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Optimality in quantum data compression using dynamical entropy
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In this article we study lossless compression of strings of pure quantum states of indeterminate-length quantum
codes which were introduced by Schumacher and Westmoreland. Past work has assumed that the strings of
quantum data are prepared to be encoded in an independent and identically distributed way. We discuss the
notion of quantum stochastic ensembles, allowing us to consider strings of quantum states prepared in a general
way. For any quantum stochastic ensemble we define an associated quantum dynamical system and prove that the
optimal average codeword length via lossless coding is equal to the quantum dynamical entropy of the associated
quantum dynamical system.
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I. INTRODUCTION

In the theory of data compression of classical information
theory one wishes to encode a symbol set, S, with a code,
C, which is a mapping from the symbol set S to the set
A+ of all finite strings (or sequences) of elements from the
alphabet A, where A is usually taken to be the binary alphabet
{0, 1}. The set A+ is frequently referred to as the codebook,
and its elements are called codewords. Since we compress
long strings (sequences) of messages, concatenation is used
to extend the code C to the set S+ containing all finite strings
from the symbol set S. This extension of C is denoted by
C+, and it is called the extended code. A code C is said to
be uniquely decodable if its extended code is an injective
function. In that case, the decoding function is the inverse
of C+. If each symbol x of the symbol set S that we wish
to encode is always prepared with the same probability p(x),
independent of the string of symbols that have appeared
earlier, then the sequence (Xn)n∈N of random variables which
gives us the string of symbols to be encoded is independent
and identically distributed (i.i.d.) with values in the symbol
set S with probability mass function equal to (p(x))x∈S . If X
denotes any member of this sequence of random variables,
then its Shannon entropy H (X ) is defined as

H (X ) = −
∑
x∈S

p(x) log2 p(x).

In Shannon’s original works on the subject [1,2], the
Noiseless Coding Theorem was proved which states that,
for any δ > 0, (H (X ) + δ)-many binary bits per symbol are
sufficient in order to encode strings of symbols if each entry
of the sequence is prepared in a i.i.d. way, with probability
of error tending to zero as the length of the strings tend to
infinity. Moreover, Shannon showed that for any R < H (X ),
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if at most R bits are used per symbol, then the probability
of error tends to one as the length of the strings tend to
infinity. Thus the Shannon entropy H (X ) can be interpreted
as the minimum expected number of binary bits per symbol
that are necessary in order to encode strings of symbols with
arbitrarily small error (i.e., asymptotically lossless coding)
given that the elements of the string of symbols are encoded
in an i.i.d. way.

The setting of quantum data compression for
indeterminate-length quantum codes is similar to the setting
of classical data compression. In this case, the symbol set
S contains the symbol states which are normalized vectors
spanning a Hilbert space HS . Here we consider only the
compression of pure quantum states, therefore we restrict
our attention to normalized vectors or pure states. The
classical binary alphabet A = {0, 1} is replaced by the set
of qubits A = {|0〉, |1〉} which is the standard orthonormal
basis of the Hilbert space HA = C2. The classical codebook
A+ is replaced by the free Fock space H⊕

A = ⊕∞
�=0H⊗�

A . A
quantum code is a linear isometry U : HS → H⊕

A , and the
corresponding extended code is a map U + which is defined
on the free Fock space H⊕

S = ⊕∞
�=0H⊗�

S by “concatenation”;
i.e., tensor products of the values of U in the free Fock space
H⊕
A . The quantum code U is called uniquely decodable if U +

is also an isometry.
The Noiseless Coding Theorem was extended to

indeterminate-length quantum codes in 1995 by Schumacher
[3]. Schumacher showed that, for any δ > 0, (S(ρ) + δ)-many
qubits per symbol are sufficient in order to encode strings
of symbol states if each entry of the sequence is prepared
in a i.i.d. way, with probability of error tending to zero as
the length of the strings tends to infinity. Here ρ = ρS is the
ensemble state representing the quantum ensemble S , and
S(ρ) is the von Neumann entropy of the density matrix ρ

given by

S(ρ) = −tr (ρ log2 ρ).

Moreover, Schumacher showed that for any R < S(ρ), if at
most R qubits are used per symbol, then the probability of
error tends to one as the length of the strings tends to infinity.
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Thus the von Neumann entropy S(ρ) can be interpreted as
the minimum expected number of qubits per symbol that are
necessary in order to encode strings of symbol states with
arbitrarily small error (i.e., asymptotically lossless coding)
given that the elements of the string of symbol states are
prepared in an i.i.d. way.

Indeterminate-length quantum codes were considered by
Schumacher and Westmoreland [4], and later by Müller,
Rogers, and Nagarajan [5,6] and Bellomo et al. [7]. In all three
of these papers, the authors prove a version of the quantum
Kraft-McMillan Theorem, which states that every uniquely
decodable quantum code must satisfy an inequality in terms
of the lengths of its eigenstates. Their presentations are very
similar to that of the classical Kraft-McMillan Theorem (The-
orems 5.2.1 and 5.5.1 of Ref. [8]) except that these authors did
not provide a converse statement. In Theorem 2.9, we present
a modified version of the quantum Kraft-McMillan Theorem
giving a converse statement, thus characterizing the uniquely
decodable quantum codes. Our Theorem 2.9 comes in handy
when we define an optimal quantum code that corresponds to
a given ensemble.

In Sec. II B we introduce the notion of quantum stochas-
tic ensemble and Markov ensemble, allowing us to prepare
strings of symbol states for quantum data compression such
that the appearance of each symbol in the string may depend
on the previous symbols; i.e., the strings of symbol states are
not necessarily prepared in an i.i.d. way. Quantum sources that
emit sequences of quantum symbols that are not necessarily
statistically independent have been considered in the literature
[9], and they are well suited for quantum communications.
A stochastic ensemble is a sequence (Sk )k∈N , where Sk =
{p(n1, . . . , nk ), |sn1 · · · snk 〉}N

n1,...,nk=1 for each k ∈ N such that
p is the probability mass function of a discrete stochastic
process X, {|sn〉}N

n=1 is a collection of vector states referred
to as the symbol states, and p(n1, . . . , nk ) is the probability
that the string of quantum symbols |sn1 · · · snk 〉 is encoded, for
each k ∈ N and n1, . . . , nk ∈ {1, . . . , N}.

Our main results, Theorems 3.4 and 3.8, give quantum
dynamical entropy interpretations for the average minimum
codeword length per symbol as the length of strings of sym-
bol states tend to infinity when the coding is assumed to
be lossless. These results extend the results of Schumacher
[3] and Bellomo et al. [7], which state that for an i.i.d.
prepared quantum ensemble the optimal codeword length
per symbol is equal to the von Neumann entropy of the
initial ensemble state for asymptotically lossless coding. In
our result we use the quantum Markov chain (QMC) ap-
proach to quantum dynamical entropy, which we recall in
Sec. III B. The notion of QMC was introduced by Accardi
[10], and its use for describing dynamical entropy first ap-
peared in Ref. [11] in terms of the Accardi-Ohya-Watanabe
(AOW) entropy. Another QMC approach was introduced by
Tuyls [12] for the study of the Alicki-Fannes (AF) entropy,
which was introduced in Ref. [13] and often is referred
to as ALF entropy to emphasize Lindblad’s contributions.
Finally, a generalization of both QMC approaches was given
in Ref. [14], where the authors introduced the Kossakowski-
Ohya-Watanabe (KOW) entropy. Throughout this article, we
will follow mainly the terminology and notations of Refs. [11]
and [14].

II. DATA COMPRESSION

In what follows, all codings will be done into strings of
bits or strings of qubits for classical and quantum codes, re-
spectively. Therefore all codewords will be strings of elements
from a binary alphabet A = {0, 1} (in the classical case) or,
possibly the superposition of, strings from a quantum binary
alphabet A = {|0〉, |1〉} which is an orthonormal basis of the
Hilbert space HA = C2 (in the quantum case). The extensions
to d-bits or d-qubits can easily be done in both cases.

A. Classical codes and the Kraft Inequality

Let S be a finite or countable set equipped with the power
set σ -algebra P (S), and let X be a random variable with values
in S. The set S will be referred to as the symbol set that we wish
to encode. In the literature, the set S is referred to as the set
of objects, the message set, or sometimes even the index set.
For any set Y , we will set Y + equal to the set ∪∞

�=0Y
�, which

is the collection of all possible finite strings from Y , where Y 0

denotes the empty set (or empty string). Last, let A = {0, 1} be
the binary alphabet. A code C : S → A+ is a mapping from S
to A+, the set of finite strings with letters in the binary alphabet
A. The range of the code, A+, is referred to as the codebook,
and its elements are the codewords. Moreover, for each x ∈ S,
we refer to C(x) as the codeword of the symbol x. For each
a ∈ A+, we call the length of a [denoted by �(a)] the unique
integer m such that a ∈ Am.

The expected length of a code C on a symbol set S is given
by

EL(C) :=
∑
x∈S

p(x)�(C(x)) = E[�(C(X ))],

where p : S → [0, 1] is the probability mass function (pmf)
of the random variable X and the expectation E is taken with
respect to p.

We extend the code C by concatenation to obtain the
extended code, also called the extension of C, i.e.,

C+(x1x2 · · · xn) = C(x1)C(x2) · · ·C(xn)

for all x1x2 · · · xn ∈ Sn and n ∈ N,

and we define C+(∅) = ∅. We call the code C uniquely decod-
able whenever its extension C+ is injective; i.e., C is uniquely
decodable whenever all strings of symbols from S are pairwise
distinguishable. In lossless coding we are interested only in
uniquely decodable codes.

An extremely useful class of uniquely decodable codes are
the so-called instantaneous (or prefix-free) codes. A code is
said to be prefix-free if no codeword is the prefix of another;
i.e., for every distinct pair x, y ∈ S there is no a ∈ A+ such
that C(x)a = C(y). Prefix-free codes are called instantaneous
because the decoder is able to read out each codeword from a
string of codewords, instantaneously, as soon as he or she sees
that word appears in a string (without waiting for the entire
string).

The Kraft-McMillan Inequality is fundamental in classical
data compression.

Theorem 2.1. (Kraft-McMillan Inequality, Theorems 5.2.1
and 5.5.1 of Ref. [8]) For any uniquely decodable code over
a symbol set S with cardinality |S| = m ∈ N, the codeword
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lengths �1, �2, . . . , �m must satisfy the inequality
m∑

i=1

2−�i � 1.

Conversely, given a set of codeword lengths that satisfies this
inequality, there exists an instantaneous code with these code
lengths.

Remark 2.2. The Kraft-McMillan Inequality is sometimes
referred to only as the Kraft Inequality. This is due to the fact
that Kraft was the first to prove the inequality in Ref. [15],
although his original result refers only to instantaneous codes.
McMillan later extended Kraft’s work to include all uniquely
decodable codes in Ref. [16]. Furthermore, it is worth noting
that the Kraft-McMillan Inequality can be extended to a
countable set of symbols (see Theorem 5.2.2 and the corol-
lary following Theorem 5.5.1 in Ref. [8]). When including
countable sets of symbols, the inequality is referred to as the
Extended Kraft-McMillan Inequality.

An immediate corollary to the Kraft-McMillan Inequality
is the following:

Corollary 2.3. Given any uniquely decodable code with
codeword lengths �1, �2, . . . , �m, there exists an instantaneous
code with these same code lengths.

We call a uniquely decodable code C optimal whenever
the expected length EL(C) is minimized; i.e., the optimal
uniquely decodable code is given by

Copt : = argminC{EL(C) : C is uniquely decodable}

= argminC

{
EL(C) : the codeword lengths of the

C satisfy
∑

i

2−�i � 1

}
, (1)

where the last equality follows from Theorem 2.1. We set
EL∗(X ) := EL(Copt) the optimal expected length of the ran-
dom variable X . The results for the optimal expected length
are summarized in the following:

Theorem 2.4. ([8], Theorem 5.4.1) Let X be a random
variable with range in the symbol set S. Then the optimal
expected length of X satisfies the inequality

H (X ) � EL∗(X ) < H (X ) + 1,

where H (X ) is the Shannon entropy of X , i.e., H (X ) =
−∑

i∈S pi log2 pi where (pi )i∈S is the pmf of X .
Well-known examples of codes which satisfy the inequality

of Theorem 2.4 are the so-called Huffman codes and Shannon-
Fano codes.

In the above theorem, we are interested only in the com-
pressability of single codewords. Suppose instead that we
wish to compress strings of codewords with code distributions
given by a stochastic process X = (Xi )∞i=1. Then, for each n ∈
N, Theorem 2.4 holds for the random vector (X1, X2, . . . , Xn),
giving

H (X1, X2, . . . , Xn) � EL∗(X1, X2, . . . , Xn)

< H (X1, X2, . . . , Xn) + 1.

For each n ∈ N, we set

EL∗
n(X) := 1

n
EL∗(X1, X2, . . . , Xn) (2)

to be the optimal expected codeword length per symbol for
the first n symbols. We can then express the optimal expected
codeword length per symbol (over all symbols) in terms of the
entropy rate, which is a dynamical entropy for stochastic pro-
cesses. The entropy rate of a stochastic process X = (Xn)∞n=1
is given by

H (X) = lim
n→∞

1

n
H (X1, . . . , Xn),

whenever the limit exists. There are many instances when it
is known that the above limit exists (e.g., stationary stochastic
processes; see Theorem 4.2.1 of Ref. [8]).

Theorem 2.5. (Ref. [8], Theorem 5.4.2) The optimal ex-
pected codeword length per symbol for a stochastic process
X = (Xi )∞i=1 satisfies

H (X1, X2, . . . , Xn)

n
� EL∗

n(X) <
H (X1, X2, . . . , Xn)

n
+ 1

n
.

Moreover, if X is such that the limit defining entropy rate
exists (e.g., X is a stationary stochastic process), then

EL∗
n(X) → H (X) as n → ∞.

In particular, if X consists of independent identically dis-
tributed (i.i.d.) copies of a random variable X , then

EL∗
n(X) → H (X ) as n → ∞.

This finishes our brief overview of data compression in
classical information theory. For a more detailed exposition
see Ch. 5 of Ref. [8].

B. Quantum data compression

We begin with the description of indeterminate-length
quantum codes, whose preliminary investigation began with
Schumacher [17] and Braunstein et al. [18], and they were
formalized in Ref. [4]. We may think of the codes introduced
in the previous section as being varying-length codes; the term
indeterminate-length is used to draw attention to the fact that
a quantum code must allow for superpositions of codewords,
including those superpositions containing codewords with
different lengths. We will follow mainly the formalisms in
Ref. [7] as opposed to the zero-extended forms of Ref. [4]. A
description of the connection between these two formalisms
can be found in Ref. [19].

For any Hilbert space H , we will denote by H⊕ :=
⊕∞

�=0H⊗� the free Fock space of H , where H⊗0 = C. We will
denote the scalar 1 ∈ H⊗0 by |∅〉 and refer to it as the empty
string. Let S = {pn, |sn〉}N

n=1 be an ensemble of pure states, or
simply ensemble, where p = {pn}N

n=1 is the pmf of a random
variable X and |sn〉 is an element of a d-dimensional Hilbert
space HS , for each 1 � n � N , such that HS = span{|sn〉}N

n=1.
The collection {|sn〉}N

n=1 will be referred to as the symbol states
of the ensemble S . An (indeterminate-length) quantum code,
U , over a quantum binary alphabet A := {|0〉, |1〉}, which
is an orthonormal basis for HA = C2, is a linear isometry
U : HS → H⊕

A . The extended quantum code of U is the linear
mapping U + : H⊕

S → H⊕
A given by

U +(|s1s2 · · · sn〉) = U (|s1〉)U (|s2〉) · · ·U (|sn〉),
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for all |s1s2 · · · sn〉 ∈ H⊗n
S and n ∈ N, and we set U +(|∅〉) =

|∅〉, where concatenation is defined according to Definition
2.3 of Ref. [5] (see also Sec. V of Ref. [6]).

The quantum code U is said to be uniquely decodable if the
extended quantum code U + is an isometry. Throughout this
paper, we will restrict ourselves only to the situation where the
range of U is a subset of H⊕�max

A for some �max ∈ N; i.e., there
is a finite upper bound �max on the length of all codewords.

Remark 2.6. The authors of Ref. [19] allow nonempty
strings to map to the empty string. In their paper, the authors
send along a classical side channel to give the lengths of the
codewords, and so that convention is possible. Without the
classical side channel (as is the approach in the present paper)
allowing nonempty strings to map to the empty string will
cause the quantum code to not be uniquely decodable.

Let S = {pn, |sn〉}N
n=1 be an ensemble whose symbol states

{|sn〉}N
n=1 span a Hilbert space HS of dimension d . Consider

a classical uniquely decodable code, C, on a symbol set,
S = {xi}d

i=1, with d-many symbols. We will construct a cor-
responding uniquely decodable quantum code, U , from C
by identifying the classical binary alphabet A = {0, 1} with
the quantum binary alphabet A = {|0〉, |1〉} ⊆ C2 and the
symbol set, S, with any orthonormal basis {|ei〉}d

i=1 of HS ;
this construction is given in Ref. [7]. Fix an orthonormal basis
{|ei〉}d

i=1 of HS and define the quantum code U : HS → H⊕
A by

the equation

U =
d∑

i=1

|C(xi )〉〈ei|. (3)

It is clear that |C(xi )〉 ∈ H⊗�i
A ⊆ H⊕

A , where �i is the length of
C(xi ), and that {|C(xi )〉}d

i=1 is an orthonormal set, so that U is
a linear isometry. Furthermore, since C is uniquely decodable,
the map U � : H⊗�

S → H⊕
A defined by the equation

U � =
d∑

i1=1

· · ·
d∑

i�=1

∣∣C(
xi1

)
C

(
xi2

) · · ·C(
xi�

)〉〈
ei1 ei2 · · · ei�

∣∣
is a linear isometry for each � ∈ N. Since the extended
quantum code U + : H⊕

S → H⊕
A is given by

U + =
∞∑

�=0

U �,

we see that U + is a linear isometry and hence U is uniquely
decodable. We will refer to quantum codes constructed from
classical ones by Eq. (3) as classical-quantum encoding
schemes (c-q schemes).

Remark 2.7. Notice that the symbol states {|sn〉}N
n=1 of

the ensemble S are not directly encoded by the |C(xi )〉’s
unless N = d , and there exists a permutation σ of {1, . . . , d}
such that |sσ (i)〉 = |ei〉 for every i ∈ {1, . . . , d}. In fact U |sn〉
need not belong to H⊗�

S for any � ∈ N, but can in general
be in a superposition of different lengths. (Hence the term
indeterminate-length quantum codes.)

The Kraft-McMillan Inequality (Theorem 2.1) was initially
extended to the quantum domain in Ref. [4] and subsequently
in Refs. [5] and [7]. Before presenting (a slightly different)
quantum Kraft-McMillan Inequality, we will first introduce

the length observable and quantum codes with length eigen-
states. The length observable � acting on H⊕

A is given by

� :=
∞∑

�=0

���, (4)

where �� is the orthogonal projection onto the subspace H⊗�
A

of H⊕
A .

We say that a quantum code U : HS → H⊕
A has length

eigenstates if U has the form

U =
d∑

i=1

|ψi〉〈ei| (5)

for some orthonormal basis {|ei〉}d
i=1 of HS and some sequence

{|ψi〉}d
i=1 ⊆ H+

A such that, for each 1 � i � d , |ψi〉 ∈ H⊗�i
A for

some �i ∈ N.
Note that the |ψi〉’s are orthogonal due to U being a linear

isometry. It is easy to see that every c-q scheme is a quantum
code with length eigenstates. Last, for each � ∈ N ∪ {0}, we
will refer to the elements of the set {ψi : i ∈ {1, . . . , d}, ψi ∈
H⊗�
A } as the length � eigenstates of U , and we will refer to

{�i}d
i=1, where, for each i = 1, . . . , d , ψi ∈ H⊗�i

A , as the length
eigenvalues of U .

Remark 2.8. The quantum versions of the Kraft-McMillan
Inequality proved in Sec. II C of Ref. [4] and Theorem 3.6 of
Ref. [5] are more general than the same proved in Theorem 1
of Ref. [7], although the formalisms are quite different in all
three. Our version of the quantum Kraft-McMillan Inequality,
presented below, is a generalization of Ref. [7] but is not quite
in the full generality of Sec. II C of Ref. [4] (in the forward
direction) because we consider only uniquely decodable codes
(as opposed to the more general notion called condensable
codes considered in Ref. [4]). However, our version does have
a converse statement, similar to the classical Kraft-McMillan
Inequality, which is missing from the aforementioned quan-
tum versions.

Theorem 2.9. (quantum Kraft-McMillan Inequality) Any
uniquely decodable quantum code U with length eigenstates
over a binary alphabet must satisfy the inequality

tr (U †2−�U ) � 1.

Conversely, if U : HS → H⊕
A is a linear isometry with length

eigenstates satisfying the above inequality, then there exists a
c-q scheme Ũ with the same number of length � eigenstates
for each � ∈ N.

The proof of Theorem 2.9 is presented in the Appendix.
We would like to find a quantum code which minimizes

the amount of resources required. Unfortunately there are
numerous ways to define the length of a codeword for an
indeterminate-length quantum code [e.g., base length [19],
exponential length (Definition 6 of Ref. [7]), etc.]. Here, we
follow Definition 3 of Ref. [7] and define the length of a
codeword |ω〉, which is a normalized vector in H⊕

A given by
|ω〉 = U |s〉 for a unique symbol state |s〉 ∈ {|sn〉}N

n=1, as the
expectation with respect to the length observable in Eq. (4).
Explicitly, the length of a codeword |ω〉 = U |s〉 will be given
by a function � : H⊕

A → R+, defined as follows:

�(|ω〉) := 〈ω|�|ω〉 = 〈Us,�Us〉 = 〈s,U †�Us〉. (6)
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Whenever U has length eigenstates and is given by Eq. (5),
we see that Eq. (6) simplifies to

�(|ω〉) =
d∑

i=1

|〈ei|s〉|2�i,

where {�i}d
i=1 denotes the set of length eigenvalues of U .

Again we follow Ref. [7] and, for any ensemble S =
{pn, |sn〉}N

n=1, we define the ensemble state ρS of S by

ρS =
N∑

n=1

pn|sn〉〈sn| ∈ S1(HS ).

If U is a quantum code on HS define the average codeword
length with respect to the ensemble S by

EL(U ) = tr (ρSU †�U ).

We denote by Uopt the optimal quantum code with length
eigenstates for the ensemble S if

Uopt : = argminU {EL(U ) : U is uniquely decodable with

length eigenstates}
= argminU {EL(U ) : tr (U †2−�U ) � 1}

= argminU

{
EL(U ) : U is a c-q scheme satisfying

×
d∑

i=1

2−�i � 1

}
,

where the second and third equalities follow from Theorem
2.9, and the {�i}d

i=1 in the third equality denote the length
eigenvalues of U . The existence of Uopt follows from the
existence of Copt in Eq. (1) by the backward direction of
Theorem 2.9. The optimal average codeword length for the
ensemble S is given by

EL∗(ρS ) := EL(Uopt) = tr (ρSU †
opt�Uopt). (7)

It is shown in Theorem 2 of Ref. [7] that the optimal
c-q scheme (and hence optimal quantum code with length
eigenstates by the converse of Theorem 2.9) is given by the
classical Huffman codes. The bounds on EL∗(ρS ) in terms of
the von Neumann entropy follow immediately.

Theorem 2.10. The minimum average codeword length for
an ensemble S is bounded as follows:

S(ρS ) � EL∗(ρS ) < S(ρS ) + 1.

Proof. See Theorem 3 of Ref. [7].
Next, we wish to consider the optimal average codeword

length per symbol for a collection of ensembles {Sk}∞k=1,
where Sk = {p(n1, . . . , nk ), |s1s2 · · · sk〉}N

n1,...,nk=1 and proba-
bilities given by the pmf p of a stochastic process X. We will
refer to such collections of ensembles as stochastic ensembles.
Note that, by the definitions of a stochastic process, a stochas-
tic ensemble Sk must be compatible in the following sense:

N∑
nk+1=1

p(n1, . . . , nk, nk+1) = p(n1, · · · , nk ),

for all n1, . . . , nk ∈ {1, . . . , N} and k ∈ N. Notice that we al-
low for the possibility that preparations of the ensemble at
each time be dependent upon previous preparations. If the

preparations of the ensemble are independent and identically
prepared copies of S = {pn, |sn〉}N

n=1; i.e., the stochastic pro-
cess X is made up of i.i.d. copies of a random variable X , then
p(n1, . . . , nk ) = pn1 pn2 · · · pnk and ρSk = ρ⊗k

S1 , where ρSk =∑N
n1,...,nk=1 p(n1, . . . , nk )|sn1 · · · snk 〉〈sn1 · · · snk |. For each k ∈

N, let

EL∗
k (ρSk ) = 1

k
EL∗(ρSk )

be the optimal average codeword length per symbol for the first
k symbols with respect to the ensemble Sk , where EL∗(ρSk )
is given by Eq. (7). Notice that the optimal average codeword
length per symbol is defined analogously to the classical case
in Eq. (2). Then, from Theorem 2.10, we have

1

k
S(ρSk ) � EL∗

k (ρSk ) <
1

k
S(ρSk ) + 1

k
. (8)

In the following section, we will relate the above quantities
to the dynamical entropy of a quantum dynamical system.

III. AN EXPRESSION FOR THE OPTIMAL QUANTUM
DATA COMPRESSION RATE USING QUANTUM

DYNAMICAL ENTROPY

A. A quantum dynamical system associated with a stationary
Markov ensemble

In this article we consider stochastic processes X =
(Xn)∞n=1 such that for some fixed N < ∞, each Xn is a random
variable with values in {1, . . . , N}. If X is a stochastic process
set pX to be the pmf of X, i.e., pX is a probability measure
on {0, . . . , N}N , such that for every k ∈ N and n1, . . . , nk ∈
{1, . . . , N}, pX(n1, . . . , nk ) = Pr [X1 = n1, . . . , Xk = nk]. We
define the associated stochastic ensemble {Sk}∞k=1 by set-
ting S1 = {pX(n), |sn〉}N

n=1 whose symbol states span HS
and Sk = {pX(n1, . . . , nk ), |sn1 · · · snk 〉}N

n1,...,nk=1 whose sym-
bol states span H⊗k

S for each k ∈ N.
Recall that a stochastic process X is called stationary if the

measure pX is invariant with respect to the translation map,
i.e., if for every k ∈ N, pX = pY(k) where the stochastic pro-
cess Y(k) = (Y (k)

n )n∈N is defined by Y (k)
n = Xn+k for every n ∈

N. Obviously, if the stochastic process X = (Xn)∞n=1 is station-
ary, then the random variables Xn are identically distributed.
The stochastic process X is called a Markov process if
Pr [Xk+1|X1, . . . , Xk] = Pr [Xk+1|Xk] for every k ∈ N. Hence a
stochastic process X = (Xn)∞n=1 is a stationary Markov process
if and only if the random variables Xn are identically dis-
tributed and there exists a column stochastic matrix (pi, j )N

i, j=1
such that for every k ∈ N and n1, . . . , nk, nk+1 ∈ {1, . . . , N},
we have

Pr [Xk+1 = nk+1|X1 = n1, . . . , Xk = nk]

= Pr [Xk+1 = nk+1|Xk = nk] = pnk+1,nk .

Equivalently, a stochastic process X = (Xn)∞n=1 is a stationary
Markov process if and only if the random variables Xn are
identically distributed and there exist a transition matrix P =
(pn,m)N

n,m=1 and an initial distribution p = {pn}N
n=1 such that

the pmf of X is given by pX(n1, . . . , nk ) = pn1

∏k
l=2 pnl ,nl−1 ,

for each k ∈ N and 1 � n1, . . . , nk � N , and p is invariant
with respect to P; i.e., Pp = p; (the reason that p is called
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“initial distribution” is because it coincides with the distribu-
tion of the random variable X1). We will refer to a stochastic
ensemble governed by a Markov process X as the Markov
ensemble governed by X. Whenever the Markov process is
stationary we will refer to the Markov ensemble as being
stationary.

Let {Sk}∞k=1 be a stationary Markov ensemble governed
by a stationary Markov process X having transition ma-
trix P = (pn,m) and initial distribution p = {pn}N

n=1. Setting
d = dim(HS ), so that dk = dim(H⊗k

S ) for each k ∈ N, the
following sequence of ensemble states which represent this
collection of ensembles is defined:

ρS1 =
N∑

n=1

pn|sn〉〈sn| ∈ Md = S1(HS )

and for each k ∈ N with k � 2,

ρSk =
N∑

n1,...,nk=1

pn1

k∏
l=2

pnl ,nl−1

∣∣sn1 · · · snk

〉〈
sn1 · · · snk

∣∣
=

N∑
n1=1

pn1

∣∣sn1

〉〈
sn1

∣∣ ⊗ · · · ⊗
N∑

nk=1

pnk ,nk−1

∣∣snk

〉〈
snk

∣∣ ∈ M⊗k
d

= S1
(
H⊗k
S

)
,

where we used the following notation.
Notation 3.1. If H is a Hilbert space, then S1(H ) will

denote the space of trace-class operators on H . In the sequel
we will frequently denote by A a unital C∗-algebra, and 
(A)
will denote the set of normal states on A. Since we assume
that A = B(H ), we will identify each normal state, ω ∈ 
(A),
with its density operator ρ ∈ S1(H ) through the identification
ω(·) = tr (ρ ·).

We now define a quantum dynamical system associated
with the above stationary Markov ensemble. Recall that a
quantum dynamical system is a triplet (A,�, ρ) where A is
a unital C∗-algebra, � : A → A is a positive unital map, and
ρ is a density operator on A. In some situations the map �

is taken to be a ∗-automorphism, but we will not adopt this
restriction here. The reason that we assume that � is positive
and unital is because we would like to have that the dual
map �† maps the set of density operator of A (i.e., the set
of positive unital functionals on A) to itself. Throughout this
paper we will, for simplicity, ignore the GNS construction,
and when we do not specify the C∗-algebra we will assume
that it is equal to A = B(H ) for some Hilbert space H .

The quantum dynamical system associated to the above
stationary Markov ensemble is defined as follows: Let A =
B(CN ), � : B(CN ) → B(CN ) be defined by

�(|k〉〈�|) = δk,�

N∑
i=1

pk,i|i〉〈i|, (9)

and let the density operator ρ ∈ S1(CN ) be defined by

ρ =
N∑

n=1

pn|n〉〈n|. (10)

It is easy to verify that the map � is positive and unital.
Indeed,

�(1CN ) = �

(
M∑

k=1

|k〉〈k|
)

=
N∑

k,i=1

pk,i|i〉〈k|

=
N∑

i=1

|i〉〈i|
N∑

k=1

pk,i

=
N∑

i=1

|i〉〈i| = 1CN ,

thus � is unital. Also it is easy to verify that the dual map
�† : S1(CN ) → S1(CN ) is given by

�†(|m〉〈n|) = δm,n

N∑
i=1

pi,n|i〉〈n|. (11)

Note that throughout the article we use dagger to denote trace-
class duality, e.g.,

tr (�†(|m〉〈n|)|k〉〈�|) = tr (|m〉〈n|�(|k〉〈�|)),
for all m, n, k, � ∈ {1, . . . , N}, and star to denote Hermitian
conjugate with respect to the underlying Hilbert space, CN .
We thus obtain that the dual map �† is positive and trace-
preserving.

Finally we recall that if H is a Hilbert space, then an opera-
tional partition of unity on H is a family γ = (γi )d

i=1 for some
d ∈ N, satisfying γi ∈ B(H ), for each i, and

∑d
i=1 γ ∗

i γi = 1H .
Let γ = (γi)d

i=1 be the operational partition of unity on the
Hilbert space CN associated with the above Markov ensemble,
defined as follows:

γi :=
N∑

n=1

〈ei|sn〉|n〉〈n|, for all i = 1, . . . , d, (12)

where {ei}d
i=1 is a fixed orthonormal basis of HS . Notice that

d∑
i=1

γ ∗
i γi =

d∑
i=1

N∑
m,n=1

〈ei|sm〉〈ei|sn〉|n〉〈n|m〉〈m|

=
N∑

n=1

(
d∑

i=1

|〈ei|sn〉|2
)

|n〉〈n|

=
N∑

n=1

‖sn‖|n〉〈n| = 1CN ,

where the second to last equality follows by Parseval’s iden-
tity. Hence γ is indeed an operational partition of unity.

B. Quantum dynamical entropy via quantum Markov chains

In this subsection we recall the definition of quantum
Markov chains (QMCs) and dynamical entropy thereon. Fix
a quantum dynamical system (A,�, ρ) with A = B(H ) for
some Hilbert space H and fix an operational partition of unity
γ = (γi)d

i=1 on H . Following p. 413 of Ref. [12] (see also Eq.
3.14 of Ref. [14]), we will consider the transition expectation

Eγ : Md ⊗ A = B(Cd ⊗ H ) → A
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given by the equation

Eγ

(
[ai, j]

d
i, j=1

) =
d∑

i, j=1

γ ∗
i ai, jγ j for all [ai, j]

d
i, j=1

=
d∑

i, j=1

|ei〉〈e j | ⊗ ai, j ∈ Md ⊗ A (13)

for some fixed orthonormal basis {ei}d
i=1 of Cd . Further we

define the transition expectation

Eγ ,� = � ◦ Eγ : Md ⊗ A → A. (14)

Its dual map

E†
γ ,� = E†

γ ◦ �† : S1(H ) = 
(A) → S1(Cd ⊗ H )

= 
(Md ⊗ A)

(which is defined using trace duality), is usually called a lifting
because it “lifts” states from A to Md ⊗ A.

If H is a Hilbert space, A is the von Neumann algebra
B(H ) of all bounded operators on H , ρ is a density operator
on H , and, for some d ∈ N, E : Md ⊗ A → A is a transition
expectation, then the pair {ρ, E} is called a quantum Markov
chain (QMC). We will be specifically interested in QMCs
whose transition expectation is given by Eq. (14). Given a
quantum Markov chain, we define the quantum Markov state
ψ on M⊗N

d by the equation

ψ (a1 ⊗ · · · ⊗ an)

= tr (ρE (a1 ⊗ E (a2 ⊗ E (· · · E (an ⊗ 1H ) · · ·)))), (15)

for all n ∈ N and a1, . . . , an ∈ Md . Notice that the assumption
that the transition expectation E is unital implies that ψ is
compatible in the sense that

ψ (a1 ⊗ · · · ⊗ an ⊗ 1Cd ) = ψ (a1 ⊗ · · · ⊗ an),

for all n ∈ N and a1, . . . , an ∈ Md . Moreover, it was shown in
Proposition 3.7 of Ref. [20] that the state ψ on M⊗N

d indeed
exists.

The joint correlations for ψ are given by the density
matrices ρn ∈ M⊗n

d satisfying

ψ (a1 ⊗ · · · ⊗ an) = tr (ρna1 ⊗ · · · ⊗ an), (16)

for all n ∈ N and a1, . . . , an ∈ Md .
Putting the above pieces together, if � : A → A is a

positive, unital map on the von Neumann algebra A = B(H ),
ρ is a density operator on H , and γ = (γi)d

i=1 is an opera-
tional partition of unity of H , then the dynamical entropy of
(A,�, ρ) with respect to γ is given by

h(�,ρ, γ ) = lim sup
n→∞

1

n
S(ρn), (17)

where S(·) is the von Neumann entropy and the transition
expectation is given by Eq. (14). Further, given a subalgebra
B of A, the dynamical entropy of (A,�, ρ) with respect to B

is given by

hB(�,ρ) = sup
γ⊆B

h(�,ρ, γ ).

Remark 3.2. The dynamical entropy above is the gener-
alized AF dynamical entropy as defined by the authors of
Ref. [14]. The description we give is very similar to that of the
AF dynamical entropy given by Tuyls [12]; however, we do
not restrict ourselves to ∗-automorphisms as does the standard
construction of AF dynamical entropy.

C. Computation of the quantum dynamical entropy of the
quantum dynamical system defined in Sec. III A

Let (A,�, ρ) be the quantum dynamical system defined
by (9) and (10), and let γ be the operational partition of unity
defined by (12). In this subsection, we will use the definitions
given in Sec. III B in order to compute the quantum dynamical
entropy h(�,ρ, γ ) and give its interpretation as the optimal
compression rate of the quantum Markov ensemble that we
consider.

First we define vectors

|s′
n〉 := |sn〉 ⊗ |n〉 ∈ HS ⊗ CN for n = 1, . . . , N

(which are orthonormal even though the vectors (|sn〉)N
n=1 ⊆

HS are not necessarily mutually orthogonal), and the state

ρ ′ : =
N∑

n=1

pn|s′
n〉〈s′

n| =
N∑

n=1

pn|sn〉〈sn| ⊗ |n〉〈n| ∈ Md ⊗ MN

= S1(HS ⊗ CN ). (18)

Before proceeding with the construction of the quantum
Markov chain, we give a technical lemma which will be
helpful later.

Lemma 3.3. Let {Sk}∞k=1 be a stationary Markov ensemble,
with symbol states {|sn〉}N

n=1, which is governed by a stationary
Markov process X with transition matrix P = (pn,m). Let �,
γ , Eγ , and Eγ ,� be defined as above. Then the lifting E†

γ ,� :
S1(CN ) → S1(HS ) ⊗ S1(CN ) acts on the diagonal states of
S1(CN ) in the following way:

E†
γ ,�(|n〉〈n|) =

N∑
m=1

pm,n|s′
m〉〈s′

m|,

for each |n〉 in the orthonormal basis of CN . Moreover,

E†
γ ,�(ρ) = ρ ′,

where ρ and ρ ′ are given by Eqs. (10) and (18), respectively.
The proof of Lemma 3.3 can be found in the Appendix.
Next, we will consider the quantum Markov state ψ given

by the chain {ρ, Eγ ,�}, where ρ is given in Eq. (10) and
Eγ ,� is as in Eq. (14). Then, for each k ∈ N and a1, . . . , ak ∈
B(HS ) = Md , we have

ψ (a1 ⊗ · · · ⊗ ak ) = tr (ρEγ ,�(a1 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1CN )))) by Eq. (15)

= tr (E†
γ ,�(ρ)a1 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1CN )))
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= tr

⎛
⎝ N∑

n1=1

pn1

∣∣s′
n1

〉〈
s′

n1

∣∣a1 ⊗ Eγ ,�(a2 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1CN )))

⎞
⎠

=
N∑

n1=1

pn1 tr
(∣∣sn1

〉〈
sn1

∣∣a1
)

tr (|n1〉〈n1|Eγ ,�(a2 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1CN ))))

=
N∑

n1,n2=1

pn1 pn2,n1 tr
(∣∣sn1

〉〈
sn1

∣∣a1
)

tr
(∣∣sn2

〉〈
sn2

∣∣a2
)

tr (|n2〉〈n2|Eγ ,�(a3 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1CN ))))

...

=
N∑

n1,...,nk=1

pn1

k∏
l=2

pnl ,nl−1 tr
(∣∣sn1

〉〈
sn1

∣∣a1
) · · · tr

(∣∣snk

〉〈
snk

∣∣ak
)
,

where the “moreover” part of Lemma 3.3 was used in the third
equality, the fact tr (A ⊗ B) = tr (A) tr (B) was used in the
fourth equality, and Lemma 3.3 was used in the fifth equality.

Thus, for each k ∈ N, the density matrix ρk which is
defined by Eq. (16) is given by

ρk =
N∑

n1,...,nk=1

pn1

k∏
l=2

pnl ,nl−1

∣∣sn1 · · · snk

〉〈
sn1 · · · snk

∣∣ = ρSk .

(19)

Therefore,

h(�,ρ, γ ) = lim sup
k→∞

1

k
S(ρk ) = lim sup

k→∞

1

k
S(ρSk )

= lim sup
k→∞

EL∗
k (ρSk ),

where the first equality holds by the definition of the
dynamical entropy in Eq. (17) and the last equality fol-
lows from Equation (8). We have proved the following
result.

Theorem 3.4. Given any stationary Markov ensemble
{Sk}∞k=1, the optimal average codeword length per symbol (via
lossless coding) converges to the dynamical entropy of the
above-described quantum dynamical system (B(CN ),�, ρ)
with respect to the operational partition of unity γ defined in
Eq. (12) in the following sense:

lim sup
k→∞

EL∗
k (ρSk ) = lim sup

k→∞

1

k
S(ρSk ) = h(�∗, ρ0, γ ).

We recover the result of Schumacher [3] and Bellomo et al.
[7], which states that the optimal codeword length per symbol
for an i.i.d. prepared ensemble, {Sk}∞k=1, (via asymptotically
lossless coding) is equal to the von Neumann entropy of the
initial ensemble state, ρS1 :

Corollary 3.5. Given a Markov process X made up of i.i.d.
copies of a random variable X , the stationary Markov ensem-
ble {Sk}∞k=1 governed by X has optimal codeword length per
symbol (via lossless coding) given by

lim
k→∞

EL∗
k (ρSk ) = S(ρS1 ).

Proof. First notice that X is governed by the transition
matrix P = (pn,m)N

n,m=1 such that pn,m = pn, for every 1 �
n, m � N , where p = (pn)N

n=1 is the initial distribution of X.
Therefore

ρSk = ρ⊗k
S1 , for each k ∈ N.

Using the construction from above and Eq. (19), we have that

S(ρk ) = S(ρSk ) = S
(
ρ⊗k
S1

) = kS(ρS1 ),

where the last inequality follows by additivity of von Neu-
mann entropy [see, e.g., Eq. (2.8) of Ref. [21]]. Therefore, by
Theorem 3.4, we have

lim
k→∞

EL∗
k (ρSk ) = lim

k→∞
1

k
S(ρSk ) = lim

k→∞
1

k
kS(ρS1 ) = S(ρS1 ).

�
Next we turn to a similar representation for general

stochastic ensembles. We chose to present the case of the
stationary Markov ensemble separately since the construction
is simpler than in the general case.

D. A quantum dynamical system associated with a general
stochastic ensemble

Consider a stochastic process X = (Xn)∞n=1 with val-
ues in {1, . . . , N} for some N < ∞ and with pmf p;
i.e., for any k ∈ N and any (n1, . . . , nk ) ∈ {1, . . . , N}k

we have p(n1, . . . , nk ) = Pr [X1 = n1, . . . , Xk = nk]. De-
fine the associated stochastic ensemble {Sk}∞k=1 by S1 =
{p(n), |sn〉}N

n=1 whose symbol states span HS and Sk =
{p(n1, . . . , nk ), |sn1 · · · snk 〉}N

n1,...,nk=1 whose symbol states span
H⊗k
S for each k ∈ N. Again, setting d = dim(HS ), so that

dk = dim(H⊗k
S ) for each k ∈ N, we define the following

sequence of ensemble states which represents this stochastic
ensemble:

ρS1 =
N∑

n=1

p(n)|sn〉〈sn| ∈ Md = S1(HS )
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and, for each k ∈ N with k � 2, define ρSk ∈ M⊗k
d = S1(H⊗k

S )
by

ρSk =
N∑

n1,...,nk=1

p(n1, . . . , nk )
∣∣sn1 · · · snk

〉〈
sn1 · · · snk

∣∣
=

N∑
n1=1

p(n1)
∣∣sn1

〉〈
sn1

∣∣ ⊗ · · · ⊗

×
N∑

nk=1

p(nk|n1, . . . , nk−1)
∣∣snk

〉〈
snk

∣∣.
We define a quantum dynamical system associated to

the above quantum ensemble as follows: Let H = (CN )⊕ =
⊕∞

n=0(CN )⊗n be the free Fock space of CN . Recall that
(CN )⊗0 = C, and we denote by |∅〉 the vector 1 ∈ (CN )⊗0.
We denote {|n〉 : n ∈ {1, . . . , N}} the standard orthonormal
basis of CN and

{|∅〉} ∪ {|n〉 : n̄ ∈ {1, . . . , N}k, k ∈ N}
= {|n̄〉 : n̄ ∈ {1, . . . , N}+}

the standard orthonormal basis of H . Before proceeding
further we introduce two useful notations on the standard
orthonormal basis of H , which will be used later. If n =
(n1, . . . , nk ) ∈ {1, . . . , N}k for some k ∈ N, then we set

final (n) = nk, pruned (n) = |n1, . . . , nk−1〉 if k � 2

and pruned (n) = |∅〉 if k = 1.

Set A to denote C∗-subalgebra of B(H ) generated by the
identity operator and the rank-one operators of the form |n̄〉〈m̄|
where n̄, m̄ ∈ {1, . . . , N}+. Define a unital map � : A → A
by

�(|n̄〉〈m̄|) = 0 if at least one of n̄, m̄ is equal to ∅,

�(|n̄〉〈m̄|) = 0 if n̄ �= m̄,

�(|n̄〉〈n̄|) = p(final (n̄)|pruned (n̄))|pruned (n̄)〉〈pruned (n̄)|.
It is easy to see that the map � is positive and (by definition)
unital. Finally we define a state

ρ = |∅〉〈∅|,
on A and consider the dynamical system (A,�, ρ).

We also define an operational partition of unity of the
Hilbert space H which is associated to the above quantum
ensemble. Let {ei}d

i=1 be a fixed orthonormal basis of HS , and
let γ = (γi )d

i=1 be the operational partition of unity defined by

γi(|n̄〉) = 〈ei|sfinal (n̄)〉|n̄〉 for n̄ ∈ {1, . . . , N}k,

γi(|∅〉) = 〈ei|s1〉|∅〉,

for each i ∈ {1, . . . , d}. Notice that

d∑
i=1

γ ∗
i γi(|n̄〉) =

d∑
i=1

|〈ei, sfinal (n̄)〉|2|n̄〉 = ‖snk−1‖2|n̄〉 = |n̄〉

for n̄ ∈ ∪k∈N{1, . . . , N}k . Similarly,

d∑
i=1

γ ∗
i γi(|∅〉) =

d∑
i=1

|〈ei, s1〉|2|n̄〉 = ‖s1‖2|∅〉 = |∅〉,
and thus γ is indeed an operational partition of unity on H .
In order to unify the last three displayed formulas, we define
final (∅) = 1, and thus we can write

γi(|n̄〉) = 〈ei|sfinal (n̄)〉|n̄〉 for all n̄ ∈ {1, . . . , N}+. (20)

Let Eγ and Eγ ,� be the transition expectation maps from Md ⊗
A to A by Eqs. (13) and (14), respectively.

Before stating the next result we introduce some notation.
Notation 3.6. For each k ∈ N and n̄ ∈ {1, . . . , N}k we set

|s′
n̄〉 = |sfinal (n̄)〉 ⊗ |n̄〉 ∈ HS ⊗ (CN )⊗k and

|s′
∅〉 = |s1〉 ⊗ |∅〉 ∈ HS ⊗ (CN )⊗0.

Also for n̄ = (n1, . . . , nk ) ∈ {1, . . . , N}k and � ∈ {1, . . . , N}
we set

n̄ ◦ � = (n1, . . . , nk, �) and ∅ ◦ � = �.

We now state a technical lemma which will be used in the
proof of the main result.

Lemma 3.7. Let {Sk}∞k=1 be a stochastic ensemble with
symbol states {|sn〉}N

n=1 which is governed by a stochastic pro-
cess X with pmf p. Let H , A, �, ρ, γ , Eγ , and Eγ ,� be defined
as above. Then the lifting E†

γ ,� : 
(A) → Md ⊗ 
(A) acts on
the diagonal states of S1(H ) in the following way:

E†
γ ,�(|n̄〉〈n̄|) =

N∑
k=1

p(k|n̄)|s′
n̄◦k〉〈s′

n̄◦k|,

for each |n̄〉 in the standard orthonormal basis of H where
we adopt the convention p(k|∅) := p(k) = Pr [X1 = k] for k ∈
{1, . . . , N}. Moreover,

E†
γ ,�(ρ) =

N∑
k=1

p(k)|s′
k〉〈s′

k|.

The proof of Lemma 3.7 can be found in the Appendix.
Next, we will consider the quantum Markov state ψ given

by the chain {ρ, Eγ ,�}. For each k ∈ N and a1, . . . , ak ∈
B(HS ) = Md , we have

ψ (a1 ⊗ · · · ⊗ ak ) = tr (ρEγ ,�(a1 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H )))) by Equation (15)

= tr (E†
γ ,�(ρ)a1 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H )))

= tr
( N∑

n1=1

p(n1)
∣∣s′

n1

〉〈
s′

n1

∣∣a1 ⊗ Eγ ,�(a2 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H )))
)
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=
N∑

n1=1

p(n1) tr
(∣∣sn1

〉〈
sn1

∣∣a1
)

tr (|n1〉〈n1|Eγ ,�(a2 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H ))))

=
N∑

n1,n2=1

p(n1)p(n2|n1) tr
(∣∣sn1

〉〈
sn1

∣∣a1
)

tr
(∣∣sn2

〉〈
sn2

∣∣a2
)

tr (|n1, n2〉〈n1, n2|Eγ ,�(a3 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H ))))

=
N∑

n1,n2=1

p(n1, n2) tr (|sn1〉〈sn1 |a1) tr (|sn2〉〈sn2 |a2) tr (|n1, n2〉〈n1, n2|Eγ ,�(a3 ⊗ Eγ ,�(· · · Eγ ,�(ak ⊗ 1H ))))

...

=
N∑

n1,...,nk=1

p(n1, . . . , nk ) tr
(∣∣sn1

〉〈
sn1

∣∣a1
) · · · tr

(∣∣snk

〉〈
snk

∣∣ak
)
,

where the “moreover” part of Lemma 3.7 was used in the third
equality, the fact tr (A ⊗ B) = tr (A) tr (B) was used in the
fourth equality, and Lemma 3.7 was used in the fifth equality.

Thus, for each k ∈ N, the density matrix ρk which is
defined in Eq. (16) is given by

ρk =
N∑

n1,...,nk=1

p(n1, . . . , nk )
∣∣sn1 · · · snk

〉〈
sn1 · · · snk

∣∣ = ρSk .

Therefore,

h(�,ρ, γ ) = lim sup
k→∞

1

k
S(ρk ) = lim sup

k→∞

1

k
S(ρSk )

= lim sup
k→∞

EL∗
k (ρSk ),

where the first equality holds by the definition of the dynam-
ical entropy in Eq, (17) and the last equality follows from
Eq. (8). We have proved the following theorem.

Theorem 3.8. Given any stochastic ensemble {Sk}∞k=1, the
optimal average codeword length per symbol (via lossless
coding) converges to the dynamical entropy of the above-
described quantum dynamical system (A,�, ρ) with respect
to the operational partition of unity γ defined by Eq. (20) in
the following sense:

lim sup
k→∞

EL∗
k (ρSk ) = lim sup

k→∞

1

k
S(ρSk ) = h(�,ρ, γ ).

It should be noted that Theorem 3.4 can be considered
a corollary of Theorem 3.8. However, we have presented it
separately since the construction is simpler in the case of
Markov ensembles.

E. Examples

Examples of quantum sources that produce not-necessarily
statistically independent quantum symbols have been con-
sidered in the literature. In Ref. [9] examples of quantum
sources that produce statistically independent symbols (called
“Bernoulli sources”) as well as quantum sources producing

not-necessarily statistically independent quantum symbols are
considered. In Ref. [19] the authors consider quantum Morse
codes as an example of quantum communication since quan-
tum data compression can be viewed as a special case of
noiseless quantum communication. In communications, either
classical or quantum, the assumption of statistical indepen-
dence of the symbols to be communicated gives a serious re-
striction to the content of information which is communicated.
Thus the need of considering quantum sources emitting not-
necessarily statistical independent quantum symbols naturally
arises.

We have already shown in Corollary 3.5 that we can
recover the result of Refs. [3] and [7], which states that the
optimal codeword length per symbol for an i.i.d. prepared en-
semble (i.e., Bernoulli sources) is equal to the von Neumann
entropy of the initial ensemble state. First we illustrate that we
can recover Theorem 2.5 from Theorem 3.8.

Example 3.9 (Classical-Quantum Codes). Let S = {n}d
n=1

be a classical symbol set of cardinality d for some d ∈ N, C :
S → A+ be a uniquely decodable code into strings from the
binary alphabet A, and X = (Xn)∞n=1 be a stochastic process
governing the frequency of symbols from the symbol set
S. Let HS be a d-dimensional Hilbert space spanned by an
orthonormal basis {|sn〉}d

n=1 and define the stochastic ensemble
as usual by Sk = {p(n1, . . . , nk ), |sn1 · · · snk 〉}d

n1,...,nk=1, where
p denotes the pmf of X. Then since the |sn〉’s are orthonormal,
it is easy to see that the ensemble states ρSk are diagonal,
for each k ∈ N. Hence the optimal average codeword length
per symbol for the stochastic ensemble, given by h(A,�, ρ)
in Theorem 3.8, is exactly equal to the entropy rate of the
stochastic process (see Theorem 2.5).

Next we illustrate here the usefulness of Theorem 3.4 on
non-Bernoulli sources with two simple examples. For each of
the two examples, the Hilbert space HS has dimension d = 2
and an orthonormal basis {|ei〉}2

i=1.
Example 3.10. For the second example consider the

normalized nonorthogonal symbols |s1〉 = |e1〉, |s2〉 = |e2〉,
|s3〉 = 1√

2
(|e1〉 + |e2〉) (i.e., the Bell state |+〉), and |s4〉 =

1√
2
(|e1〉 − |e2〉) (i.e., the Bell state |−〉), which span HS = C2

(i.e., we consider N = 4 in the setting described in Sec. II B).
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Consider the transition matrix

P = (pi, j )
4
i, j=1 =

⎛⎜⎜⎜⎝
1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎞⎟⎟⎟⎠,

where pi, j represents the conditional probability that the quan-
tum source emits |si〉 right after it emits |s j〉. A (nonunique)

fixed probability distribution of P is equal to the col-
umn vector ( 1

4
1
4

1
4

1
4 )T . Consider the quantum dynam-

ical system (A,�, ρ) where A = B(C4), � : A → A is
given by

�(|k〉〈�|) = δk,�

3∑
i=1

p�,i|i〉〈i|,

i.e.,

�
(
(ai, j )

4
i, j=1

) =

⎛⎜⎜⎜⎝
1
2 (a1,1 + a2,2) 1

2 (a1,1 + a2,2) 0 0
1
2 (a1,1 + a2,2) 1

2 (a1,1 + a2,2) 0 0

0 0 1
2 (a1,1 + a2,2) 1

2 (a3,3 + a4,4)

0 0 1
2 (a1,1 + a2,2) 1

2 (a3,3 + a4,4)

⎞⎟⎟⎟⎠
and

ρ = 1

4
|1〉〈1| + 1

4
|2〉〈2| + 1

4
|3〉〈3| + 1

4
|4〉〈4| =

⎛⎜⎜⎝
1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

⎞⎟⎟⎠.

Consider the operational partition of unity γ = (γi )2
i=1 for

C4 given as in Eq. (12). Theorem 3.4 states that the optimal
average codeword length per symbol via lossless coding is
equal to the dynamical entropy of � with respect to the parti-
tion γ when measured using the state ρ, i.e., h(�,ρ, γ ). We
can compute the joint correlations (ρn)∞n=1 of this dynamical
system using Eq. (19) to see that

ρ1 = 1

4

4∑
n=1

|sn〉〈sn| =
( 1

2 0

0 1
2

)
,

and in general

ρk = 1

2k+1

2∑
n1,...,nk=1

∣∣sn1

〉〈
sn1

∣∣ ⊗ · · · ⊗ ∣∣snk

〉〈
snk

∣∣
+ 1

2k+1

2∑
m1,...,mk=1

∣∣sm1

〉〈
sm1

∣∣ ⊗ · · · ⊗ ∣∣smk

〉〈
smk

∣∣.
It is easy to verify that

2∑
n1,...,nk=1

∣∣sn1

〉〈
sn1

∣∣ ⊗ · · · ⊗ ∣∣snk

〉〈
snk

∣∣
=

4∑
m1,...,mk=3

∣∣sm1

〉〈
sm1

∣∣ ⊗ · · · ⊗ ∣∣smk

〉〈
smk

∣∣ = 1C2k ,

by applying these sums to bases of C2k
that are formed by

taking the tensor products of |si〉’s. Thus ρk = 1
2k 1C2k and

hence S(ρk ) = k, for each k ∈ N. Therefore by Theorem
3.4 we obtain that the optimal average compression rate per
symbol for the above quantum ensemble is equal to 1 qubit.

Example 3.11. Consider the normalized nonorthogonal
symbol states |s1〉 = |e1〉, |s2〉 = − 1

2 |e1〉 +
√

3
2 |e2〉 and |s3〉 =

− 1
2 |e1〉 −

√
3

2 |e2〉 which span HS (i.e., we consider N = 3 in
the setting described in Sec. II B). Consider the transition
matrix

P = (pi, j )
3
i, j=1 =

⎛⎜⎝0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎞⎟⎠,

where pi, j represents the conditional probability that the
quantum source emits |si〉 right after it emits |s j〉. The unique
fixed probability distribution of P is equal to the column
vector ( 1

3
1
3

1
3 )T . Consider the quantum dynamical system

(A,�, ρ) where A = B(C3), � : A → A is given by

�(|k〉〈�|) = δk,�

3∑
i=1

p�,i|i〉〈i|,

i.e.,

�
(
(ai, j )

3
i, j=1

)
=

⎛⎝ 1
2 (a2,2 + a3,3) 0 0

0 1
2 (a1,1 + a3,3) 0

0 0 1
2 (a1,1 + a3,3)

⎞⎠
and

ρ = 1

3
|1〉〈1| + 1

3
|2〉〈2| + 1

3
|3〉〈3| =

⎛⎝ 1
3 0 0
0 1

3 0
0 0 1

3

⎞⎠.

Consider the operational partition of unity γ = (γi)2
i=1 for C3

given by

γ1 = 〈e1|s1〉|1〉〈1| + 〈e1|s2〉|2〉〈2| + 〈e1|s3〉|3〉〈3|

=
⎛⎝1 0 0

0 − 1
2 0

0 0 − 1
2

⎞⎠
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and

γ2 = 〈e2|s1〉|1〉〈1| + 〈e2|s2〉|2〉〈2| + 〈e2|s3〉|3〉〈3|

=
⎛⎝0 0 0

0
√

3
2 0

0 0
√

3
2

⎞⎠.

Theorem 3.4 states that the optimal average codeword length
per symbol via lossless coding is equal to the the dynamical
entropy of � with respect to the partition γ when measured
using the state ρ, i.e., h(�,ρ, γ ). We can compute the joint
correlations (ρn)∞n=1 of this dynamical system using Eq. (19)
to see that

ρ1 = 1

3
|s1〉〈s1| + 1

3
|s2〉〈s2| + 1

3
|s3〉〈s3| =

(
1
2 0
0 1

2

)
,

and in general

ρk = 1

3 · 2k−1

3∑
n1=1

2∑
n2,...,nk=1

∣∣sn1

〉〈
sn1

∣∣ ⊗ ∣∣sn′
2

〉
× 〈

sn′
2

∣∣ ⊗ · · · ⊗ ∣∣sn′
k

〉〈
sn′

k

∣∣,
where

n′
k =

k∑
l=1

nl mod 3,

and we adopt the convention that the mod 3 function takes
values in the set {1, 2, 3}. Using MATLAB we can obtain the
following approximate values of the von Neumann entropies
of the above matrices:

k 1 2 3 4 5 6

1
k S(ρk ) 1 0.9528 0.9306 0.9169 0.9076 0.9008

k 7 8 9 10 11 12
1
k S(ρk ) 0.8957 0.8918 0.8886 0.8861 0.8839 0.8822

The above decreasing numbers indicate that the optimal
average compression rate per symbol for the above quantum
stochastic ensemble is strictly less than 1 qubit.

IV. CONCLUDING REMARKS

In this paper, we developed further the theory of quantum
data compression for indeterminate length quantum codes,
building on the previous work of Schumacher and Westmore-
land [4] and Bellomo et al. [7]. We presented the quan-
tum Kraft Inequality with an additional converse statement
which was not present in previous works; this additional
converse statement makes the statement of the quantum Kraft
Inequality more reminiscent of its classical counterpart. We
also introduce the notion of stochastic ensembles and, in
particular, stationary Markov ensembles, which, to the best of
our knowledge, have not been considered elsewhere. The main
contributions of this work are Theorems 3.4 and 3.8, which
give a dynamical entropy interpretation of the optimal com-
pression rate for stationary Markov and identically distributed

stochastic ensembles, respectively, extending the results of
Schumacher [3] and Bellomo et al. [7], where the quantum
symbol states to be encoded were prepared in an i.i.d. way.
In doing so, we give a quantum Markov chain representation
of a particular open quantum random walk. An interesting
direction for future study is the development of quantum
data compression on the symmetric Fock space, which is
commonly used to model photons. We hope to develop this
theory further in future work.
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APPENDIX: PROOFS OF AUXILIARY RESULTS

Proof of Theorem 2.9. For the forward direction we adapt
the proof of Sec. II C of Ref. [4] to our formalism. Let U be a
uniquely decodable quantum code with length eigenstates of
the form

U =
d∑

i=1

|ψi〉〈ei|

and let {�i}d
i=1 be the length eigenvalues of U . For each n, N ∈

N, let

CN
n = {|ψ〉 ∈ H⊗N

A : |ψ〉
= ∣∣ψi1

〉∣∣ψi2

〉 · · · ∣∣ψin

〉
for some i1, . . . , iN ∈ {1, . . . , d}}

be the collection of length N strings consisting of n-many
codewords and let

d� = ∣∣{i ∈ {1, . . . , d} : ψi ∈ H⊗�
A

}∣∣
= |{i ∈ {1, . . . , d} : �i = �}|

be the number of length � eigenstates of U , for each � ∈ N.
Then, by the unique decodability of U , each element of CN

n
has a unique representation as a string of n codewords and the
elements of CN

n are pairwise orthogonal, and hence we have∣∣CN
n

∣∣ =
∑

�i1 +···+�in =N

d�i1
d�i2

· · · d�in
� 2N .

Thus

2−N
∑

�i1 +···+�in =N

d�i1
d�i2

· · · d�in

=
∑

�i1 +···+�in =N

(
2−�i1 d�i1

)(
2−�i2 d�i2

) · · · (2−�in d�in

)
� 1.

Set �max = max1�i�d{�i} so that N � n�max. Summing the
above inequality over N we obtain

�max∑
�i1 ,�i2 ,··· ,�in =1

(
2−�i1 d�i1

)(
2−�i2 d�i2

) · · · (2−�in d�in

)

=
(

�max∑
�=1

(2−�d�)

)n

� n�max.
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Notice that the left-hand side of this inequality is exponential
whereas the right-hand side is linear. This implies that the left-
hand side is bounded above by one. Hence we must have that

tr (U †2−�U ) =
�max∑
�=1

2−� tr (U †��U ) =
�max∑
�=1

2−�d� � 1. (A1)

Notice that the inequality in Eq. (A1) is simply a restatement
of the classical Kraft-McMillan Inequality.

Conversely, suppose that U is a linear isometry with length
eigenstates satisfying the quantum Kraft-McMillan Inequal-
ity, and define {�i}d

i=1, �max and {d�}�max
�=1 as above. Then

�max∑
�=1

2−�d� =
�max∑
�=1

2−� tr (U †��U ) = tr (U †2−�U ) � 1,

and hence the classical Kraft-McMillan inequality is also
valid. Thus, by the converse of the classical Kraft-McMillan
Theorem, one can find a classical uniquely decodable code
C which has exactly d�-many codewords of length �, for each
� ∈ N. The c-q scheme Ũ constructed from this classical code
C has the desired properties. �

Proof of Lemma 3.3. Since Eγ ,� = � ◦ Eγ we have that
E†

γ ,� = E†
γ ◦ �†.

Next we consider the lifting E†
γ : S1(CN ) → S1(HC ) ⊗

S1(CN ), which we claim is given by the formula

E†
γ (σ ) = [γiσγ ∗

j ]d
i, j=1 =

d∑
i, j=1

|ei〉〈e j | ⊗ γiσγ ∗
j , (A2)

where we have identified S1(HS ) with Md given the matrix
representation with respect to the fixed orthonormal basis
{|ei〉}d

i=1 used in Eqs. (13) and (12). Indeed, for [ai, j]d
i, j=1 ∈

B(HS ) ⊗ B(CN ) and σ ∈ S1(CN ), we have

tr
(
σEγ

(
[ai, j]

d
i, j=1

))
= tr

⎛⎝σ

d∑
i, j=1

γ ∗
i ai, jγ j

⎞⎠ =
d∑

i, j=1

tr (σγ ∗
i ai, jγ j )

=
d∑

i, j=1

tr (γ jσγ ∗
i ai, j ) =

d∑
i, j=1

tr (γiσγ ∗
j a j,i )

= tr

⎛⎝ d∑
i, j=1

|ei〉〈e j | ⊗ γiσγ ∗
j [ai, j]

d
i, j=1

⎞⎠,

which proves the validity of Eq. (A2). Then, for each |m〉〈m| ∈
S1(CN ), we have

E†
γ (|m〉〈m|)

=
d∑

i, j=1

|ei〉〈e j | ⊗ γ j |m〉〈m|γ ∗
i

=
d∑

i, j=1

|ei〉〈e j | ⊗ 〈ei, sm〉|m〉〈m|〈sm, e j〉 by Eq. (12)

=
∣∣∣∣∣

d∑
i=1

〈ei, sm〉ei

〉〈
d∑

j=1

〈e j, sm〉e j

∣∣∣∣∣∣ ⊗ |m〉〈m|

= |sm〉〈sm| ⊗ |m〉〈m| = |s′
m〉〈s′

m|. (A3)

Combining Eqs. (9) and (A3), for each |n〉〈n| ∈ S1(CN ),
we have

E†
γ ,�(|n〉〈n|) = E†

γ

(
N∑

m=1

pm,n|m〉〈m|
)

by Eq. (11)

=
N∑

m=1

pm,n|s′
m〉〈s′

m| by Eq. (A3). (A4)

For the moreover statement, we have

E†
γ ,�(ρ) =

N∑
n=1

pnE†
γ ,�(|n〉〈n|) by Eq. (10)

=
N∑

n,m=1

pn pm,n|s′
m〉〈s′

m| by Eq. (A4)

=
N∑

m=1

pm|s′
m〉〈s′

m| = ρ ′ since X is stationary.

�
Proof of Lemma 3.7. It is easy to see that for each m̄, n̄ ∈

{1, . . . , N}+ (i.e., |m̄〉, |n̄〉 belong in the standard orthonormal
basis of H), we have

�†(|m̄〉〈n̄|) = δm̄,n̄

N∑
k=1

p(k|n̄)|n̄ ◦ k〉〈n̄ ◦ k|. (A5)

Next we consider the lifting E†
γ : S1(H ) → S1(HS ) ⊗

S1(H ), which [by Eq. (A2)] is given by the formula

E†
γ (σ ) = [γiσγ ∗

j ]d
i, j=1 =

d∑
i, j=1

|ei〉〈e j | ⊗ γiσγ ∗
j ,

where we have identified S1(HS ) with Md given the ma-
trix representation with respect to the fixed orthonormal ba-
sis {|ei〉}d

i=1 of the Hilbert space HS . Then, for each n̄ ∈
{1, . . . , N}+, we have

E†
γ (|n̄〉〈n̄|) =

d∑
i, j=1

|ei〉〈e j | ⊗ γi|n̄〉〈n̄|γ ∗
j

=
d∑

i, j=1

|ei〉〈e j | ⊗ 〈ei|sfinal (n̄)〉|n̄〉〈n̄|〈sfinal (n̄)|e j〉

=
∣∣∣∣∣

d∑
i=1

〈ei|sfinal (n̄)〉ei

〉〈
d∑

j=1

〈e j |sfinal (n̄)〉e j

∣∣∣∣∣∣ ⊗ |n̄〉〈n̄|

= |sfinal (n̄)〉〈sfinal (n̄)| ⊗ |n̄〉〈n̄| = |s′
n̄〉〈s′

n̄|, (A6)

where we used Eq. (20) in the second equality.
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Combining Eqs. (A5) and (A6), for each n̄ ∈ {1, . . . , N}+,
we have

E†
γ ,�(|n̄〉〈n̄|) = E†

γ

[
N∑

k=1

p(k|n̄)|n̄ ◦ k〉〈n̄ ◦ k|
]

=
N∑

k=1

p(k|n̄)|s′
n̄◦k〉〈s′

n̄◦k|. (A7)

For the moreover statement, we have

E†
γ ,�(ρ) =

N∑
k=1

p(k|∅)|s′
k〉〈s′

k| by Eq. (A7)

=
N∑

k=1

p(k)|s′
k〉〈s′

k|,

where we again used the convention that p(k|∅) = p(k), for
all k ∈ {1, . . . , N}, in the last equality. �
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