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We propose a theoretical scheme to investigate the dynamics of quantum correlation between two nitrogen-
vacancy-center ensembles (NVEs) coupled to a common superconducting coplanar waveguide resonator, driven
by a broadband microwave squeezed field working as a squeezed-vacuum reservoir. Based on the reduced
master equation for NVEs by the adiabatical elimination method in the bad-resonator limit, our results reveal
quantum correlation preservation due to the interplay between the nonclassical feature of the squeezing reservoirs
and the original dissipation mechanisms. The required operations are very close to the capabilities of current
superconducting circuit-QED techniques. Our work may open interesting perspectives for devising active
decoherence-immune quantum information devices.
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I. INTRODUCTION

Recently, there has been remarkable progress in engineer-
ing the hybrid system consisting of nitrogen-vacancy-center
spin ensembles (NVEs) and a superconducting resonator,
where both the spin ensembles and the resonator are modeled
as interacting harmonic oscillators [1–10]. These systems
combine the high scalability and controllability of supercon-
ducting circuits with the long coherence times of the NVEs.
Experimentally, strong coupling between a spin ensemble and
a superconducting resonator has been demonstrated in the
linear or Gaussian regime [4–6]. One attractive example is that
coherent coupling between two macroscopically separated
NVEs and the transverse ensemble-ensemble coupling have
been experimentally demonstrated via virtual photons [10].

From the point of view of quantum information processing
(QIP), it remains an interesting future challenge, both theo-
retically and experimentally, to preserve steady-state quantum
correlation [11] between two or more separated NVEs. As we
know, generation and preservation of entanglement are basic
ingredients in scalable QIP demanding preexisting entangled
states, either at short distances or at large separations, such
as quantum cryptography [12,13], quantum communication
[14], and quantum computation [15–17]. However, with the
growth of system complexity, the environmental dissipation
unavoidably becomes more and more detrimental to quantum
coherence, which makes preservation or protection of entan-
glement more difficult in the long-time limit.
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On the other hand, various strategies proposed previously
have attempted to counteract the harmful influence from
the system-environment coupling [18–27], among which the
quantum technologies of reservoir engineering [22–27] have
been of great interest due to their unique vantage in the
coherence control. Especially, squeezed-vacuum reservoir en-
gineering has been widely used in various quantum infor-
mation tasks, such as high-efficiency measurement [28,29],
entanglement distribution [30], unique resonance fluorescence
spectroscopy [31,32], and squeezing or cooling of the me-
chanical resonator [33,34].

Inspired by these advances, we propose in this work
a potential experimental scheme using squeezed-reservoir
engineering to preserve quantum correlation between two
NVEs coupled to a common superconducting coplanar waveg-
uide resonator (CPWR), driven by a broadband microwave
squeezed field working as a squeezed-vacuum reservoir. We
show that the delicate interplay between the squeezing reser-
voir and the dissipative mechanisms could stabilize these two
NVEs into a steady state with quantum correlation, whose
magnitudes are essentially determined by the squeezing fea-
tures of the broadband driving field as well as other key
parameters, such as detunings and NVE-CPWR coupling
strengths. Based on the reduced master equation for NVEs us-
ing the adiabatic elimination method [35] in the bad-resonator
limit, we first investigate the dynamics of quantum correlation
between the two NVEs characterized by both logarithmic neg-
ativity [36,37] and Gaussian quantum discord (GQD) [38,39].
Additionally, the influence of system parameters, such as the
squeezing degree, the detuning, and the coupling strength,
on the performance of the scheme is also investigated. This
could help us analyze the optimal parameter condition for
obtaining the maximal steady-state quantum correlations. Our
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FIG. 1. (a) Proposed setup with two separated NVEs coupled to
the same CPWR driven by a microwave squeezed field, which is
generated by a flux-pumped Josephson parametric amplifier (JPA).
(b) The cubic diagram of this hybrid system. Here, a static magnetic
field �B0 parallel to the z axis is applied to the NVE to lift the degen-
erated levels | ± 1〉 of the ground state |3A〉. (c) The ground state of
the NV center is a spin-triplet state with three levels |ms = 0, ±1〉.
The level splitting width between | ± 1〉 induced by �B0 is �m =
gsμBB0/h̄, with gs � 2 and μB being the Bohr magneton.

scheme includes three important features. First, different from
traditional quantum-state engineering or dynamical control
of the system [40–43], our method does not require active
control of the system and accurate control of the evolution
time. Second, a robust steady-state quantum correlation can
be maintained in the long-time limit such that quantum cor-
relation is available at any time, regardless of the initial state
of the system. Third, our scheme can be extended to more
spin ensembles and our work provides a building block for
preserving quantum correlation among multi-NVEs using the
reservoir-engineering approach.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model of our system and derive
the reduced master equation for NVEs using the adiabatic
elimination method. In Sec. III we preserve the quantum
correlation between NVEs by squeezed-reservoir engineering.
We discuss and summarize our results in Sec. IV.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1(a), the system under consideration
is composed of two spatially separated NVEs bonded individ-
ually onto a CPWR. The Hamiltonian of the whole system
can be written as Ht = Hc + Hn + Hcn, where Hc = ωcc†c
represents the Hamiltonian of a CPWR in units of h̄ = 1, with
c (c†) being the annihilation (creation) operator of the full-
wave CPWR mode and ωc being the eigenfrequency. Hn =∑2

j=1 ω
j
egSz

j/2 is the Hamiltonian of two NVEs, with ω
j
eg be-

ing the eigenfrequency of the jth NVE and j = 1 or 2, where
Sμ

j = ∑N0
i=1 σ

μ
i, j (μ = z,±) is the collective spin operator for

NVE [containing N0 nitrogen-vacancy (NV) centers] with the
spin operators σ z

i = | − 1〉i〈−1| − |0〉i〈0|, σ+
i = | − 1〉i〈0|,

and σ−
i = |0〉i〈−1| of the ith NV center [10]. Through the

collective magnetic-dipole coupling, the NVE-CPWR inter-
action Hamiltonian is given by Hcn = ∑2

j=1 g j (S+
j c + S−

j c†),

with g j being the single NV vacuum Rabi frequency of the jth
NVE.

Assuming that the spatial dimension of the NVE is smaller
than the mode wavelength of the CPWR, we consider that
all the NV spins in NVEs interact symmetrically with the
CPWR field with the same coupling strength g j . Using
the Holstein-Primakoff transformation [44], we can map
the spin operators into the bosonic operators with the
forms

∑N0
i=1 σ+

i, j = a†
j

√
N0 − a†

j a j � √
N0a†

j ,
∑N0

i=1 σ−
i, j =

a j

√
N0 − a†

j a j � √
N0a j , and

∑N0
i=1 σ z

i, j = a†
j a j − N0/2,

where the bosonic operators aj and a†
j obey the standard

commutator [a j, a†
j ] � 1 in the limit of weak excitation

〈a†
j a j〉 � N0. Based on these transformations, the total

Hamiltonian of the system is

H = H0 + H1,

H0 = ωcc†c +
∑

j
ω j

ega†
j a j,

H1 =
∑

j
G j (a

†
j c + a jc

†), (1)

where H0 is the free Hamiltonian and H1 is the interaction
Hamiltonian with Gj = √

N0g j being the collective coupling
strength between the jth NVE and the CPWR.

To obtain the stationary quantum correlation between the
spin ensembles, the CPWR is driven by a broadband mi-
crowave squeezed field generated by a flux-pumped Joseph-
son parametric amplifier (JPA) [29,45] with squeezing degree
r around the central frequency ωs, where the broadband mi-
crowave squeezed field acts as a squeezed-vacuum reservoir.
Thus, the dynamics of the whole system is governed by the
Born-Markovian master equation

Ė (t ) = −i[H, E (t )] + LnE (t ) + LcE (t ), (2)

where E (t ) represents the density matrix of the total system.
Ln· = ∑

j γ j[(n̄ j + 1)Ďa j ,a
†
j
· +n̄ jĎa†

j ,a j
·] and Lc· = κ[(N +

1)Ďc,c† · +NĎc†,c · −(Me2iωst Ďc,c · + H.c.)] represent the dis-
sipators for the NVEs caused by their independent finite-
temperature reservoirs and the dissipators of the CPWR
caused by the squeezed-vacuum reservoir, respectively. γ j

and κ represent the damping rates of the jth NVE and
the CPWR, respectively. Ďm,n· = 2m · n − nm · − · nm and
n̄ j = 1/(eω

j
eg/kBTj − 1) denotes the mean thermal bath boson

number at the environment temperature Tj with kB being
the Boltzmann constant. M = cosh r sinh r and N = sinh 2r
describe the strength of the two-photon correlation and the
mean photon number of the broadband squeezed field [46],
respectively.

Assuming that ωs = ωc and transforming the density ma-
trix E (t ) into Ē (t ) = UsUcE (t )U †

c U †
s by the canonical trans-

formation Uc = eiH0t and the squeezing transformation Us =
er(c2−c†2 )/2, Eq. (2) becomes [47]

dĒ (t )/dt = −i[H̄1(t ), Ē (t )] + (Ln + Lk )Ē (t ), (3)

where H̄1(t ) = X (t )c† + H.c. with X (t ) = ∑
j G j (

√
Nei� j t a†

j

+ √
N + 1e−i� j t a j ) and � j = ω

j
eg − ωc being the detuning

between the jth NVE and the CPWR. LkĒ = κĎc,c† Ē de-
scribes the dissipation of the CPWR. Besides, Eq. (3) implies
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that the nonclassical effect of the squeezed-vacuum reservoir
is effectively transferred to the NVE-CPWR system through
the interaction Hamiltonian H̄1(t ) and the CPWR mode is
damped only by the vacuum field.

In the bad-resonator limit (κ � Gj � γ j), Ē is approx-
imately expressed by Ē � Trc[Ē ] ⊗ (|0〉〈0|)c because the
CPWR field governed by the dissipator Lk could rapidly reach
the steady state (|0〉〈0|)c. Therefore, the degree of freedom
of the CPWR can be adiabatically eliminated and a reduced
master equation satisfied by the NVEs can be obtained. To this
end, we first make the transformation Ĕ (t ) = e−Lkt Ē (t ) in a
dissipation picture, then Eq. (3) can be written as dĔ (t )/dt =
[Ln + L̆1(t )]Ĕ (t ), with L̆1(t )· = −ie−Lkt [H̄1(t ), ·]eLkt . Then
tracing out the variables of the CPWR as ρ̆(t ) = Trc[Ĕ (t )]
under the Born-Markovian approximation, we have

d ρ̆(t )

dt
= Trc

∫ ∞

0
dτ L̆1(t )L̆1(t − τ )ρ̆(t )(|0〉〈0|)c + Lnρ̆(t ).

(4)

Here L̆1(t )· = −i[X †(t )A−(t ) + X (t )A+(t ) − H.c.]·, with
A+(t )· = e−Lkt (c†·)eLkt and A−(t )· = e−Lkt (c·)eLkt . Making
a time derivative to A±(t ), we obtain A+(t ) = eκt (c†·) +
(e−κt − eκt )(·c†) and A−(t ) = e−κt (c·), respectively, and
derive the nonzero correlation function of the CPWR fields
as 〈A−(t )A+(t ′)〉 = 〈A+(t )A†

+(t ′)〉 = 〈A†
−(t )A†

+(t ′)〉 =
〈A†

+(t )A+(t ′)〉 = e−κ (t−t ′ ), with 〈·〉 = Trc[·|0〉〈0|c] and
t ′ = t − τ . Then we rewrite Eq. (4) as

d ρ̆(t )/dt =
∫ ∞

0
e−κτ [X (t )ρ̆(t )X †(t − τ )

− X †(t )X (t − τ )ρ̆(t ) + H.c.]dτ + Lnρ̆(t ). (5)

Returning to the Schrödinger picture with ρ(t ) =
exp(−iHIt )ρ̆(t ) exp(iHIt ) and HI = ∑

j ω
j
ega†

j a j , the reduced
master equation satisfied by the NVEs has the following form:

ρ̇(t ) = −i[HI , ρ(t )] + Lnρ(t ) +
∑

j,k=1,2

GjGk{(N + 1)

× [(Tk + T ∗
j )a jρ(t )a†

k − T ∗
j a†

ka jρ(t ) − Tkρ(t )a†
ka j]

+ N[(T ∗
k + Tj )a

†
jρ(t )ak − Tjaka†

jρ(t ) − T ∗
k ρ(t )aka†

j ]}
+

∑
j,k=1,2

GjGk{Me2iωct [(T ∗
k + T ∗

j )a jρ(t )ak

− T ∗
j aka jρ(t ) − T ∗

k ρ(t )aka j] + H.c.}, (6)

where Tk = 1/(κ + �ki). One can find that Eq. (6) is trace-
less, and the last two terms in the right-hand side of Eq. (6)
reflect all the dynamical squeezed effects of the CPWR on the
two NVEs. Equation (6) consists of two aspects: it induces
the direct dissipation on each individual NVE ( j = k) and
also gives rise to incoherent interaction between these two
NVEs through the exchange of virtual bosons ( j = k). Based
on these processes, a stable quantum correlation shared by the
two NVEs could be preserved.

III. STABLE QUANTUM CORRELATION BETWEEN
TWO NVEs

In this section, we investigate quantum correlation be-
tween two NVEs characterized by both logarithmic negativity
[36,37] and GQD [38,39] through solving the reduced master
equation of Eq. (6). Based on Eq. (6), we can obtain a
covariance matrix regarding the two NVEs.

In general, the states of the NVEs can be fully character-
ized by the covariance matrix in a 2 × 2 block form:

V =
(

A B
BT A′

)
,

where A(A′) and B represent the local properties of the
NVEs and the nonlocal correlation between them, respec-
tively. The covariance matrix V can be estimated via the
homodyne measurements on the amplitude quadratures Xj and
Pj in experiments, and the elements of the covariance matrix
V have the form of Vi j = 〈�ζi�ζ j + �ζ j�ζi〉/2, with �ζ =
(X1, P1, X2, P2), �ζ j = ζ j − 〈ζ j〉, Xj = (a j + a†

j )/
√

2, and

Pj = (a j − a†
j )/

√
2i. Additionally, the commutation relations

[ζi, ζ j] = iWi j could be satisfied with

W =
(

C 0
0 C

)
and C =

(
0 1

−1 0

)
,

which determine the symplectic structure of the system with
the symplectic eigenvalues λ = (λ1, λ2) of the matrix iW ·V .
If we make a partial transposition [48] on the covariance
matrix V as V̌ =�·V ·�, with � = diag(1, 1, 1,−1), the Peres-
Horodecki criterion [49,50] could judge if the state is sepa-
rable or entangled, corresponding, respectively, to the condi-
tions λ̌i � 1/2 or λ̌i < 1/2. Therefore, quantum entanglement
between two NVEs measured by the logarithmic negativity
can be quantified as

EN = max{0,− log2[2 min(λ̌1, λ̌2)]}. (7)

In our work, the NVEs are initially prepared in the two-
mode squeezed state exp[r′(a1a2 − a†

1a†
2)]|00〉, with |0〉 being

the vacuum state of a single NVE [51–53], and the time
evolution of such a state under the government of Eq. (1)
keeps the Gaussianity. Therefore we could use the GQD to
evaluate quantum correlation between spin ensembles. The
total amount of correlation for a bipartite system is quantified
by quantum mutual information I (ρ12) = S(ρ1) + S(ρ2) −
S(ρ12), with S(ρ) = −Tr(ρ log2 ρ) being the von Neumann
entropy of the density matrix ρ and ρ1(2) being the reduced
density matrix of ρ12 by tracing out subsystem 2 (1). In
addition, the amount of one-way classical correlation ex-
tractable from a Gaussian measurement is C(ρ12) = S(ρ1) −
infV1 S(ρ1|V1 ), where V1 is the covariance matrix by perform-
ing the measurement on subsystem 2. Therefore, the GQD
(measure of Gaussian quantum correlation) is defined as the
difference between two ways representing mutual information
D(ρ12) = I (ρ12) − C(ρ12). The explicit expression about the
GQD can be expressed as [38,39]

D(V ) = g(
√

I2) + g(
√

δ) − g(
√

η+) − g(
√

η−), (8)
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FIG. 2. Simulated dynamics of quantum correlation EN (a) and
GQD (b), under different squeezing degrees with r = 0 (dotted-
dashed line), 0.3 (dashed line), 0.6 (dotted line), and 1 (solid line),
respectively, where r′ = 1. The dynamics of quantum correlation
EN (c) and GQD (d), under different initial two-mode squeezed
states, with r′ = 0.2 (dashed line), 1 (solid line), and 2 (dotted line),
respectively, where r = 1. Insets in panels (c) and (d) show the
dynamics of quantum correlation EN and GQD, under different initial
thermal states with the thermal boson number n′

1 = n′
2 = n′

0 = 1
(dashed line), 2 (dotted line), and 4 (solid line), respectively, where
r = 1. Other parameters are �0 = −0.1, n̄0 = 0, γ0 = 0.01, and
G0 = 0.3, respectively. The parameters are in units of κ = 1.

with the function g(m) = (m + 1/2) ln(m + 1/2) − (m −
1/2) ln(m − 1/2) and

δ =

⎧⎪⎪⎨
⎪⎪⎩

[
2|I3|+

√
4I2

3 +(4I2−1)(4I4−I1 )
4I2−1

]2
if 4(I4−I1I2 )2

(4I2+1)(4I4+I1 )I2
3
� 1,

I4+I1I2−I2
3 −

√
(I4+I1I2−I2

3 )2−4I1I2I4

2I2
otherwise .

(9)

Here I1 = det A, I2 = det A′, I3 = det B, and I4 = det V rep-
resent the symplectic invariants derived from the covariance

matrix V and η± =
√

� ±
√

�2 − 4I4/
√

2 are the symplectic
eigenvalues of V , with � = I1 + I2 + 2I3. It is now believed
that the GQD characterizes the quantumness of correlations
for the Gaussian state more generally than quantum entan-
glement because EN cannot exhaust the nonclassicality in the
correlations [54].

We first study the simple case where the two NVEs
have identical parameters with �1 = �2 = �0, n̄1 = n̄2 =
n̄0, γ1 = γ2 = γ0, and G1 = G2 = G0. Figures 2(a) and 2(b)
describe the dynamics of quantum correlation characterized
by both EN and GQD under different values of squeezing
degree r. We can find that stationary quantum correlations
(both EN and GQD) cannot be preserved when the squeezing
parameter r = 0, which corresponds to the case of a vac-
uum reservoir. Once the driving field with nonzero squeezing

FIG. 3. Simulated dynamics of quantum correlations EN (left
panel) and GQD (right panel) versus the detuning �0 and time t .
Other parameters are r = 1, r′ = 1, n̄0 = 0, γ0 = 0.01, and G0 =
0.3, respectively. The parameters are in units of κ = 1.

degree is switched on, a stable quantum correlation (both
EN and GQD) is stimulated asymptotically for a wide range
of r in the long-time limit. It implies that the formation
of steady-state quantum correlation between two NVEs is
determined by the features of the squeezing driving field.
It also indicates that this nonclassical squeezing character
of the broadband driving field can be transferred into the
NVEs via the CPWR field playing the role of a quantum bus.
The physics behind the preservation of quantum correlation
is that the nonunitary dynamics resulting from the balance
between the squeezing driving and the original dissipation
mechanisms can stabilize the NVEs into a desired stationary
quantum correlation. In addition, we consider the dynamics of
both quantum correlations EN and GQD under different initial
states, such as the two-mode squeezed states and thermal
states, as shown in Figs. 2(c) and 2(d), respectively. We find
that the system has a unique steady state because all the
quantum correlations converge to an identical line in the long-
time limit. It demonstrates that the preservation of quantum
correlation in our work does not depend on the initial state
of the system. Besides, we also study the time evolution
of quantum correlation (both EN and GQD) under different
detunings �0. It can be seen from Fig. 3 that steady-state
quantum correlations [denoted by EN (∞) and GQD(∞)]
between NVEs exist inside a broad parameter regime �0 ∈
[−0.1, 0.1], and the maximum EN (∞) and GQD(∞) could
be obtained when �0 = 0. Once the values of �0 are outside
the approximative regime [−0.1, 0.1], both EN and GQD will
quickly decay to zero in the long-time limit, even in the
presence of a squeezing driving field with high squeezing
degrees. So to carry out our scheme efficiently, we require
to regulate the detunings and limit them inside an accurate
parameter regime.

To get a clear picture of how other key parameters in-
fluence the steady-state quantum correlation, we plot in
Figs. 4(a)–4(d) the stationary quantum correlations EN (∞)
and GQD(∞) under different system parameters r, n̄0, γ0,
and G0, respectively. Figure 4(a) demonstrates again the im-
portance of the squeezing feature of the driving field in the
preservation of quantum correlation. An optimal squeezing
degree r exists for maintaining the maximum steady-state
quantum correlation. Figure 4(b) shows that the stable quan-
tum correlation can also be maintained at a finite environ-
mental temperature n̄0, and EN (∞) decays faster to zero
than GQD(∞) with the growth of n̄0. The point EN (∞) = 0
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FIG. 4. Simulated steady-state quantum correlations EN (∞) (red
solid line) and GQD(∞) (green dashed line) under different param-
eters. (a) n̄0 = 0, γ0 = 0.01, G0 = 0.3, and �0 = −0.1; (b) r = 1,
γ0 = 0.01, G0 = 0.3, and �0 = 0; (c) r = 1, n̄0 = 0, G0 = 0.3, and
�0 = 0; (d) r = 1, n̄0 = 0, γ0 = 0.01, and �0 = 0. The parameters
are in units of κ = 1.

corresponds to the reservoir temperature in the order of
magnitude of millikelvins, which fulfills the experimental
condition [10]. Figure 4(c)–4(d) shows that the stable quan-
tum correlation decreases (increases) with the growth of the
decay rate γ0 (coupling strength G0). The reason behind this
phenomenon is that a larger decay rate γ0 induces a faster
decay of the spin ensemble into the ground state and thus
destroys quantum correlation more seriously. In contrast, a
larger coupling strength G0 could exploit and transfer the
squeezing features of the broadband driving field to the spin
ensembles more effectively and then make a larger amount of
stable quantum correlation between the NVEs.

In the above discussion, two NVEs are assumed to share
the same parameter values. However, these system parameters
in a realistic situation may be unequal due to parameter
fluctuations or stochastic errors. Next we survey the effect of
these imperfect factors on the quantum correlation, as plotted
in Figs. 5 and 6. In the upper panels of Fig. 5, the region with
respect to maximal stable quantum correlation EN (∞) pri-
marily locates along the off-diagonal line |�1 + �2| � 0, in
the plane {�1,�2}. In addition, a smaller value of |�1 + �2|
induces a larger amount of stable quantum correlation EN (∞).
For GQD(∞), except for the off-diagonal line |�1 + �2| � 0
in the plane {�1,�2}, there is another diagonal line �1 �
�2 in the plane {�1,�2} where stable quantum correlation
GQD(∞) with minor value also exists. Additionally, we also
study the behavior of EN (∞) and GQD(∞) in the parameter
space {n1, n2} (see lower panels of Fig. 5). We find that the two
reservoir parameters n̄1 and n̄2 influence the stable quantum
correlation ina similar manner. Also, the values of EN (∞)
decrease faster than those of GQD(∞) with the growth of the
reservoir temperature.

The upper panels of Fig. 6 show the behavior of EN (∞)
and GQD(∞) versus the parameters γ1 and γ2. We find
that EN (∞) has large values primarily located in a series of

FIG. 5. Simulated steady-state quantum correlations EN (∞) (left
panels) and GQD(∞) (right panels) in different parameter spaces
{�1, �2} and {n1, n2}. Other common parameters are r = 1, G1 =
G2 = 0.3, and γ1 = γ2 = 0.01. In addition, n̄1 = n̄2 = 0 (in the up-
per panels) and �1 = �2 = 0 (in the lower panels). The parameters
are in units of κ = 1.

ellipselike regions in the plane {γ1, γ2}. Compared with
EN (∞), the parameter regime where the stable quantum cor-
relation GQD(∞) has large values shrinks. Furthermore, the
steady characters of EN (∞) and GQD(∞) in the parameter
space {G1, G2} are also investigated in the lower panels of
Fig. 6, where both EN (∞) and GQD(∞) are distributed
symmetrically about the coupling strength G2 when G1 is
fixed in the plane {G1, G2}. All the results in Fig. 6 indicate
that quantum correlations between the NVEs can also be ma-
nipulated by the decay rates of the NVEs and the NVE-CPWR

FIG. 6. Simulated steady-state quantum correlations EN (∞) (left
panels) and GQD(∞) (right panels) in different parameter spaces
{γ1, γ2} and {G1, G2}. Other common parameters are r = 1, n̄1 =
n̄2 = 0, and �1 = �2 = 0. In addition, G1 = G2 = 0.3 (in the upper
panels), and γ1 = γ2 = 0.01 (in the lower panels). The parameters
are in units of κ = 1.
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FIG. 7. (a, b) Dependence of steady-state quantum correlations
EN (∞) and GQD(∞) on the squeezing degree r, where G0 = 0.3
and �0 = −0.1. (c, d) Dependence of steady-state quantum correla-
tions EN (∞) and GQD(∞) on the coupling strength G0, where r = 1
and �0 = 0. The red solid line and the green dashed line denote
the quantum correlation calculated with and without the adiabatic
elimination method, respectively. Other parameters are n̄0 = 0 and
γ0 = 0.01. The parameters are in units of κ = 1.

coupling strength. Reducing the NVEs’ decay rates and the
mean thermal boson number n̄i may help us to efficiently
maintain higher amount of quantum correlation.

In order to verify the validity of the adiabatic elimination
method employed in the derivation of Eq. (6), we plot in
Fig. 7 the relation between stable quantum correlation [both
EN (∞) and GQD(∞)] and the squeezing parameter r (cou-
pling strength G0) with and without the adiabatic elimination
of the CPWR mode. Slight differences can be found between
the two methods, where the adiabatic elimination works well
for small squeezing degree r and almost all of the value of the
coupling strength G0. In other regimes, the steady-state quan-
tum correlations with and without the adiabatic elimination
keep the same quantitative tendency with slight differences.
Since the parameters used in our scheme are consistent with
the conditions of the adiabatic elimination method, the results
obtained in the present work are valid.

IV. DISCUSSION AND CONCLUSION

We survey the relevant experimental parameters for the
feasibility of our scheme. In a recent experiment about two
NVEs coupled to a CPWR [10], the full-wave frequency of
the CPWR is ωc/2π = 2.7491 GHz, and the distance between
NVEs is approximately 5 mm. The NVE-CPWR coupling
strengths are G1/2π = 7.5 ± 0.1 MHz and G2/2π = 5.6 ±
0.1 MHz. The decay rates of the NVEs are γ1/2π = 2.45 ±
0.18 MHz and γ2/2π = 2.28 ± 0.16 MHz, respectively. In
addition, the NV centers have long coherence time and excel-
lent quantum controllability, e.g., an electron-spin relaxation
time T1 of 6 ms at room temperature [55] and even 28–265 s at
lower temperatures [56]. Besides, using a spin-echo sequence
makes the electron spin decouple from its local environment,
and thus the dephasing time T2 can be greatly prolonged.
Based on this spin-echo technique, the dephasing time T2

of a NVE with a natural abundance of 13C can reach 0.6
ms at room temperature [57]. In addition, the electron-spin
relaxation time T1 for a NVE could reach up to 10 s at
low temperature under an appropriately chosen magnetic field
[58]. In our work, we assume that κ : Gj : γ j = 1 : 0.3 : 0.01
to fulfill the condition of the bad-resonator limit (κ � Gj �
γ j). Note that the microwave squeezed field with a squeezing
bandwidth up to tens of megahertz has been reported in an
experiment [59] via a JPA, which is much larger than the
linewidth of a typical microwave resonator with hundreds of
kilohertz.

For the present complex systems, experimentally detect-
ing quantum correlations between the NVEs is tough work
because the standard methods, such as full state tomography,
are impractical [60]. To verify the quantum correlation, we
could resort to the well-developed experimental techniques
in the field of cold-atom ensembles, such as the conventional
method of “collective quantum nondemolition measurement”
[61–64]. We could pass a “verifying” light pulse (the measure-
ment sequence aimed at the verification of the entanglement,
as in Refs. [61–63]) through the two spin ensembles. Using
two verifying pulses independently, we may achieve measure-
ments on the statistical variance of the collective spin compo-
nents for the two spin ensembles. Alternatively, we could also
combine the method of joint measurement with the technique
of real-time feedback to verify entanglement between the
ensembles. A joint measurement of the population of NVEs in
excited states is engineered by measuring the frequency shift
of the CPWR mode through the homodyne detection of the
probe light reflected from the CPWR, as in Ref. [65].

In summary, we have proposed a practical scheme to main-
tain stable quantum correlation between two NVEs placed in
a CPWR, which has a squeezed-vacuum reservoir resulting
from a broadband squeezing driving field. Using a delicate
interplay of the squeezing reservoir with the unavoidable
dissipative mechanisms to stabilize the NVEs into a steady
state regarding quantum correlation, we have found that the
obtained stable quantum correlation of two NVEs is mainly
determined by the squeezing feature of the broadband squeez-
ing driving field and other key parameters, such as the detun-
ings and NVE-CPWR coupling strengths. Our study has also
provided a way to extract the optimal experimental parameters
for maximal steady-state quantum correlation between the
NVEs through the technology of squeezed-reservoir engineer-
ing. Moreover, straightforward extension of our idea to more
NVEs is possible. Therefore, the present study may open
interesting perspectives for devising an active decoherence-
immune quantum information processor.
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APPENDIX

In the Appendix, we present the solution to the matrix elements of the covariance matrix V . Defining the vector

R(10)(t ) = [V11(t ),V22(t ),V33(t ),V44(t ),V12(t ),V13(t ),V14(t ),V23(t ),V24(t ),V34(t )]T ,

the time-evolution equation of R(10)(t ) can be obtained from Eq. (6) as

Ṙ(10)(t ) = L(10)R(10)(t ) + C0 + NC1 + M(C2e2iωct + c.c.), (A1)

where

L(10) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Q1 0 0 0 Z1 J2 K2 0 0 0
0 −Q1 0 0 −Z1 0 0 −K2 J2 0
0 0 −Q2 0 0 J1 0 K1 0 Z2

0 0 0 −Q2 0 0 −K1 0 J1 −Z2

−Z1/2 Z1/2 0 0 −Q1 −K2/2 J2/2 J2/2 K2/2 0
J1/2 0 J2/2 0 K1/2 −S Z2/2 Z1/2 0 K2/2

−K1/2 0 0 K2/2 J1/2 −Z2/2 −S 0 Z1/2 J2/2
0 K1/2 −K2/2 0 J1/2 −Z1/2 0 −S Z2/2 J2/2
0 J1/2 0 J2/2 −K1/2 0 −Z1/2 −Z2/2 −S −K2/2
0 0 −Z2/2 Z2/2 0 −K1/2 J1/2 J1/2 K1/2 −Q2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C0 = (W1,W1,W2,W2, 0, pα/2, pβ/2,−pβ/2, pα/2, 0)T ,

C1 = (P1, P1, P2, P2, 0, pα, pβ,−pβ, pα, 0)T ,

C2 = (−Y1,Y1,−Y2,Y2,−iY1,−Y0,−iY0,−iY0,Y0,−iY2)T .

Here,

Ji = −G1G2(Ti + T ∗
i ), Ki = iG1G2(Ti − T ∗

i ),

Pi = GiGi(Ti + T ∗
i ), Qi = Pi + 2γi,

Wi = Pi/2 + φi, S = (Q1 + Q2)/2,

Yi = GiGiT
∗

i ,Y0 = G1G2(T ∗
1 + T ∗

2 )/2,

Zi = 2ωi
eg + iGiGi(Ti − T ∗

i ),

pα = −(J1 + J2)/2, pβ = (K1 − K2)/2,

φi = (2n̄i + 1)γi (i = 1, 2).

Therefore, the dynamical solution of Eq. (A1) can be simply written as

R(10)(t ) = O exp(Ft )O−1R(10)(0) − OF−1[I − exp(Ft )]O−1(C0 + NC1) − M{O(F − 2iωcI )−1[I exp(2iωct ) − exp(Ft )]

× O−1C2 + c.c.}, (A2)

with F = O−1L(10)O and I being the unit matrix. Furthermore, the steady-state solutions of Eq. (A2) asymptotically approach

R(10)(∞) = −[L(10)]−1(C0 + NC1) − M[(L(10) − 2iωcI )−1C2 exp(2iωct ) + c.c.]. (A3)

[1] Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya, H. Sumiya,
N. Morishita, H. Abe, S. Onoda, T. Ohshima, V. Jacques, A.
Dréau, J.-F. Roch, I. Diniz, A. Auffeves, D. Vion, D. Esteve,
and P. Bertet, Phys. Rev. Lett. 107, 220501 (2011).

[2] R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K.
Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H.
Ritsch, J. Schmiedmayer, and J. Majer, Phys. Rev. Lett. 107,
060502 (2011).

[3] D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio,
J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D.
Awschalom, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 140501
(2010).

[4] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng,
A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup,
M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105,
140502 (2010).

032302-7

https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.220501
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.107.060502
https://doi.org/10.1103/PhysRevLett.105.140501
https://doi.org/10.1103/PhysRevLett.105.140501
https://doi.org/10.1103/PhysRevLett.105.140501
https://doi.org/10.1103/PhysRevLett.105.140501
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevLett.105.140502
https://doi.org/10.1103/PhysRevLett.105.140502


HOU, YANG, CHEN, AN, YANG, AND FENG PHYSICAL REVIEW A 100, 032302 (2019)

[5] V. Ranjan, G. de Lange, R. Schutjens, T. Debelhoir, J. P.
Groen, D. Szombati, D. J. Thoen, T. M. Klapwijk, R.
Hanson, and L. DiCarlo, Phys. Rev. Lett. 110, 067004
(2013).

[6] C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya,
H. Sumiya, H. Abe, S. Onoda, T. Ohshima, V. Jacques, J.
Esteve, D. Vion, D. Esteve, K. Mølmer, and P. Bertet, Phys.
Rev. X 4, 021049 (2014).

[7] S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nö bauer,
J. Schmiedmayer, S. Rotter, and J. Majer, Nat. Phys. 10, 720
(2014).

[8] Y. Liu, J. You, and Q. Hou, Sci. Rep. 6, 21775 (2016).
[9] S. Putz, A. Angerer, D. O. Krimer, R. Glattauer, W. J. Munro,

S. Rotter, J. Schmiedmayer, and J. Majer, Nat. Photonics 11, 36
(2017).

[10] T. Astner, S. Nevlacsil, N. Peterschofsky, A. Angerer, S. Rotter,
S. Putz, J. Schmiedmayer, and J. Majer, Phys. Rev. Lett. 118,
140502 (2017).

[11] F. F. Fanchini, D. de Oliveira Soares Pinto, and G. Adesso, Lec-
tures on General Quantum Correlations and Their Applications
(Springer, Berlin, 2017).

[12] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[13] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[14] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.

Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993).

[15] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M.
Van den Nest, Nat. Phys. 5, 19 (2009).

[16] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[17] D. Gottesman and I. L. Chuang, Nature (London) 402, 390
(1999).

[18] S. Sauer, C. Gneiting, and A. Buchleitner, Phys. Rev. Lett. 111,
030405 (2013).

[19] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S.
Sørensen, D. Leibfried, and D. J. Wineland, Nature (London)
504, 415 (2013).

[20] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla,
U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Nature (London) 504, 419 (2013).

[21] F. Tacchino, A. Auffèves, M. F. Santos, and D. Gerace, Phys.
Rev. Lett. 120, 063604 (2018).

[22] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and
A. S. Parkins, Phys. Rev. Lett. 75, 3426 (1995).

[23] Y. D. Wang and A. A. Clerk, Phys. Rev. Lett. 110, 253601
(2013).

[24] C. J. Yang, J. H. An, W. L. Yang, and Y. Li, Phys. Rev. A 92,
062311 (2015).

[25] M. E. Kimchi-Schwartz, L. Martin, E. Flurin, C. Aron, M.
Kulkarni, H. E. Tureci, and I. Siddiqi, Phys. Rev. Lett. 116,
240503 (2016).
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