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A phase-space distribution associated with a quantum state was previously proposed, which incorporates
a specific epistemic restriction parametrized by a global random variable on the order of Planck constant,
transparently manifesting quantum uncertainty in phase space. Here we show that the epistemically restricted
phase-space (ERPS) distribution can be determined via weak measurement of momentum followed by postselec-
tion on position. In the ERPS representation, the phase and amplitude of the wave function are neatly captured
respectively by the position-dependent (conditional) average and the variance of the epistemically restricted
momentum fluctuation. They are in turn respectively determined by the real and imaginary parts of the weak
momentum value, permitting a reconstruction of wave function using weak momentum value measurement,
and an interpretation of momentum weak value in terms of epistemically restricted momentum fluctuations.
The ERPS representation thus provides a transparent and rich framework to study the deep conceptual links
between quantum uncertainty embodied in epistemic restriction, quantum wave function, and weak momentum
measurement with position postselection, which may offer useful insight to better understand their meaning.
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I. INTRODUCTION

It is remarkable that ever since the inception of quantum
mechanics, and despite its uncontested pragmatical successes,
physicists still have no consensus on the meaning of pure
quantum state or wave function, the key element of the
theory. Is wave function a real-physical thing independent
of measurement or is it a mathematical tool which repre-
sents some form of information? A better intuition about
wave function may offer fresh insight into a deeper un-
derstanding of quantum paradoxes [1] and may hold the
key to identifying the elusive physical resources underly-
ing the power of quantum information protocols relative
to their classical counterparts [2–4]. A powerful and rich
method that could aid our (classical) intuition to grasp the
quantum states and is useful to assess the quantum-classical
correpondence and contrast is mapping the quantum states
onto quasiprobability distributions over phase space [5–8].
Quasiprobability distributions are the quantum mechanical
“analog” of classical phase-space distribution. The Wigner
function, the earliest and the most well-known quasiproba-
bility distribution, satisfies most of the intuitive requirements
for a “proper” probability distribution over classical phase
space, but it may take on negative values. Remarkably, the
Wigner function can be operationally determined via standard
strong (projective) measurements, leading to a method to
reconstruct the underlying quantum state [9–13]. The intuition
and insight provided by the quasiprobability representation
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has recently led to an important application in the field of
quantum computation to devise efficient classical simulations
and estimations of a certain class of quantum computational
algorithms [14–17].

However, it is still not fully understood how two of the
most distinctive features of the microscopic world, namely
quantum uncertainty and entanglement, are deeply and trans-
parently manifested in the quasiprobability phase-space repre-
sentation. In addition, the mathematical structure of a complex
quantum wave function is not transparently reflected in the
associated quasiprobability distributions. The construction of
quasiprobability is formal, guided more by mathematical in-
genuity rather than coming from deep thinking about quantum
uncertainty and entanglement [6–8]. Moreover, there are in-
finitely many quasiprobability representations, and the choice
seems arbitrary. Can an insightful phase-space representation
of quantum mechanics be singled out or motivated uniquely
by requiring the microscopic world to obey the quantum
uncertainty relation and to directly and transparently reflect
the structure of a quantum wave function? Partly motivated
by this conceptual problem, a phase-space representation for
quantum mechanics was proposed in Ref. [18]. In the phase-
space representation, a quantum wave function is associated
with a phase-space distribution which explicitly incorporates
a specific epistemic restriction parameterized by a global
random variable on the order of Planck constant, transparently
manifesting a quantum uncertainty relation in a classical
phase space.

Meanwhile, in the past decades, there has been a lot of
interest in an intriguing concept of weak value measure-
ment over pre- and postselected ensembles [1,19–21]. To
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an extent, this measurement protocol reflects our ordinary
intuition about measurement in everyday life [22], wherein
one first gently measures a physical quantity without much
disturbing the system and then follows with a postselection
on a subensemble of interest. Yet, the outcomes of weak value
measurement may go beyond the range of values obtained
via the standard strong measurement, fueling hot debates
about its meaning [23–30]. Weak value measurement offers
access into a rich microscopic regime unreachable by the
standard value and has found many interesting applications in
quantum metrology [31,32], to study the conundra in quantum
foundation [1,33–39], and recently for measuring the quantum
state directly [40–43].

In the present work, we show that the above two seem-
ingly different concepts, i.e., the “epistemically restricted
phase space” (ERPS) representation [18] and the weak value
measurement [19], are deeply interrelated; clarification of
their relationship may offer fresh insight into their meaning.
Namely, first, the ERPS distribution can be defined opera-
tionally using the weak measurement of momentum followed
by postselection on position, denoted as the weak momentum
value. Moreover, in the ERPS representation, the phase and
the amplitude of the wave function are directly captured
respectively by the position-dependent (conditional) average
and the variance of the epistemically (statistically) restricted
momentum fluctuation, which are, in turn, respectively deter-
mined by the real and imaginary parts of the weak momentum
value. This observation permits a simple reconstruction of the
wave function via the weak momentum value measurement
and offers an interpretation of the complex weak momentum
value in terms of the epistemically restricted momentum fluc-
tuation. We further speculate on the possible deep relations
between the epistemically restricted momentum field, Wise-
man’s naively observable average momentum field [22], and
Hall-Johansen’s best estimation of momentum given position
[23,24,44], mediated operationally by the weak momentum
measurement with position postselection. We expect that these
deep links between different fundamental concepts may shed
new light on the elusive meaning of wave function, to be
further elaborated in the future [45].

II. EPISTEMICALLY RESTRICTED PHASE-SPACE
REPRESENTATION FOR QUANTUM MECHANICS

Consider a general system of N spatial degrees of freedom
with the configuration q = (q1, . . . , qN ). First, given a prepa-
ration characterized by a pure quantum state |ψ〉, we write the
associated wave function ψ (q)

.= 〈q|ψ〉 in polar form as

ψ (q) =
√

ρ(q)eiS(q)/h̄, (1)

so that the amplitude ρ(q) and the phase S(q), both are real-
valued functions, are given by ρ(q) = |ψ (q)|2 and S(q) =
h̄
2i [ln ψ (q) − ln ψ∗(q)]. Following Born, we interpret ρ(q) as
the probability density that the system has a configuration q.
We then define a conditional probability of the momentum
p = (p1, . . . , pN ) given the conjugate positions q, associated
with the wave function ψ (q) via its phase and amplitude, as
[18]

Pψ (p|q, ξ ) =
N∏

n=1

δ

(
pn −

(
∂qn S + ξ

2

∂qnρ

ρ

))
. (2)

Here ξ is a global-nonseparable variable with the dimension
of action, fluctuating randomly on a microscopic timescale
with the probability density χ (ξ ), so that its average and
variance are constant in space and time, given by

ξ
.=

∫
dξ ξ χ (ξ ) = 0 & ξ 2 = h̄2. (3)

The conditional probability distribution of phase space
associated with a preparation characterized by a quantum state
|ψ〉 thus reads

Pψ (p, q|ξ ) = Pψ (p|q, ξ )ρ(q)

=
N∏

n=1

δ

(
pn −

(
∂qn S + ξ

2

∂qnρ

ρ

))
ρ(q). (4)

Clearly, unlike the Wigner function, the phase-space distri-
bution Pψ (p, q|ξ ) is, by construction, always nonnegative.
One can then show that the quantum expectation value of any
quantum observable Ô up to second order in the momentum
operator p̂ over a quantum state |ψ〉 can be expressed as
the conventional statistical average of the classical quantity
O(p, q) over the phase-space distribution of Eq. (4) [18], i.e.,

〈ψ |Ô|ψ〉 =
∫

dqdξd pO(p, q)Pψ (p, q|ξ )χ (ξ )
.= 〈O〉ψ .

(5)

Here, the Hermitian operator Ô must take the same form as
that obtained by applying the standard canonical quantization
scheme to O(p, q) with a specific ordering of operators.
Moreover, for O(p, q) with cross terms between momenta of
different degrees of freedom, i.e., pi p j , i �= j, the nonsepara-
bility of ξ is indeed indispensable. See the Methods section in
Ref. [18] for a proof.

Reading Eq. (5) from the right-hand side to the left-
hand side, i.e., as a reconstruction of the quantum expecta-
tion value from the classical statistical phase-space average,
one can transparently see that the form of the Hermitian
quantum observable Ô, including its operator ordering, is
mathematically related to the definition of the wave func-
tion ψ given in Eq. (1). As an example of operator or-
dering, consider a system with one spatial dimension and
a general classical physical quantity up to second order in
momentum: O(p, q) = A(q)p2 + B(q)p + C(q), where A(q),
B(q), and C(q) are real-valued functions of q. Then, it
is straightforward to show that, imposing the equality of
Eq. (5), the correspondence rule between the classical
quantity O(p, q) and the associated Hermitian operator Ô
takes the following ordering: O(p, q) = A(q)p2 + B(q)p +
C(q) �→ p̂A(q̂) p̂ + 1

2 [ p̂B(q̂) + B(q̂) p̂] + C(q̂)
.= Ô (see the

Methods section in Ref. [18]). It is, however, not clear how the
ordering of operators in the above phase-space representation
is related to the different orderings of operators in various
quasiprobability representations [6,7].

We note that while the above-proposed phase-space dis-
tribution and the so-called Q (or more general, Husimi)
quasiprobability distribution function are both non-negative
for arbitrary wave functions, the correspondence rule between
the quantum observable and the associated classical quantity
in the two phase-space representations are different. To see
this, consider a simple example where the quantum observable
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has the form Ô = q̂2. Then, within our phase-space represen-
tation, the associated classical quantity takes the form O =
q2, as in Wigner-Weyl correspondence. On the other hand,
within the Q phase-space formalism, the associated classical
quantity takes the form O = q2 − h̄/2 [7]. In this sense, the
ERPS representation thus inherits the desirable properties
of Wigner and Q phase-space representations: namely, the
ERPS distribution is non-negative as the Q function, and the
correspondence rule between the Hermitian operator and
the classical quantity is intuitive as in the Wigner-Weyl cor-
respondence rule.

A few further notes on the physical interpretation of the
phase-space representation are in order. First, the δ functional
form of the conditional probability of Eq. (2) enables us to
write p explicitly as a function of (q, ξ ) as

pn(q; ξ, ψ ) = ∂qn S + ξ

2

∂qnρ

ρ
, (6)

n = 1, . . . , N . It describes a momentum field fluctuating ran-
domly due to the fluctuation of ξ . As is argued in Ref. [18],
Eq. (6) can be interpreted as a fundamental epistemic or
statistical restriction [46–49] on the allowed ensemble of
trajectories. Namely, while in conventional classical statistical
mechanics we can prepare an ensemble of trajectories with
a desired distribution of positions ρ(q) using an arbitrary
momentum field, in the above phase-space model, the allowed
form of momentum field must depend on the targeted ρ(q)
as prescribed by Eq. (6). Conversely, given a momentum
field p(q; ξ, ψ ), unlike in conventional classical statistical
mechanics, it is no longer possible to assign each trajectory
in the momentum field an arbitrary weight ρ(q). Hence, the
allowed forms of distribution of positions ρ(q) depend on, and
thus is restricted fundamentally by, the underlying momentum
field, satisfying Eq. (6). For this reason, we refer to Pψ (p, q|ξ )
of Eq. (4) as the epistemically restricted phase-space (ERPS)
distribution associated with the wave function ψ (q), and we
refer to p(q; ξ, ψ ) defined in Eq. (6) as the epistemically
restricted momentum field.

We have also argued in Ref. [18] that the epistemic re-
striction of Eq. (2) or (6), together with Eq. (3), transparently
embodies the quantum uncertainty relation in classical phase
space. For example, Eqs. (6) and (3) directly imply that the
standard deviations of position and momentum, respectively
denoted by σq and σp, must satisfy the Heisenberg-Kennard
uncertainty relation σqσp � h̄/2. In this sense, the epistemic
restriction of Eq. (6) could be regarded as a “local,” i.e.,
position-dependent, and thus “stronger,” manifestation of the
quantum uncertainty relation in classical phase space. More-
over, the unitary quantum dynamics, namely the Schrödinger
equation, is uniquely singled out by requiring the statistically
restricted ensemble of trajectories satisfying Eqs. (6) and (3)
to further respect the conservation of average energy and
trajectories (probability current) [18]. This includes those
that describe quantum dynamical interactions between sub-
systems, generating quantum entanglement.

As an example of the ERPS representation, consider a
spatially one-dimensional system prepared in a Gaussian
wave function: ψG(q) = ( 1

2πσ 2
q

)
1
4 exp(− (q−qo)2

4σ 2
q

+ i
h̄ poq).

What does the ERPS distribution look like? First,
as per Eq. (1), we have SG(q) = poq and ρG(q) =
( 1

2πσ 2
q

)
1
2 exp(− (q−qo)2

2σ 2
q

). Inserting it into Eq. (4), the ERPS

distribution takes the form PψG (p, q|ξ ) = δ(p − po +
ξ

2
(q−qo)

σ 2
q

)( 1
2πσ 2

q
)

1
2 exp(− (q−qo)2

2σ 2
q

). Note that the marginal

distribution of position is given just by a Gaussian
distribution, i.e., PψG (q) = ∫

d pdξPψG (p, q|ξ )χ (ξ ) =
ρG(q) = ( 1

2πσ 2
q

)
1
2 exp(− (q−qo)2

2σ 2
q

). On the other hand,

computing the marginal distribution of momentum, assuming
that the distribution of ξ has the form χ (ξ ) = 1

2δ(ξ −
h̄) + 1

2δ(ξ + h̄) satisfying Eq. (3), we straightforwardly
obtain a Gaussian distribution of momentum, i.e., PψG (p) =∫

dξdqPψG (p, q|ξ )χ (ξ ) = ∫
dξ (

2σ 2
q

πξ 2 )
1
2 exp[− 2σ 2

q

ξ 2 (p − po)2]

χ (ξ ) = (
2σ 2

q

π h̄2 )
1
2 exp[− 2σ 2

q

h̄2 (p − po)2], with the standard

deviation σ 2
p = h̄2/(4σ 2

q ). Hence, for Gaussian wave
functions, both the marginal distributions of position
and momentum are equal to the corresponding quantum
probabilities obtained in standard (strong) measurement,
i.e., PψG (q) = | 〈q|ψG〉 |2 and PψG (p) = | 〈p|ψG〉 |2, as
for the Wigner function. Note however that, unlike
the Wigner function, this result cannot be extended to
general wave functions. Namely, while we always have
Pψ (q) = ρ(q) = | 〈q|ψ〉 |2 for a general wave function, in
general we have Pψ (p) �= | 〈p|ψ〉 |2, as is the case for, e.g., a
Q function [7]. Hence, p in Pψ (p, q|ξ ) is not in general equal
to the outcome of the momentum measurement.

Further, unlike general quasiprobability representations
which, by construction, are devised to express the quantum
expectation value of arbitrary Hermitian operators into phase-
space integration evocative of the classical statistical average
at the cost of allowing negative quasiprobability [50,51], in
the ERPS representation, Eq. (5) applies only for Hermitian
operators Ô up to second order in the momentum operator.
Moreover, note that quasiprobability distributions are defined
(bi)linearly in terms of wave function. By contrast, as ex-
plicitly seen in Eq. (4), the ERPS distribution Pψ (p, q|ξ ) is
obtained by nonlinearly mapping the wave function ψ [52].
In this sense, we have thus given up some requirements
of the quasiprobability representations and traded them for
the following main conceptual advantages of ERPS repre-
sentation: the quantum uncertainty relation is transparently
manifested in the form of epistemic restriction in classical
phase space, the ERPS distributions associated with wave
functions are non-negative and the classical quantities asso-
ciated with quantum observables have intuitive forms, and the
Schrödinger equation can be directly derived by imposing the
conservation of the average energy and the probability current.
We expect that, like the quasiprobability representation, the
ERPS representation may offer new insight to devise efficient
classical simulation and/or estimation of a certain class of
quantum computational algorithms [14–17]. An effort along
this direction is reported in a different work [53].

Besides satisfying all the axioms for a true probability,
the ERPS distribution of Eq. (4) also satisfies the following
two intuitive requirements. First, consider a composite of
two subsystems with the configuration q = (q1, q2) and the
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conjugate momentum p = (p1, p2). Assume that the prepara-
tions of the two subsystems are independent of each other so
that the total wave function of the composite is factorizable,
ψ (q1, q2) = ψ1(q1)ψ2(q2). Noting Eq. (1), in this case, the
total phase of the composite wave function is decomposable,
S(q1, q2) = S1(q1) + S2(q2), and the amplitude is factoriz-
able, ρ(q1, q2) = ρ(q1)ρ(q2). Inserting these into Eq. (4),
the ERPS distribution associated with a pair of independent
preparations is thus conditionally separable, i.e., Pψ (p, q|ξ ) =
Pψ (p|q, ξ )ρ(q) = Pψ1 (p1, q1|ξ )Pψ2 (p2, q2|ξ ). Note however
that, due to the nonseparability of ξ , the distribution of
(p, q, ξ ) is nonfactorizable: Pψ (p, q, ξ ) = Pψ (p, q|ξ )χ (ξ ) �=
Pψ1 (p1, q1, ξ )Pψ2 (p2, q2, ξ ). Next, let us apply the usual uni-
tary phase-space shift operator, |ψ〉 �→ ÛD |ψ〉, where ÛD =
e

i
h̄ q0 p̂− i

h̄ p0 q̂. In this case, the wave function transforms as
ψ (q) �→ ψ (q − q0)e−ip0 (q−q0 )/h̄−ip0q0/2h̄. Noting Eq. (1), this
means that the phase transforms as S(q) �→ S(q − q0) −
p0q + p0q0/2 and the amplitude as ρ(q) �→ ρ(q − q0). In-
serting into Eq. (4), the ERPS distribution thus transforms
as Pψ (p, q|ξ ) �→ Pψ (p − p0, q − q0|ξ ); hence, it is covariant
under the phase-space shift transformation.

Finally, since we work within the conventional statistical
theory, the ERPS representation for pure states (wave
functions) discussed above can be naturally extended
to an incoherent mixture (convex combination) of
pure states. For illustration, consider a mixed state

̂ = ∑L

l=1 rl |ψl〉〈ψl |, where 0 � rl � 1,
∑L

l=1 rl = 1.
Then, the ERPS distribution associated with 
̂ must
take the form P
̂(p, q|ξ )

.= ∑L
l=1 rlPψl (p, q|ξ ), where

each Pψl (p, q|ξ ) is given by Eq. (4). The conventional
statistical formula to compute the average value of Eq. (5)
still applies: we only need to use P
̂(p, q|ξ ) in place of
Pψ (p, q|ξ ). Namely, we have Tr{
̂Ô} = ∑

l rl 〈ψl |Ô|ψl〉 =∑
l rl

∫
dqdξd pO(p, q)Pψl (p, q|ξ )χ (ξ ) = ∫

dqdξd pO(p, q)∑
l rlPψl (p, q|ξ )χ (ξ ) = ∫

dqdξd pO(p, q)P
̂(p, q|ξ )χ (ξ )
.=

〈O〉
̂.

III. ERPS DISTRIBUTION FROM WEAK MEASUREMENT
OF MOMENTUM WITH POSTSELECTION ON THE

CONJUGATE POSITION

We have nonlinearly mapped the wave function to obtain
the ERPS distribution of Eq. (4). This raises the question
of whether such a nonlinear mapping can be implemented
experimentally. We show in this section that the ERPS dis-
tribution can indeed be defined operationally using weak
value measurement [19]. For simplicity, consider a system of
one spatial dimension; assume that it is prepared in a pure
quantum state |ψ〉. Suppose we make a weak momentum
measurement and followed by postselection on a subensemble
passing through a position q implemented by making a strong
projective measurement onto |q〉 〈q|. We thereby obtain the
complex weak momentum value at q, denoted by pw(q; ψ ), as

pw(q; ψ )
.= 〈q| p̂|ψ〉

〈q|ψ〉 . (7)

Below we refer to pw(q; ψ ) simply as the weak momentum
value. Writing the wave function in polar form as in Eq. (1),
the real and imaginary parts of the weak momentum value are

straightforwardly given by

Re{pw(q; ψ )} = ∂qS and Im{pw(q; ψ )} = − h̄

2

∂qρ

ρ
. (8)

It has been shown in general that both the real and the
imaginary parts of the weak value can be inferred respectively
from the “average” shift of the position and the momentum of
the measuring device pointer [20,21].

Noting Eq. (8), the epistemically restricted random mo-
mentum field of Eq. (6) can thus be written in terms of the
weak momentum value as

p(q; ξ, ψ ) = Re{pw(q; ψ )} − ξ

h̄
Im{pw(q; ψ )}. (9)

Equation (9) can immediately be extended to N degrees
of freedom so that the conditional distribution of momen-
tum of Eq. (2) can be written as Pψ (p|q, ξ ) = ∏N

n=1 δ(pn −
[Re{pw

n (q; ψ )} − ξ

h̄ Im{pw
n (q; ψ )}]). The ERPS distribution

thus reads, in terms of the weak momentum value, as

Pψ (p, q|ξ ) = Pψ (p|q, ξ )ρ(q)

=
N∏

n=1

δ

(
pn −

[
Re

{
pw

n (q; ψ )
}

−ξ

h̄
Im

{
pw

n (q; ψ )
}])

ρ(q). (10)

Hence, the ERPS distribution can indeed be operationally
obtained using weak measurement of momentum followed by
postselection on the conjugate position, combined with the
introduction of the (hypothetical) global random variable ξ

satisfying Eq. (3). It is thus more than just a mathematical
artifact. Such a weak momentum value measurement has
already been performed as reported in Ref. [34].

The above observation conversely suggests the following
statistical interpretation of the meaning of the complex weak
momentum value within the ERPS representation. For sim-
plicity, below we work again in one spatial dimension. First, in
the ERPS representation, from Eqs. (9) and (3), the real part of
the weak momentum value is equal to the position-dependent
(conditional) average of the epistemically restricted random
momentum field p(q; ξ, ψ ) of the system over the fluctuation
of ξ , i.e.,

p(q; ψ )
.=

∫
dξ p(q; ξ, ψ )χ (ξ ) =

∫
dξd ppPψ (p|q, ξ )χ (ξ )

= ∂qS(q) = Re{pw(q; ψ )}, (11)

where in the last equality we have used Eq. (8). On the
other hand, the square of the imaginary part of the weak
momentum value is equal to the position-dependent variance
of the restricted random momentum field of the system, i.e.,

p(q; ψ )
.=

∫
dξ [p(q; ξ, ψ ) − p(q; ψ )]2χ (ξ )

=
∫

dξd p(p − ∂qS)2Pψ (p|q, ξ )χ (ξ )

= h̄2

4

(
∂qρ

ρ

)2

= (Im{pw(q; ψ )})2. (12)
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Here, to get the second equality we have used Eq. (11), the
third is due to Eqs. (6) and (3), and the last equality is implied
by Eq. (8). We note that a different statistical interpretation
of weak value, within a classical model with an epistemic
restriction taking the form of the Heisenberg uncertainty
relation reproducing Gaussian quantum mechanics [47], is
reported in Ref. [29].

To summarize, the operational protocol of weak momen-
tum measurement with postselection on the conjugate po-
sition, combined with the introduction of a global random
variable ξ satisfying Eq. (3), defines the ERPS distribution
Pψ (p, q|ξ ), in a specific way. Moreover, the real part of
the weak momentum value is manifested in the position-
dependent (conditional) average of the statistically restricted
momentum fluctuation p(q; ψ ) as in Eq. (11), and up to its
sign, the imaginary part of the weak momentum value is mani-
fested in the variance of the the statistically restricted momen-
tum fluctuation p(q; ψ ) as in Eq. (12), offering a statistical
meaning of the complex weak momentum value. In particular,
the above phase-space picture naturally leads to conjecture
that the randomness in each single repetition of the weak mo-
mentum measurement is due to the random fluctuation of the
epistemically restricted momentum field of Eq. (6), with an
average and a variance that correspond respectively to the real
and imaginary parts of the weak momentum value (see also
next section on Wiseman’s naive scheme to observe average
momentum and its relation with the weak momentum value).
This conjecture can be checked in experiment if we could
probe the outcome of each single shot of weak measurement.
Another interesting important question is whether a phase-
space distribution with an epistemic restriction can be singled
out operationally via the weak momentum value, uniquely, by
imposing some further physically intuitive requirements, such
as separability for independent preparations and covariance
under phase-space shift transformation discussed at the end of
the previous section.

IV. DISCUSSION: WAVE-FUNCTION TOMOGRAPHY,
WISEMAN’S AVERAGE MOMENTUM FIELD, AND BEST

ESTIMATION OF MOMENTUM GIVEN
INFORMATION ON POSITION

Equation (8) suggests a simple method for the
reconstruction of the quantum wave function ψ (q) =√

ρ(q) exp[iS(q)/h̄] from weak measurement of momentum
with postselection on the conjugate position. First, integrating
the left-hand equation in Eq. (8), we obtain the phase
of the associated wave function up to a constant or a
global phase as S(q) = ∫ q dq′Re{pw(q′; ψ )}. On the other
hand, the amplitude of the original wave function can be
computed by integrating the right-hand equation in Eq. (8)
as ρ(q) = C exp[− 2

h̄

∫ q dq′Im{pw(q′; ψ )}], where C is a
normalization constant. Moreover, noting Eqs. (11) and
(12), the reconstructed phase and amplitude of the wave
function, and thus the whole quantum information concealed
in a wave function, are respectively captured neatly by the
position-dependent (conditional) average and the variance of
the statistically restricted momentum field defined in Eq. (6).
The ERPS representation thus reveals a deep conceptual link
between the epistemic restriction transparently manifesting

quantum uncertainty relation in phase space and the abstract
mathematical structure of a complex quantum wave function,
mediated by the operationally well-defined notion of weak
measurement of momentum followed by postselection on the
conjugate position. This conceptual link is further elaborated
in a different work to devise an epistemic interpretation of
a quantum wave function and quantum uncertainty [45]; see
the last paragraph of this section.

Note that in the scheme for a direct measurement of a
wave function reported in Ref. [40], i.e., by weakly measuring
|q〉 〈q| followed by a postselection on a subensemble with
vanishing momentum (via strong momentum measurement),
the real and imaginary parts of the associated weak value
correspond directly to the real and imaginary parts of the
quantum wave function, whose physical interpretations are
not easy to grasp. By contrast, in our reconstruction scheme
above, the real and imaginary parts of the weak momentum
value correspond directly to the phase and the amplitude of
the wave function, whose physical interpretations are more
transparent. In Ref. [54], it is shown that the Dirac-Kirkwood
quasiprobability distribution [7,55,56] can be defined oper-
ationally using weak measurement of |q〉 〈q| followed by a
strong projection over |p〉 〈p| (without postselection). How-
ever, while the Dirac-Kirkwood quasiprobability distribution
appears formally to satisfy the Bayes rule [57,58], its trans-
parent interpretation is hampered by the fact that it is complex
valued. Moreover, unlike the ERPS distribution, its relation
with the quantum uncertainty relation is not immediate.

Next, in Ref. [22], Wiseman considered an intuitive but
seemingly “naive” definition of position-dependent (condi-
tional) average momentum, i.e., in a way that would make
sense to classical physicists, and interpreted it operationally in
terms of weak value measurement. Namely, one makes a weak
momentum measurement followed by position postselection,
yielding a random value, and takes the average over infinite
repetitions of such a measurement procedure. Wiseman [22]
then showed that the average momentum field thus defined is
equal to the real part of the weak momentum value given by
the left-hand equation in Eq. (8). For example, for a particle
of mass m in a scalar potential, we have mvW

.= pW(q) =
Re{pw(q; ψ )} = ∂qS(q), where pW(q) and vW(q) are the
Wiseman’s average momentum and velocity fields. This can
be integrated in time to construct “average trajectories” which
in turn coincide with the Bohmian trajectories. Such average
trajectories, which were calculated numerically for the first
time in Ref. [59] in the context of Bohmian mechanics, have
been observed by Steinberg’s group in a beautiful double-slit
experiment reported in Ref. [34]. Within the ERPS represen-
tation, as shown in Eq. (11), Wiseman’s naively observable
average momentum field is just the position-dependent (con-
ditional) average of the statistically restricted momentum field
defined in Eq. (6) over the fluctuations of ξ ; i.e., we have
pW(q) = Re{ 〈q| p̂|ψ〉

〈q|ψ〉 } = ∂qS(q) = p(q; ψ ). Our interpretation
of weak momentum value is thus very similar to that of
Wiseman’s. Moreover, as also stated at the end of the previous
section, we may naturally speculate that the randomness in
each single repetition of weak momentum measurement in
Wiseman’s naive scheme is due to the random fluctuation of
ξ in Eq. (6). Note, however, that Wiseman’s starting point
is standard quantum mechanics, while we started from a
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statistical phase-space model to reconstruct quantum mechan-
ics from scratch using the notion of epistemic restriction
parametrized by a global variable ξ fluctuating randomly on
the order of the Planck constant [18].

Further, in Ref. [44], working within the standard for-
malism of quantum mechanics, Hall argued that ∂qS(q) =
Re{ 〈q| p̂|ψ〉

〈q|ψ〉 } can be interpreted as the best classical estimate of
quantum momentum compatible with the conjugate position
q, minimizing a suitably defined quantum mean-squared error.
This idea has been further discussed by Johansen in Ref. [23]
to interpret weak value in terms of theory of best estimation
and is largely expanded by Hall in Ref. [24]. Noting this,
within the ERPS representation, we might interpret the de-
composition of the momentum field in Eq. (6) epistemically
(as opposed to physical decomposition) as follows. Assume
that a preparation characterized by the wave function ψ (q) =√

ρ(q)e
i
h̄ S(q) generates a random momentum field p(q; ξ, ψ ).

Then, given information on the conjugate position q, the first
term on the right-hand side of the decomposition in Eq. (6),
i.e., ∂qS(q), is interpreted as the best estimate of the momen-
tum field, and the second term, ξ

2
∂qρ(q)
ρ(q) = p(q; ξ, ψ ) − ∂qS(q),

is interpreted as the estimation error. It is interesting to ask if

this interpretation could link the Cramer-Rao inequality lim-
iting an unbiased estimation [60] to the Heisenberg quantum
uncertainty relation. If this epistemic interpretation of the de-
composition of Eq. (6) is tenable, along with the Copenhagen
spirit, we might argue within the ERPS model of Ref. [18]
that the quantum wave function ψ (q) = √

ρ(q)e
i
h̄ S(q) does not

represent an agent (observer)-independent objective physical
reality [61], but rather a mathematical tool which conveniently
summarizes the agent’s best estimate of momentum given
information on the conjugate position, in the presence of an
epistemic restriction. This idea is elaborated in detail in a
different work [45].
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