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Phenomenological quantum Hamiltonians H (N )(λ) = J (N ) + λV (N )(λ) representing a general real N2-
parametric perturbation of an exceptional-point-related unperturbed Jordan-block Hamiltonian J (N ) are con-
sidered. Tractable as non-Hermitian (in a preselected, unphysical Hilbert space) as well as, simultaneously,
Hermitian (in another, “physical” Hilbert space), these matrices may represent a unitary, closed quantum system
if and only if the spectrum is real. At small λ we show that the parameters are then confined to a “stability
corridor” S of the access to the extreme dynamical exceptional-point λ → 0 regime. The corridors are narrow
and N-dependent: they are formed by multiscale perturbations which are small in physical Hilbert space, i.e.,
which are such that λV (N )

j+k, j (λ) = O(λ(k+1)/2) at k = 1, 2, . . . , N − 1 and all j.
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I. INTRODUCTION

One of the most characteristic distinguishing features of
many innovative non-Hermitian (e.g., PT -symmetric [1])
representations H �= H† of quantum Hamiltonians is that they
can vary with parameters which are allowed to reach Kato’s
exceptional-point values (EPs [2]). The phenomenological
appeal of such a limiting transition g → gEP in H (g) is
currently being discovered in a broad range of open quantum
systems [3–5] as well as in many less known applications of
the theory to various closed quantum systems [6–10]. In the
former, open-system setting the spectrum of H (g) is, in gen-
eral, complex. The H (g)-generated quantum time evolution is
nonunitary. This gives rise to a number of rather unexpected
and interesting time-evolution patterns (for example, at g =
gEP one could stop the light [11]) which mainly attracted
attention among experimentalists [12–15].

In the latter, closed-system-oriented research, in contrast,
the mainstream efforts are currently being concentrated upon
the study of many fundamental, not yet fully resolved theoret-
ical questions [16]. One of the most important ones concerns
the very relevance of the spectrum. Indeed, under small per-
turbations, “the location of the eigenvalues may be ...fragile”
[17] so that people started believing that also “in quantum
mechanics with non-Hermitian operators ...a central role” is to
be given to “the mathematical concept of the pseudospectrum”
[18].

Our present message is in fact mainly inspired by the
necessity of a decisive rejection of the latter claims. The
point is that the very definition of the “smallness” of per-
turbation λV only carries a well-defined physical meaning
in the mathematical descriptions of nonunitary alias open
quantum systems. The claims of “fragility” are then firmly
based on the rigorous Roch-Silberman theorem [19] “relating
the pseudospectra to the stability of the spectrum under small
perturbations” [18]. The use of pseudospectra related to the
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perturbations with bounded norm ||V || = O(1) and with a
small coupling λ < ε then results, naturally, in the observation
of many “unexpected wild properties of operators familiar
from PT -symmetric quantum mechanics” (cited, again, from
[18]).

All such claims are mathematically correct of course. It
is only necessary to add that they exclusively apply to the
open quantum systems. In the case of closed quantum systems
the relationship between mathematics and physics is more
subtle. We are initially introducing our Hamiltonians H as
non-Hermitian in a conventional Hilbert space (in our com-
prehensive review [20] we proposed to denote this space by
dedicated symbol H(F )

(friendly)). In this space the norm ||V || and
pseudospectra are defined [17]. Naturally, as long as H �= H†,
such a space has to be reclassified as auxiliary and manifestly
unphysical. As a consequence, it is necessary to construct
another, amended, phenomenologically relevant norm. Only
such a norm can be used in the formulations of testable
physical predictions concerning the closed quantum systems
[21].

In what follows we intend to contribute to the clarification
of the misunderstanding. By means of a detailed analysis of
a few schematic examples we intend to demonstrate that one
must treat the concept of a “sufficiently small perturbation”
(entering also the definition of pseudospectrum) with extreme
care. We will remind the readers that in quantum mechanics of
unitary systems using observables in a non-Hermitian repre-
sentation [21] the weight of a perturbation is not measured by
its norm in H(F )

(friendly). By explicit constructive calculations we
will clarify why it must be measured by the norm in another,
physical, unitarily nonequivalent Hilbert space of states with
standard probabilistic interpretation (denoted, say, by symbol
H(S)

(standard) of Table 2 in [20]).
The difference between the two norms increases when

we get closer to the EP boundary of the “admissible” (i.e.,
unitarity-compatible) domain of parameters. For this reason
we found it maximally instructive to restrict the attention of
our readers just to the systems living in a small vicinity of one
of their EP singularities. This enabled us to make our message
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compact and persuasive. Indeed, whenever the system moves
closer to its EP boundary, the inner-product-related anisotropy
of geometry of the associated physical Hilbert space H(S)

(standard)
grows and approaches its non-Hermitian-degeneracy supre-
mum (cf. [22]).

We will show that and how this induces a “hierarchization”
of the weights of the influence of the separate components
of the fluctuations of the separate matrix elements of the
Hamiltonian. Indeed, even if we keep calling these fluctu-
ations “perturbations,” we must also take their anisotropy
dependence fully into account. Due to our choice of not too
complicated illustrative examples we will be able to simplify
some technicalities significantly. The presentation of our re-
sults will start, in Sec. II, by a concise explanation of the
situation in which the vicinity of the EP singularity can be
connected, by a continuous change of the parameters, with
the bulk parametric domain of a less anomalous dynamical
regime of the system.

Conveniently, the admissible, unitarity-compatible para-
metric domain near an EP will be called “corridor.” By
definition, the energies inside the corridor will be required
real. The concept of the corridor connecting a stable unitary
dynamical regime with its limiting EP boundary is given a
more concrete form in Sec. III. We recall and extend there a
few constructive results of our preceding papers [23,24]. We
also reconfirm there that, under the quite common [17] but not
sufficiently restrictive assumption that the perturbations are
uniformly bounded, the vicinity of generic EP-limiting Hdoes
not contain any “broad” corridors at all.

The apparent paradox is resolved in Sec. IV, where we
introduce a concept of a “narrow” corridor for which the
“sufficiently small” perturbations are defined via a certain ad
hoc redefinition of the space of variability of the “admissible”
matrix elements of perturbation V . Explicit formulas for the
boundaries of the corridors are presented there at the first
few matrix dimensions N . The subsequent more general and
N-independent results will be then presented in Sec. V. In a
way based on an extrapolation of the preceding N-dependent
observations to all N we will formulate there our main
result.

This will only explicitly reconfirm our a priori expec-
tations that in the non-Hermitian closed-system theories the
basic phenomenological concept of the “smallness” of the
stability-compatible perturbations V must be specified in a far
from trivial manner. In our last, less technical discussion in
Sec. VI we will finally complement this conclusion by a few
comments on its consequences and interpretation.

II. UNITARITY CORRIDORS

In a way reflecting the recent trends [25] we intend to
perform a deeper analysis of the mathematical guarantees of
the reality of the spectrum attributed, often, to the sponta-
neously unbroken PT symmetry of H [1], or to the existence
of a similarity between H and a self-adjoint operator [6,7].
Such a project led us to the search for correspondence of the
underlying mathematics with the parallel conceptual physical
questions concerning, first of all, the protection of a quantum
system against the loss of its observability under too strong a
perturbation.

A. Boundaries of observability

In the literature devoted to the analyses of quantum stabil-
ity one mostly finds just various entirely routine descriptions
which mainly fall into two subcategories. In the more common
approach one simply assumes that both the unperturbed and
perturbed Hamiltonians are self-adjoint. This, in essence,
makes the problem trivial. Indeed, the reality of the bound-
state energies remains “robust.” One also does not need to
pay too much attention to the EP singular values g(EP) of pa-
rameters because they are, by definition, out of consideration,
incompatible simply with the self-adjointness assumption [2].

In the conventional Hermitian theories the influence of
small perturbations is described by the pseudospectrum and
it remains fully under our control. In the open-system theories
the study of pseudospectra clarifies a number of features of
various realistic systems. Pars pro toto we may name the study
of perturbations of the Bose-Hubbard N-by-N-matrix forms
of Hamiltonians H (N )(g) [4]. In this case the non-Hermitian
formalism of perturbation expansions helped to clarify even
some aspects of the behavior of the Bose-Einstein conden-
sates. Another particularly impressive result of this type was a
quite unexpected discovery of the generic failure of adiabatic
approximation in the open, nonunitary quantum dynamical
systems when forced to encircle their EP singularity [26].

The problems are much more challenging in the case of the
closed quantum systems, especially in the models in which
Kato’s EP singularity is of the N th order with N > 2 (in this
case we shall usually use the acronym EPN). Indeed, after an
arbitrarily small perturbation the initially strictly nondiagonal-
izable EPN-related Hamiltonians H (N )(g(EPN ) ) cannot be as-
signed their canonical Jordan-block form anymore (i.e., they
become diagonalizable). At the same time, the brute-force
numerical diagonalization of these perturbed Hamiltonians

H (N ) = H (N )(g(EPN ) ) + λ H (N )
(int) (1)

remains almost prohibitively ill conditioned [27]. In what
follows a remedy will be sought in perturbation theory (cf. its
outline in our preceding paper [24]). On this background we
will separate perturbations H (N )

(int) into two subfamilies. For the
subfamily of our present interest (in which the energy spectra
will be real) the parameters will form a unitarity-compatible
corridor.

Working, for the sake of definiteness, with multiparametric
and real but, otherwise, entirely general N by N matrix Hamil-
tonians H (N ) we shall restrict our study just to the models
lying “not too far” from an EP singularity. In these models,
secondly, the non-Hermitian EP degeneracy will be assumed
“maximal,” i.e., N-tuple, with gEP ≡ gEPN . We should em-
phasize that these restrictions of the scope of our paper were
motivated by the needs of physics. In particular, we wanted to
complement the open-system results of Ref. [4] or the closed-
system results of Refs. [28] (exhibiting already all features
of a quantum phase transition [29]) by another family of the
less realistic and less numerical but more universal and more
transparent N by N matrix model.

B. Exceptional points and Jordan blocks

In the EP limit itself (also known as non-Hermitian de-
generacy [3]) the Hamiltonian, by definition, ceases to be
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diagonalizable. This means that it loses its standard phys-
ical interpretation [30]. At the same time, the study and
understanding of the behavior of quantum systems in the
vicinity of EPs is of paramount descriptive [4] as well as
conceptual [31] and practical numerical [27] relevance and
importance.

Special attention is to be paid to the scenarios in which we
may ignore the role of the EP-unrelated part of the physical
Hilbert space. This enables us to restrict attention to the N by
N (sub)matrices H = H (N )(g) of the Hamiltonian, especially
when the parameter is able to acquire a maximal, N th-order
exceptional-point value, g → g(EPN ) [28]. In similar cases the
EPN limit of the truncated Hamiltonian is usually assigned its

Jordan-block canonical form,

H (N )(g(EPN ) ) ∼ J (N )(E0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E0 1 0 . . . 0

0 E0 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 E0 1

0 . . . 0 0 E0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A mutual map is defined, in terms of the so-called transition
matrix Q(N ), by relations

H (N )(g(EPN ) ) Q(N ) = Q(N ) J (N )(E0). (2)

In quantum physics, such a “generalized diagonalization” of the Hamiltonian offers an efficient tool for analysis in perturbation
theory [24].

C. One-parametric corridor in an exactly solvable example

As an elementary illustrative example let us recall the following exactly solvable N-state quantum Hamiltonian of dimension
N = 8,

H (8)
(ES)(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 + δ 0 0 0 0 0 0
−1 − δ 0 −1 + γ 0 0 0 0 0

0 −1 − γ 0 −1 + β 0 0 0 0
0 0 −1 − β 0 −1 + α 0 0 0
0 0 0 −1 − α 0 −1 + β 0 0
0 0 0 0 −1 − β 0 −1 + γ 0
0 0 0 0 0 −1 − γ 0 −1 + δ

0 0 0 0 0 0 −1 − δ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

This matrix is non-Hermitian but PT symmetric, where P
is parity (i.e., a matrix with units along the second main
diagonal) while the nonlinear operator of transposition T
mimics the time reversal [9]. In a standard decomposition
H = T + V of this Hamiltonian the kinetic energy term T
coincides with the conventional discrete Laplacean, while the
four-parametric antisymmetric tridiagonal matrix V plays the
role of a weakly nonlocal interaction.

The EP8 limit of the model is reached at α = β = γ =
δ = 1. The resulting Hamiltonian matrix with the mere N −
1 nonvanishing elements Hj+1, j = −2, j = 1, 2, . . . , N − 1
may be given its Jordan-block form via Eq. (2) in terms of an
antidiagonal transition matrix with N nonvanishing elements
QN− j+1, j = (−2) j−1, j = 1, 2, . . . , N .

For the specific g dependence of parameters

α =
√

1 − a g, β =
√

1 − b g, γ =
√

1 − c g,

δ =
√

1 − d g, (4)

with a quadruplet of positive constants a, b, c, and d , the
spectrum is sampled, in Fig. 1, at a = 2, b = 1.8, c = 1.6,
and d = 1.4. It is all real and discrete at any real g > 0.
With g(EP8)

(ES) = 0 and with the trivial degenerate energy E0 =
E (EP8)

(ES) = 0, the g dependence of the energies can even be
specified by the remarkable exact formula En(g) = En(1)

√
g,

which immediately follows from the g dependence of the
secular polynomial.

III. EXCEPTIONAL POINTS AND THEIR
BOUNDED PERTURBATIONS

The stability of quantum systems with respect to pertur-
bations is usually studied in the framework of conventional
quantum mechanics in which the Hamiltonians (i.e., the gen-
erators of evolution) are self-adjoint [30]. From this perspec-
tive our present study of manifestly non-Hermitian perturbed
Hamiltonians (1) living in a small vicinity of an EPN singu-
larity represents a true methodical challenge.

–1

0

1

0 0.1 0.2 0.3 0.4

E

g

FIG. 1. Sample of degeneracy of the real spectrum of Hamilto-
nian H (8)

(ES)(g) in the EP8 limit of g → 0 at a = 2, b = 1.8, c = 1.6,
and d = 1.4 (both g and E are dimensionless here).
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In the first step towards a disentanglement of the prob-
lems let us recall Eq. (2) and let us replace the unperturbed
Hamiltonian H (N )(g(EPN ) ) of Eq. (1) by its canonical Jordan
form. This yields the fairly general family of the EPN-related
perturbed N by N real-matrix Hamiltonians of our interest,

H (N ) = J (N )(0) + λV. (5)

In our analysis we shall initially assume that the matrix ele-
ments of the perturbation are uniformly bounded, Vi, j = O(1).
The smallness of the perturbation then becomes controlled by
a single, “sufficiently small” positive parameter λ tractable as
a coupling constant.

A. Exactly solvable N = 2 model

Jordan block with N = 2,

J (2)(E0) =
[

E0 1
0 E0

]
,

and with, say, E0 = 0 can be perceived, in the light of
Eq. (2), as a generic representative of an arbitrary N = 2 one-
parametric Hamiltonian H (2)(g) in its EP2 limit. Thus, up to a
trivial incorporation of transition matrix Q(2) via Eq. (2), we
may replace any given unperturbed Hamiltonian H (2)(g(EP2))
in Eq. (1) by its canonical form J (2)(0). Even when adding an
arbitrary (and, say, real) N = 2 perturbation matrix

V =
[
α1 μ

β α2

]
with bounded elements Vj,k = O(1), the exhaustive construc-
tion of all of the bound states remains non-numerical. Its
detailed presentation may be found in Sec. III A of [24]. For
the present methodical purposes we only need to recall the
elementary scaling rule

E (2)
± = ±

√
λ β + O(λ) (6)

characterizing the order of magnitude of the complete per-
turbed bound-state energy spectrum. This rule immediately
follows from secular equation

det(H − E ) =
[
λ α1 − ε

√
λ 1 + λ μ

λ β λ α2 − ε
√

λ

]
= 0,

ε = E/
√

λ = O(1),

i.e., from the implicit definition of the spectrum

(α1α2 − β μ)λ2 + (−α1ε − ε α2)λ3/2 + (−β + ε2)λ = 0.

The conclusion is that in the leading-order approximation
we get the two real energy roots E± of Eq. (6) if and only
if β � 0. In such a broad “physical” parametric corridor
the time evolution of our quantum system remains unitary
in a nonempty interval of small λ ∈ (0, λmax). In contrast,
the eigenvalues become purely imaginary whenever β < 0,
ε ≈ ε± = ±i

√|β|. In other words, the vicinity of the EP2
singularity splits into the “admissible,” unitarity-compatible
corridor and its “unphysical,” unitarity-incompatible comple-
ment. Thus the choice of β > 0 guarantees the existence of a
nonempty corridor connecting the interior of the domain of the
stable dynamical regime with its EP2-supporting boundary.

What remains to be discussed is the behavior of the N =
2 bound-state energies in the limit β → 0. Incidentally, for
the analysis the perturbation approximation approach is not
needed. The eigenvalue formulas E1,2 = λ α1,2 become exact
at β = 0. What is remarkable is only an enhancement of their
order of smallness, E1,2 = O(λ). We will see below that such
a rescaling behavior will also reemerge at the larger matrix
dimensions N > 2.

B. Nontrivial model with N = 3

The existence of transition matrices Q(3) and the routine
solvability of the EPN-related Eq. (2) at N = 3 enable us
to restrict attention, without any loss of generality, to the
perturbed Jordan-block Hamiltonians

H (3)(λ) = J (3)(0) + λV. (7)

A partial analysis of consequences may already be found
described in Sec. III C of the paper in [24]. Unfortunately,
our conclusions in loc. cit. were negative. In the EP3 vicinity
the quantum systems in question appeared nonunitary and
unstable. In the real space of parameters of perturbation V we
failed to localize a unitarity-compatible corridor which would
provide a λ �= 0 access to the EP3 singularity in the limit of
λ → 0.

In retrospect, the main reason for the failure may be traced
back to the fact that we tried to follow the guidance provided
by the simpler N = 2 model too closely. The use of the mere
λ-independent real perturbation matrix with elements Vj,k =
O(1), i.e.,

V =
⎡
⎣α1 μ1 ν

β1 α2 μ2

γ β2 α3

⎤
⎦, (8)

appeared insufficient. In fact, we only too heavily relied upon
the existence of the specific “exact” representation of the
N = 3 spectrum in terms of Cardano formulas. After all, this
strategy led already to overcomplicated formulas and did not
offer any insight. Thirdly, in a way guided by the results at
N = 2 we “skipped ...the discussion of models with vanishing
γ = 0” [24]. In other words, having restricted our attention to
the mere search for a “broad” corridor with γ �= 0 we missed
the opportunity. We did not manage to find any reasonable
construction of the corridor of stability at any nonvanishing
λ �= 0 in Eq. (7) (see the list of the related comments at the
end of Sec. III in [24]).

The nonexistence of the corridor at N = 3 and γ �= 0 may
be given an elementary proof. In its outline let us return to
ansatz (8). We may rescale the energies, in a way recom-
mended in [24], whenever γ �= 0, En = εn

3
√

λ. An implicit
definition of the spectrum is then immediately provided by
secular equation

det

⎡
⎢⎣

λ α1 − ε
3
√

λ 1 + λ μ1 λ ν

λ β1 λ α2 − ε
3
√

λ 1 + λ μ2

λ γ λ β2 λ α3 − ε
3
√

λ

⎤
⎥⎦ = 0.

Although the resulting secular polynomial is too long for
print, its leading-order part is short and yields the final,
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explicit closed-form result

ε ≈ ε1,2,3 = 3
√

γ .

This reconfirms that the whole spectrum cannot be real (and
the system compatible with unitarity) unless γ = 0.

IV. CONSTRUCTION OF THE CORRIDORS

In [24] we did not study the case of vanishing γ = 0
because we found it overcomplicated. Now we shall accept a
different strategy, assuming that the limiting constraint γ = 0
is only valid in the leading-order approximation in λ. In other
words, we will consider generalized, manifestly λ-dependent
versions of perturbations.

A. Corridor and its boundaries at N = 3

Transition to manifestly λ-dependent real perturbation ma-
trices

V =
⎡
⎣α1 μ1 ν

β1 α2 μ2

γ β2 α3

⎤
⎦ +

√
λV ′ + · · · ,

V ′ =
⎡
⎣α′

1 μ′
1 ν ′

β ′
1 α′

2 μ′
2

γ ′ β ′
2 α′

3

⎤
⎦, . . . (9)

is an enrichment of the representation of dynamics at N = 3. It
immediately leads us to a very natural resolution of the puzzle.
Let us now outline its main technical ingredients. First, at γ =
0 we have to change the energy scaling: En = εn

√
λ. From the

resulting amended secular equation

det

⎡
⎢⎣

λ α1 − ε
√

λ 1 + λ μ1 λ ν

λ β1 λ α2 − ε
√

λ 1 + λ μ2

λ3/2γ ′ λ β2 λ α3 − ε
√

λ

⎤
⎥⎦ = 0

we are allowed to omit all of the higher-order corrections as
irrelevant. Preserving merely the O(λ3/2) leading-order part of

secular equation

γ ′ + (β1 + β2) ε − ε3 = 0,

we only need to reflect the role and influence of the parameter
γ ′. In a preparatory stage we may try to simplify the task and
to fix, tentatively, γ ′ = 0. This would yield the two sample
roots ε± = ±√

β1 + β2, which are both real if and only if
β1 + β2 � 0. Thus relation β1 + β2 = 0 seems to offer the
first nontrivial specification of the boundary of the corridor
at γ ′ = 0. Unfortunately, the property of reality of the third
energy root (which, in the leading-order approximation, van-
ishes) remains uncertain. Thus we have to return to the full-
fledged analysis of the model at γ ′ �= 0. Along these lines we
abbreviated β1 + β2 = 3	2 and came to the following N = 3
result.

Lemma 1. For Hamiltonians (7) with small λ and arbitrary
real perturbations (9) the energy spectra are real for param-
eters inside an EP3-attached corridor such that γ = 0 and
γ ′ ∈ (−	3, 	3) .

Proof. The graph of the curve y(ε) = γ ′ + (β1 + β2) ε −
ε3 (with zeros equal to the energies) diverges to ±∞ at large
and positive or negative ε, respectively. The γ ′-independent
derivative y′(ε) = β1 + β2 − 3 ε2 has zeros ε± = ±	 which
determine the local minimum or maximum of y(ε). It must be
negative or positive, respectively, but this is guaranteed by our
constraint upon γ ′. �

B. Boundaries at N = 4

The perturbed Jordan-block Hamiltonians

H (4)(λ) = J (4)(0) + λV (10)

will be studied here with the following reduced, ten parametric
real perturbation matrix

V =

⎡
⎢⎣

μ1 0 0 0
α1 μ2 0 0
β1 α2 μ3 0
γ β2 α3 μ4

⎤
⎥⎦. (11)

Bound state energies En = εn
4
√

λ may now be defined via
roots of secular equation

det(H − E ) = det

⎡
⎢⎢⎣

λ μ1 − ε
4
√

λ 1 0 0
λ α1 λ μ2 − ε

4
√

λ 1 0
λ β1 λ α2 λ μ3 − ε

4
√

λ 1
λ γ λ β2 λ α3 λ μ4 − ε

4
√

λ

⎤
⎥⎥⎦ = 0.

In the leading-order approximation this yields the entirely
elementary quadruplet of solutions

εn ≈ γ 1/4.

At both signs of nonvanishing real γ two of those roots are
purely imaginary so that at arbitrarily small γ �= 0 and λ �= 0
the perturbed system becomes nonunitary. In other words, our
quantum system with γ �= 0 is unstable and it does not possess
any suitable physical Hilbert space of states H(S )(standard).
The system must be interpreted as having performed a phase

transition at λ = 0 [9,29]. At γ �= 0 and λ �= 0 its “energy” H
is not an observable anymore.

The essence of the paradox was clarified in our preced-
ing paper [24]. We emphasized there that in the quantum
mechanics of closed systems it only makes sense to con-
sider the “realizable” perturbations under which the perturbed
Hamiltonian still operates in a suitable H(physical). One has to
require that the “strength” of the perturbations is “measured”
in H(physical) rather than in any of its unitarily nonequivalent,
manifestly unphysical alternatives H(auxiliary) with, typically, a
“friendlier” inner product [21].
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In our present continuation of the EP4-related study of
realizable perturbations let us reopen the search for a stable
corridor in a restricted parametric domain where γ ≈ 0. With
this aim we replace the constant-perturbation ansatz (11) by

a more sophisticated, λ-dependent N = 4 analog of Eq. (9).
Recalling the strategy used at N = 3 we have to modify also
the scaling of the bound-state energies and put En = εn

3
√

λ in
an amended secular equation

det(H − E ) = det

⎡
⎢⎢⎣

λ μ1 − ε
3
√

λ 1 0 0
λ α1 λ μ2 − ε

3
√

λ 1 0
λ β1 λ α2 λ μ3 − ε

3
√

λ 1
λ4/3γ ′ λ β2 λ α3 λ μ4 − ε

3
√

λ

⎤
⎥⎥⎦ = 0.

Its leading-order component of order λ4/3 must vanish,

ε4 − β1ε − β2ε − γ ′ = 0. (12)

Such an upgrade of secular polynomial has still strictly two or four complex roots. The evolution of the system remains
nonunitary and unstable unless we set β1 + β2 → 0 and γ ′ → 0 making all of the roots of the leading-order secular equation
(12) vanish as well.

The way out of the difficulty is found in the next-step lowering of the order of magnitude of all of the coefficients in
approximate Eq. (12). In the language of physics this means that we have to introduce certain ad hoc higher-order perturbations.
Thus, proceeding along the same lines as before, we weaken the dominant components of the perturbation, β1 → β ′

1
2
√

λ,
β2 → β ′

2
2
√

λ, and γ ′ → γ ′′ λ. This induces the change in the scaling of the energies, En = εn
2
√

λ. The replacements lead to
the following ultimate amendment of the Schrödinger operator:

H − E =

⎡
⎢⎢⎣

λ μ1 − ε
√

λ 1 0 0
λ α1 λ μ2 − ε

√
λ 1 0

λ3/2β ′
1 λ α2 λ μ3 − ε

√
λ 1

λ2γ ′′ λ3/2β ′
2 λ α3 λ μ4 − ε

√
λ

⎤
⎥⎥⎦. (13)

Up to the higher-order O(λ5/2) corrections the exact secular equation det(H − E ) = 0 degenerates to the vanishing of the
effective secular polynomial,

z(ε) = −γ̃ − β̃ ε − α̃ ε2 + ε4 = 0, (14)

where

γ̃ = γ ′′ − α1α3, β̃ = β ′
1 + β ′

2, α̃ = α1 + α2 + α3. (15)

We arrive at our final answer.

Lemma 2. For a sufficiently small λ in the hierarchically perturbed four by four Hamiltonian of Eq. (13) the energy spectrum
remains real inside a nonempty EP4-attached corridor of parameters.

Proof. The graph of the left-hand-side function z(ε) of Eq. (15) (with its four zeros equal to the energies) has its three real
extremes localized at the zeros of its γ̃ -independent derivative z′(ε) = −β̃ − 2 α̃ε + 4 ε3. In the proof of Lemma 1 we saw that
the latter triplet of zeros ξ0,± was real for α̃ = 3	2 > 0 and β̃ ∈ (−	3, 	3). Thus, up to the parameters at the end points of
these constraints, the zeros ξ0,± [i.e., the coordinates of the local extremes of z(ε)] are real and nondegenerate. Thus the local
maximum of z(ε) is sharply larger than both of the local minima, z(ξ0) > max z(ξ±). As a consequence, the interval of variability
of our last free parameter γ̃ guaranteeing that z(ξ0) > 0 while max z(ξ±) < 0 is nonempty. �

V. CORRIDORS AT ARBITRARY N

The form of H in Eq. (13) is instructive in revealing a general hierarchy of relevance of the individual matrix elements of V
under the natural phenomenological requirement of the preservation of the unitarity of the evolution. The pattern can tentatively
be extrapolated to the higher matrix dimensions N with, in particular, E = ε

2
√

λ in the N = 5 Schrödinger operator

H − E =

⎡
⎢⎢⎢⎢⎣

λ ν1 − ε
√

λ 1 0 0 0
λ μ1 λ ν2 − ε

√
λ 1 0 0

λ3/2α′
1 λ μ2 λ ν3 − ε

√
λ 1 0

λ2β ′′
1 λ3/2α′

2 λ μ3 λ ν4 − ε
√

λ 1
λ5/2γ ′′′ λ2β ′′

2 λ3/2α′
3 λ μ4 λ ν5 − ε

√
λ

⎤
⎥⎥⎥⎥⎦,

032124-6



UNITARITY CORRIDORS TO EXCEPTIONAL POINTS PHYSICAL REVIEW A 100, 032124 (2019)

etc. (see also the illustrative explicit rederivation of such a
form of the corridor-compatible matrix in Sec. V B below).

A. Extrapolation pattern

We saw that at N = 2, N = 3, and N = 4 the perturbation-
expansion construction of the energy spectrum near the
Jordan-block extreme H (N )(g(EPN ) ) was straightforward. The
same technique can equally well be applied at any larger
matrix dimension N . Our specific additional physical require-
ment of the reality of the spectrum (i.e., of the unitarity of
the time evolution of the quantum systems in question) has
been found to be satisfied inside a specific nonempty domain
which we called corridor to EPN. We also saw that at N = 2,
N = 3, and N = 4 the corridor can be defined by certain very
specific choices of λ-dependent perturbations λV (λ) in which
the matrix elements are of unequal orders of smallness. The
pattern appeared amenable to a rigorous extrapolation beyond
N = 4.

Theorem 3. At any N = 2, 3, . . . and for all sufficiently
small λ > 0 the reality of the bound-state spectrum of en-
ergies En = εn

2
√

λ with εn = O(1) can be guaranteed by an
appropriate choice of parameters μ jk = O(1) in the real N by
N matrix Hamiltonian H = J (N )(0) + λV with

λV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0 0
λ μ21 0 . . . 0 0 0

λ3/2 μ31 λ μ32
. . .

...
... 0

λ2μ41 λ3/2 μ42
. . . 0 0 0

...
...

. . . λ μN−1N−2 0 0

λN/2μN1 λ(N−1)/2μN2 . . . λ3/2 μNN−2 λ μNN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Proof. Once we guessed the appropriate λ dependence of
the general Schrödinger operator it is entirely straightforward
to deduce the general leading-order part of the secular deter-
minant, and to recall the independence and the free variability
of the coefficients in the secular polynomial. �

B. Boundaries of corridor at N = 5

Let us start from the naive ten-parametric constant-matrix
perturbation

V =

⎡
⎢⎢⎢⎣

0 0 0 0 0
μ1 0 0 0 0
α1 μ2 0 0 0
β1 α2 μ3 0 0
γ β2 α3 μ4 0

⎤
⎥⎥⎥⎦

and from the unperturbed Jordan-block matrix H0 = J (5)(0).
The Schrödinger operator with E = ε

5
√

λ then reads

H − E =

⎡
⎢⎢⎢⎢⎣

−ε
5
√

λ 1 0 0 0
λ μ1 −ε

5
√

λ 1 0 0
λ α1 λ μ2 −ε

5
√

λ 1 0
λ β1 λ α2 λ μ3 −ε

5
√

λ 1
λ γ λ β2 λ α3 λ μ4 −ε

5
√

λ

⎤
⎥⎥⎥⎥⎦.

After we reduce the secular polynomial to its dominant part
we get the five elementary energy roots ε ≈ γ 1/5. Such a
spectrum cannot be all real unless γ = 0. This confirms the
necessity of diminishing the matrix element of perturbation in
its left lower corner, γ → γ ′ 4

√
λ (we may and will drop the

primes). This forces us to change, consistently, the scale of
E = ε

4
√

λ. The resulting effective (i.e., leading-order) secular
equation (−ε5 + β1ε + γ + ε β2)λ5/4 = 0 is now found to
lead, in the nontrivial case, to at least two complex, nonreal
energy roots. In the same corner of perturbation matrix as
above we have to diminish, therefore, the relevant matrix
elements again. Once we do so and once we drop the primes
in β j → β ′

l
3
√

λ, γ ′ → γ ′′ 3
√

λ2, and E = ε′ 3
√

λ, we get the
following tentative amendment of the Schrödinger operator:

H − E =

⎡
⎢⎢⎢⎢⎣

−ε
3
√

λ 1 0 0 0
λ μ1 −ε

3
√

λ 1 0 0
λ α1 λ μ2 −ε

3
√

λ 1 0
λ4/3β1 λ α2 λ μ3 −ε

3
√

λ 1
λ5/3γ λ4/3β2 λ α3 λ μ4 −ε

3
√

λ

⎤
⎥⎥⎥⎥⎦.

Recycling the abbreviations of Eq. (15) the dominant part
of the effective secular equation acquires the explicit three-
parametric form

−γ̂ − β̃ ε − α̃ ε2 + ε5 = 0, γ̂ = γ ′′. (17)

Its roots still cannot be all real unless they vanish in the given
order of precision. Making now the story short and iterating
the procedure once more we arrive, at last, at the ultimate
hierarchized and corridor-supporting perturbation matrix as
given by Theorem 3,

V =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
μ1 0 0 0 0√
λ α1 μ2 0 0 0

λ β1

√
λ α2 μ3 0 0

λ
√

λ γ λ β2

√
λ α3 μ4 0

⎤
⎥⎥⎥⎥⎦.

The effective O(λ5/2) part of the secular determinant det(H −
E ) leads now to the explicit form of the polynomial secular
equation:

−ε5 + (μ2 + μ1 + μ4 + μ3)ε3 + (α1 + α2 + α3)ε2

+ (β1 − μ2μ4 − μ1μ3 + β2 − μ1μ4)ε − α1μ4 + γ − μ1α3

= 0. (18)

It has the ultimate four-parametric flexibility as required. The
nonempty unitarity-preserving corridor to the λ = 0 EP5 ver-
tex does exist, with the leading-order boundaries prescribed,
in an implicit but still user-friendly manner, by Eq. (18).

VI. DISCUSSION

The recent successful localizations of the EP singularities
in various experimental setups revealed a perceivable increase
of their relevance in applied physics as well as in the quantum
physics of resonant and unstable open systems [5]. In the
quantum theory of stable systems the role of EP singularities
used to be traditionally restricted to their purely mathematical

032124-7



MILOSLAV ZNOJIL PHYSICAL REVIEW A 100, 032124 (2019)

role of an obstruction of convergence in perturbation theory
[2]. Such a situation was only slowly improving with the
emergence of the first realistic models in relativistic quantum
mechanics where the EP marks an onset of instability [10]. An
analogous phenomenological phase-transition interpretation
was then also assigned to the EPs in many other unitary
quantum systems [9,29,32].

In a conventional perspective these innovations seem to
contradict the well-known Stone theorem [33]. Due to this
theorem any unitary evolution (say, in H(S)

(standard)) must nec-
essarily be generated by a Hamiltonian which is self-adjoint
(naturally, in the same Hilbert space H(S)

(standard)). From this
point of view the innovation of quantum theory of unitary
systems may be presented and advocated in two ways. First,
in an abstract manner, as a purely technical simplification
of the physical inner product, i.e., as a reduction of our
standard physical Hilbert space into its auxiliary partner, i.e.,
as a replacement H(S)

(standard) → H(F )
(friendly) leading to a friendlier

mathematics. Secondly, alternatively, in an opposite direction
and in a very concrete spirit, one picks up an auxiliary Hilbert
space first of all. Then one replaces its unphysical but user-
friendly inner product by a less friendly but correct physical
amendment.

This is the most common formulation of the recipe. In prac-
tice, what is then required is just the Hamiltonian-dependent
construction of the Hamiltonian-Hermitizing metric operator
�. Naturally, the existence of such a metric requires the reality
of the spectrum; there is no consistent (unitary) quantum
theory without such a constraint [7]. Once the spectrum is
shown real, we map H(F )

(friendly) → H(S)
(standard) and convert the

initial, “friendly but false” Hilbert space with “natural” met-
ric �(false) = I into its model-dependent physical amendment
with metric �(standard) �= I .

In the present continuation of the related considerations
in Ref. [24] we were able to explain that the conjecture of
the nonexistence of an “admissible” access corridor to the
EP3 limit only meant the nonexistence of a “broad” corridor
(which we found to exist at N = 2 but not at N = 3). We came
now with a corrigendum: the corridors of a stable access to
the EPN extremes do exist. The only constraint is that they
are “narrow” in the sense of Theorem 3.

The reason for the nonexistence of a “broad” corridor at
N � 3 has been shown here to lie in the fact that at least some
of the elements of the class of perturbations which are only
required bounded in the auxiliary Hilbert space H(F )

(friendly) may
happen to be too large in H(S)

(standard). Then, they can move the
system out of a given (or, better, out of any eligible) physical
Hilbert space of course. For this reason, the perturbations
which are merely bounded in the auxiliary space H(F )

(friendly)
become a purely formal construct because they are only
small with respect to a phenomenologically irrelevant metric
�(false) = I . Even without an explicit reference to the metric
we have shown that at any dimension N and at any, arbitrarily
small but nonvanishing V (N )

N,1 = O(1) and λ > 0 the perturbed
Hamiltonians (5) cannot be assigned any physical meaning
or experimental realization.

In the second, main step of our considerations we inverted
the ordering of questions. In the light of our main interest in
the system’s stability we decided to search for a consistent,
“admissible” subset of perturbations λV which would still
keep the perturbed Hamiltonian compatible with the quantum
theory of reviews [1,21]. We felt encouraged by a preparatory
analysis of our one-parametric illustrative model (3) which
appeared easily converted into its canonical Jordan-block
form. Having used these blocks as certain strong-coupling
EP-related unperturbed Hamiltonians we were then able to
leave the elementary model and to extend the scope of our
considerations to the entirely general N by N real-matrix class
of perturbations λV (N ).

We may summarize that we managed to specify the struc-
ture of admissible, observability nonviolating perturbation
matrices V (N ) = V (N )(λ) at all N . Besides the proof of ex-
istence we also described the method of an (implicit) de-
termination of the leading-order boundaries of the unitarity-
compatible corridors S in the Euclidean real space of the
variable matrix elements of V (N )(λ). Inside these domains of
“admissible” parameters the evolution remains unitary. We
may conclude that, in a way contradicting the scepticism of
conclusions based on the constructions of the pseudospectra
[17,18] and/or of the “broad” corridors [24], the quantum
systems in question remain stable and closed inside corridors
S , which may be called “narrow.”
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