 X̂ 3

j e−i2P̂j X̂l e−i2P̂j X̂k ei2P̂k X̂l e
−iδ

3 X̂ 3
k e−i2P̂k X̂l

× ei2P̂l X̂ j e
−iδ

3 X̂ 3
l e−i2P̂l X̂ j ei2P̂j X̂k e

−iδ
3 X̂ 3

j e−i2P̂j X̂k e
iδ
3 X̂ 3

j

× e
iδ
3 X̂ 3

k e
iδ
3 X̂ 3

l . (A1)

This equation can be best understood by looking at the right
hand and building each term in sequence. To begin, note
that the first four cubic operators in the decomposition are
surrounded by operators of the form ei2P̂j X̂k which can be
expanded with unitary conjugation:

ei2P̂j X̂k eiδX̂ 3
j e−i2P̂j X̂k = eiδ(X̂ j+X̂k )3

. (A2)

The first one in mode j is translated by the k and l modes,
leading to an exponent (X̂ j + X̂k + X̂l )

3
. Similarly, the other

three cubic gates lead to the exponents (X̂k + X̂l )
3
, (X̂l + X̂ j )

3
,

and (X̂ j + X̂k )
3
. Expanding these polynomials gives a series of

operators which can be simplified to give the cubic gate on the
left-hand side.

The second decomposition we use is

e2iα2X̂ 2
j P̂k P̂l = e2iαX̂ j X̂k X̂l e−iαX̂ 2

j P̂2
k e−2iαX̂ j X̂k X̂l eiαX̂ 2

j P̂2
k e−2iα3X̂ 2

j P̂l .

(A3)

For this decomposition we use operations eiαX̂ 2
j P̂2

k and
e−2iα3X̂ 2

j P̂l , which are not in the universal set. For these, we
require the decompositions

ei3α2kP̂k X̂ 2
j = ei2αX̂ j X̂k eikP̂3

k e−iαX̂ j X̂k e−ikP̂3
k e−i2αX̂ j X̂k

× eikP̂3
k eiαX̂ j X̂k e−ikP̂3

k eiα3k 3
4 X̂ 3

j (A4)

and

eiαX̂ 2
j X̂ 2

k = ei2P̂j X̂k ei α
12 X̂ 4

j e−i4P̂j X̂k ei α
12 X̂ 4

j ei2P̂j X̂k e−i α
6 X̂ 4

j e−i α
6 X̂ 4

k ,

(A5)

which requires a decomposition for the terms of the form
eiαX̂ 4

j . This can be achieved via the expression

eiαX̂ 4
k = e2iP̂j X̂ 2

k eiαX̂ 2
j e−2iP̂j X̂ 2

k e−iαX̂ 2
j e−2iαX̂ j X̂ 2

k . (A6)

The total gate count for Eq. (A3) in terms of universal gates
is 281, but it is exact. If we wish to express all operations in
terms of X̂ operators only, we can use unitary conjugation with
the Fourier transform gate. This will bring the total number of
gates from the universal set to 373. On the other hand, the
standard commutator approximation method requires about
28 gates, but for a precision of 10−3 will need 106 repetitions
for a total of roughly 2.8 × 107 gates to decompose the
original operation.

APPENDIX B: COARSE-GRAINING MEASUREMENT
OUTPUTS

Here we consider the effect of postselecting on states other
than p = 0 momentum eigenstates. Starting with the output
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FIG. 7. Relative error aδ(a) due to coarse graining of measure-
ment outputs. Here we have selected p1 = −p2 = � = 0.1. As a
approaches zero, the error becomes significant but decreases for
larger a.

state as in Eq. (4) and performing a momentum homodyne
measurement, projecting onto the general state |p1〉|p2〉 yields

(1⊗|p1〉〈p2| ⊗ |p1〉〈p2|)|�〉

=
(

i√
2π

∫ ∞

−∞
dx dy �(x) y e−y2/2e−iÂxyg(x, y)| f 〉

)
|p1〉|p2〉

=
(

Â−1
approx| f 〉

)
|p1〉|p2〉, (B1)

where

g(x, y) = e−ip1xe−ip2y. (B2)

Expressing the inverse operator in terms of its action on the
eigenstate |a〉

Â−1
approx|a〉

= i√
2π

∫ ∞

0
dx

∫ ∞

−∞
dy y e−y2/2e−iÂxyg(x, y)|a〉. (B3)

Solving this integral gives the function F (p1, p2, a), which
deviates away from the desired function 1/a and is given by

F (p1, p2, a) = e−p1(p1−2iap2 )/2a2

[√
2a e(p1−iap2 )2/2a2 − ip1

√
π − p1

√
πErfi

(
p1−iap2√

2a

)]
√

2a2
, (B4)

where Erfi(·) is the imaginary error function. Outputs can
be coarse grained by selecting a parameter �p that when
p1 and p2 are both in the interval [−�p,�p] the algorithm
has succeeded. Let δ(a) = | 1

a − F (p1, p2, a)|. We study the

error δ(a) for the worst case values of p1 and p2, which
occur when p1 = −p2 = �p. Figure 7 shows the relative
error δ(a)/(1/a) = aδ(a) as a function of a for fixed �p. As
before, the error is largest for small a.
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