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Critical slowing down and entanglement protection

Eliana Fiorelli,1,2,3,4 Alessandro Cuccoli,1,2 and Paola Verrucchi5,1,2

1Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
2INFN, Sezione di Firenze, 50019 Sesto Fiorentino, Italy

3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
4Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham,

Nottingham NG7 2RD, United Kingdom
5ISC, CNR, UOS Dipartimento di Fisica, Università di Firenze, 50019 Sesto Fiorentino, Italy

(Received 6 February 2019; published 26 September 2019)

We consider a quantum device D interacting with a quantum many-body environment R which features a
second-order phase transition at T = 0. Exploiting the description of the critical slowing down undergone by R
according to the Kibble-Zurek mechanism, we explore the possibility to freeze the environment in a configuration
such that its impact on the device is significantly reduced. Within this framework, we focus on the magnetic-
domain formation typical of the critical behavior in spin models and propose a strategy that allows one to protect
the entanglement between different components of D from the detrimental effects of the environment.
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I. INTRODUCTION

In recent decades studies on how to manipulate quantum
systems have boosted the scientific community’s confidence
in regard to the possible realization of quantum devices. These
are usable apparatuses whose operating principles are based
on genuinely quantum properties, among which entanglement
between components is key to outperforming classical ma-
chines. Given that an apparatus is usable if some external
control can be exerted on the state and evolution of its com-
ponents, the description of a quantum device must envisage
the existence of at least another system, which enforces such
control by interacting with the device itself. This means that
a quantum device is open to the external world by definition,
and it is not a stretch to name “environment” whatever in-
fluences its behavior from the outside. For this reason, the
analysis of how quantum devices work implies the study of
how open quantum systems evolve [1–9].

In fact, it is one of the most challenging tasks of quantum
technologies, that of allowing quantum devices to be “open”
and yet to properly function [10]: Quantum properties are
fragile and vulnerable to the environmental impact, and strate-
gies for their protection [11–21] most often imply either the
suppression of the interaction between the environment and
device (which is never exactly achievable) or a very detailed
design of their couplings (which is usually an experimentally
arduous task).

In this work we aim at understanding if a quantum device
D can be protected by intervening in some properties of its
environment R, without quenching the interaction between
D and R or giving it too peculiar a form. To this aim, we
specifically consider the case when R is a quantum many-
body system featuring a second-order phase transition and
investigate the possible consequences of a critical behavior
of R on the entanglement between different components of D.
The reason for this choice is the possible exploitation of the

critical slowing down leading to the Kibble-Zurek mechanism
(KZM) in order to freeze the environment in a configuration
that is as harmless as possible for the device.

In order to focus this argument, we first notice that any
entanglement between D and R (hereafter dubbed external)
is useless as far as the device functioning is concerned, and
its buildup inevitably goes with damages of that between
different components of D (hereafter dubbed internal), which
is the useful one. A naive strategy for protecting the latter
by minimizing the former is to deal with an environment that
behaves almost classically [22], which is to say it can only be
weakly entangled with any other system. Referring to the case
of a magnetic environment, which is what we will hereafter
do, an almost-classical R can be obtained in the form of a
system with a large value of the spin S [23]; however, the
effect of one such system upon each component of D could
be so prevalent as to squash the fragile quantum machineries
that make the device function, up to the point of making its
state always separable, as if its components were not part of a
unique composite system D.

We therefore propose another strategy, based on the
magnetic-domain formation which is typical of the critical
behavior of many spin models. In fact, each domain is a
large-S system and yet different domains do not point in the
same direction, which should result in an overall weaker effect
of R on the device components. Moreover, the dynamics of
magnetic domains can be significantly slowed down in the
vicinity of a second-order phase transition, which might also
help protect the internal entanglement.

The paper is organized as follows. In Sec. II we define
the model of the quantum device and its environment, with
Secs. II A and II B devoted to a brief description of the critical
slowing down and the Kibble-Zurek mechanism, respectively.
In Sec. III we introduce the tools used in Secs. IV and V to
study the evolution of the overall model. The dynamics of the
entanglement between the device components is described in
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FIG. 1. Schematic representation of the ring of spins with a
central qubit pair.

Sec. VI. Our results are presented and discussed in Sec. VII.
A summary is given and conclusions are drawn in Sec. VIII.

II. MODEL

We consider a device-plus-environment quantum system
� = D + R, where the device is a qubit pair D = A + B and
the environment is a ring R, made of N spin- 1

2 particles,
as shown in Fig. 1. Each qubit is described by the Pauli
operators σ̂∗, with [σ̂ α

∗ , σ̂
β
∗ ] = i2εαβγ σ̂

γ
∗ , α(β, γ ) = x, y, z,

and ∗ = A, B, while elements of R are described by operators
ŝi, with [ŝα

i , ŝβ
j ] = iεαβγ δi j ŝ

γ
i , |ŝi|2 = 3

4 , i( j) = 1, . . . , N , and
periodic boundary conditions enforced, ŝN+1 = ŝ1.

As we want R to feature a second-order phase transition
that survives the lowering of temperature (so that we can
reduce the thermal effects without modifying our setting),
we focus on quantum phase transitions (QPTs), which are
second-order phase transitions occurring at zero temperature,
under the tuning of some model parameter. In this respect
notice, however, that quantum critical properties survive at
sufficiently low and yet finite temperatures, which makes the
following analysis amenable to experimental investigation.
The N → ∞ limit underlying the occurrence of any genuine
phase transition is implemented by combining a large value of
N with the periodic boundary conditions inherent in the ring
geometry.

In the above general framework we specifically choose
R to be described by a prototypical spin model for a one-
dimensional QPT. As for the two qubits, they are coupled with
each component of the ring via a ZX ferromagnetic exchange
but do not interact among themselves and they are not subject
to the transverse field that drives the QPT. We will comment
on these choices in Sec. VIII.

The dimensionless Hamiltonian of the system is

Ĥ = ĤI − g

2

(
σ̂ z

A + σ̂ z
B

) N∑
i=1

(ŝ+
i + ŝ−

i ), (1)

with

ĤI = −
N∑

i=1

ŝx
i ŝx

i+1 − h(t )
N∑

i=1

ŝz
i (2)

the Hamiltonian of the ring, where we have chosen a fer-
romagnetic Ising interaction whose exchange integral J sets

the energy scale (i.e., the physical Hamiltonian of the model
is the above dimensionless one times the actual exchange
integral J). The coupling g is positive, and h(t ) accounts for
the presence of a time-dependent transverse (i.e., pointing in
the +z direction) magnetic field that drives the QPT. We will
also consider the case of constant field.

As for the initial state of the system, we will take it to be
separable as far as the partition D + R is concerned,

|�(0)〉 = |D〉 ⊗ |R〉, (3)

where the state of the qubit pair is

|D〉 =
∑

γ

cγ |γ 〉, (4)

with {|γ 〉}HD the four eigenstates of (σ̂ z
A + σ̂ z

B), generically
labeled by the index γ = 1, . . . , 4; the coefficients cγ are
complex numbers and are different from zero for at least two
different γ , in order to ensure that A and B are entangled.

A. Critical behavior of the ring

The Hamiltonian ĤI defines the one-dimensional quantum
Ising model in a transverse field (QIF), which is a paradig-
matic example of a system undergoing a QPT [24]. The
transition occurs due to the competition between the action of
the external field, which supports independent alignment of
each spin in the z direction, and the exchange coupling among
adjacent spins, which favors their being parallel to each other
and all pointing in the x direction. The control parameter
driving the transition is the field h, with the QPT located at
h = 1; the region where critical behaviors are observed is
usually dubbed the critical region. For the sake of clarity, in
this section we will use the parameter

ε := h − 1 (5)

and set the QPT at εc = 0.
The order parameter for the QIF is the x component of the

magnetization

1

N

∑
j

〈
ŝx

j

〉 = 〈
ŝx

i

〉 ≡ m ∀ i, (6)

where by 〈·〉 we indicate the expectation value on the transla-
tionally invariant ground state; m is finite in the ordered phase
(ε < 0) and it vanishes in the disordered one (ε > 0). In the
critical region, the related correlation functions χr := 〈ŝx

i ŝx
i+r〉

behave according to

χr − m2 ∼ e−r/ξ , (7)

where ξ is the correlation length, which diverges at the
transition as

ξ ∼ ξ0

|ε|ν , (8)

with ν > 0 the corresponding critical exponent and ξ0 a
nonuniversal length scale. We notice that ξ is sometimes
dubbed the healing length, to indicate that it sets the scale
upon which 〈ŝx

i 〉 heals in space, returning to the spatially
homogeneous value m after having been affected by a local
fluctuation. A similar concept can be introduced to describe
the way the system reacts to instantaneous, i.e., local in time,
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fluctuations. This leads to the introduction of a quantity called
relaxation, or reaction, time τ , which sets the timescale upon
which the relevant quantities settle, after the control parameter
has varied instantaneously. The reaction time is also known to
diverge at the transition, according to

τ ∼ τ0

|ε|νz
, (9)

with z > 0 the so-called dynamical critical exponent and τ0

a nonuniversal timescale. It is worth mentioning that the
product νz also rules the critical vanishing of the gap 

between the ground-state energy and that of the first-excited
one,  ∼ |ε|νz, signaling the most relevant relation between
such vanishing and the occurrence of the QPT itself. Without
further commenting on this point, which has been extensively
discussed in the literature, let us specifically address Eq. (9).

A divergent relaxation time implies an extremely slow
dynamics of the system as a whole, with fast fluctuations
occurring only locally without any significant effect on the
global scale set by the correlation length. This phenomenon,
which is usually referred to as a critical slowing down, is
evidently intertwined with the divergence of the correlation
length, if only for the fact that both Eqs. (8) and (9) describe
a power-law divergence at ε = εc = 0. On the other hand, a
finite relaxation time is key to the definition of adiabaticity,
i.e., the distinctive feature of dynamical regimes where the
system changes its state (or configuration, in the classical
case), after the variation of relevant parameters, in a time
interval that is much shorter than the timescale of the variation
itself. Therefore, we expect the divergence of τ at ε = 0, as
well as the consequent critical slowing down, to be related to
the onset of a nonadiabatic regime, sometimes called diabatic,
which is indeed at the heart of the KZM described below.

B. Kibble-Zurek mechanism

An exact analytical description of the dynamical evolution
of a many-body quantum system which is driven across its
phase transition is an unattainable task, for the very same
reason that the transition occurs, i.e., the presence of terms
in the system Hamiltonian that do not commute, not even at
different times. From a numerical viewpoint, the situation is
equivalently intractable, even in a classical system, because
of several divergences that characterize any critical behavior.
However, in the same spirit that allows one to derive and use
equations such as Eqs. (8) and (9), it is possible to elaborate
on criticality to get an effective description of the process
through which a phase transition dynamically happens. This
is how Kibble and Zurek built a paradigm to describe out-of-
equilibrium dynamics around a continuous phase transition,
today known as the Kibble-Zurek mechanism. The theory was
initially proposed by Kibble [25] within the cosmological con-
text, later extended by Zurek [26,27] to condensed-matter sys-
tems, and finally extended to QPTs [28–33]. The mechanism
takes different forms depending on the model Hamiltonian
and the functional time dependence of the control parameter.

In this section we describe the KZM for the QIF when the
transverse field varies linearly in time,

h(t ) = h0 − vt, (10)

with positive velocity v; 1/v is referred to as the quench time,
suggesting that the transition is crossed by lowering the field,
i.e., moving from the disordered to the ordered phase. In fact,
this is the process to which we will refer in this work, with
h0 > 1 to set the model in the disordered phase when the
process starts.

The control parameter in Eq. (5) is

ε(t ) = h(t ) − 1 = (h0 − 1) − vt, (11)

which embodies the definition of a critical time

tc = h0 − 1

v
(12)

after which the QPT is reached; more generally, the time left
before the transition is crossed is

δ(t ) = tc − t = h0 − 1

v
− t . (13)

The key observation leading to the KZM is that, due to the
divergence of the reaction time (9), there certainly exists a
finite time interval where

δ(t ) � τ, (14)

meaning that before the system has reacted globally to the
control-parameter variation, the critical point has already been
reached, a situation which is evidently inconsistent with any
adiabaticlike dynamics. In fact, if Eq. (14) holds, the system
cannot merely adapt to the variation of the control parameter
but rather gets stuck on a configuration that is qualitatively the
one taken when δ(t ) = τ , i.e., at the time

t̄ = h0 − 1

v
−
√

1

2v
, (15)

where we have used Eqs. (9) and (11) with ν = z = 1 and
τ0 = 1

2 , which are the expected values for the QIF.
From the above description, the diabatic dynamical regime

is set in the time interval

t̄ � t � 2tc − t̄ . (16)

The aforesaid process can be graphically depicted as in Fig. 2.
The magenta line represents the reaction time τ that diverges
at tc, when ε(tc) = 0 and the critical point is reached. The
purple line is δ(t ) as from Eq. (13), while the blue one is ε(t )
from Eq. (11). The shaded area is where δ(t ) � τ .

In fact, the KZM goes beyond the above phenomenology
and describes its implications as far as the dynamics of the
system is concerned. In the remaining part of this section, we
discuss these implications for the QIF in the disordered phase,
aimed at devising approximations to be used in the diabatic
regime.

Referring to the process as represented in Fig. 2, we know
that for large fields, despite the ring being in its disordered
phase as far as the spin correlations in the x direction are
concerned, its ground state is ordered, with all the spins
aligned in the z direction, though independent of each other.
Consistently with the usual terminology, we will understand
that in the disordered noncritical phase, the ring exhibits a
paramagnetic behavior.

Once the quench starts the dynamics is still adiabatic,
with the magnetization in the z direction that decreases with
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FIG. 2. Schematic representation of the KZM. See the text below
Eq. (16) for a detailed description.

time, as long as the reaction time is smaller than δ(t ), i.e.,
for t � t̄ . However, blocks of dynamically correlated spins,
hereafter dubbed domains, begin to appear. If the exponential
behavior (7) has already set in, a correlation length exists and
it makes sense to take the length of the above domains to be
of the same order of magnitude.

When the QPT gets closer and the reaction time becomes
much longer than δ(t ), i.e., for t � t̄ , adiabaticity is lost: The
ring has no time to conform its state to the instantaneous
ground state of the time-dependent Hamiltonian and it gets
stuck in the state where it was at t = t̄ , with domains of
average length ξ [ε(t̄ )] := ξd . Due to the homogeneity of the
Ising coupling along the ring, these domains require a time
which is proportional to ξd to establish dynamical correlations
among themselves. On the other hand, at t = t̄ the system is
in its critical region, meaning that ξd is very large. Therefore,
different domains cannot be causally connected and can be
effectively described as noninteracting. This is a relevant point
in Sec. V, where the formation of effectively noninteracting
domains allows us to describe R in terms of large independent
spins.

C. Weak-coupling constraint

The phenomenology described in Secs. II A and II B refers
to the ring as if it were not interacting with the two qubits, i.e.,
as if g = 0 in the Hamiltonian (1). On the other hand, we aim
at exploiting the KZM to control the dynamics of the complete
model, with g > 0.

This is made possible by enforcing a weak-coupling con-
straint

g � 1, g � h(t ) (17)

throughout the rest of this work. These conditions have
no implication on the description of the critical behavior,
which occurs when |h(t )| ∼ 1, but they definitely rule out the

region where the ring becomes effectively ordered due to the
vanishing of h(t ). Therefore, to avoid inconsistencies with
respect to this point, our analysis will exclusively concern the
disordered phase h(t ) � 1, where the conditions (17) can be
safely assumed. This will be used in Secs. IV and V, in order
to get an effective propagator and hence the evolved state of
the system, in both the paramagnetic and diabatic settings.

III. STRATEGY AND ESSENTIAL TOOLBOX

In this section we explain our goal and provide the reader
with the essential tools we have used to accomplish it. Re-
ferring to the possible strategies to protect the internal entan-
glement mentioned in the Introduction, we will compare the
way the entanglement between A and B decreases after the
interaction with R is switched on, in two different settings,
both relative to the disordered ε > 0 phase.

First, we will consider the dynamics of the model for a
constant large value of h so as to set the ring far from its
critical region; in this case we expect it to behave as an almost
classical paramagnet, acting upon D as if it were one single
system with a very large spin S , pointing in the direction of the
field. The overall evolution of the system will be effectively
ruled by the coupling between D and R only, and we will refer
to this setting as the paramagnetic case.

Second, we will set the ring well within the critical region
and drive it into the diabatic regime by quenching the mag-
netic field as h(t ) = h0 − vt , with h0 � 1. The time depen-
dence of the field will enter the evolution of the system (with
the KZM playing an essential role in effectively describing it),
and we will refer to this setting as the diabatic case.

In both settings we will study how the initial state (3)
changes under the action of the propagator defined by the
Hamiltonian (1); this will allow us to obtain the evolved
state of D (a mixed state due to the generation of external
entanglement) via the partial trace over the Hilbert space of R;
the internal entanglement dynamics will be finally analyzed in
terms of the time dependence of the concurrence [34] between
the two qubits. Despite the peculiar features of the param-
agnetic and diabatic regimes, the coupling between R and D
makes it impossible to exactly determine the evolution of the
state (3). This is due to the commutation rules obeyed by spin
operators, which most often prevent one from getting closed
factorized expressions for the propagators by the Zassenhaus
formula [35], i.e., the dual of the Baker-Campbell-Hausdorff
one. However, when dealing with spin operators describing a
system with a large value of S , we can obtain a reasonable
approximation by the following argument.

Hamiltonians that contain terms gŜα , with g some coupling
constant as in Eq. (1), can be considered in the large-S limit
provided g scales as 1

S , so as to keep the corresponding
energy finite. Such a condition turns into gS ∼ const or, quite
equivalently,

gmS� ∼ 0 ∀ m > � � 1; (18)

this is how we will hereafter enforce the large-S condition
whenever needed. Notice that, according to these condi-
tions, the weak-coupling constraint 0 < g � 1, introduced in
Sec. II C, corresponds to taking 1 � S < ∞. Moreover, the
above reasoning also applies if the large-S spin operators
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Ŝα enter the propagator further multiplied by other operators
acting on the Hilbert space of a different physical subsystem,
with which they therefore inherently commute, such as the
qubit operators σ̂ z

A,B in the second term of Eq. (1).
In the following two sections we will factorize the propaga-

tor exp{−it Ĥ} by the Zassenhaus formula for spin operators
(see Appendix A), possibly with large S , and apply it to the
initial state (3), with |R〉 described by spin-Scoherent states
(CSs) that are described in Appendix B.

IV. PARAMAGNETIC CASE

In this section we consider the dynamics of the overall
model at T = 0, in the weak-coupling regime, for a constant
value of the field. Such a value is understood to be sufficiently
large to guarantee an approximately paramagnetic behavior of
R in the absence of D.

A. Initial state

Consistently with the ring behaving as a paramagnet, we
choose its initial state as

|R〉 = ⊗N
i=1 |↑i〉, (19)

where |↑i〉 is the eigenstate of ŝz
i with eigenvalue 1

2 . In fact,
we will adopt a description in terms of spin- 1

2 CSs (see
Appendix B) identifying each |↑i〉 with the reference state |0i〉
used to define the spin- 1

2 CSs for the particle sitting at site
i. For the sake of clarity, these spin- 1

2 CSs will be hereafter
indicated by |ωi〉. We therefore write the initial state of the
system in the paramagnetic case as

|�para (0)〉 = |D〉 ⊗N
i=1 |ωi = 0〉. (20)

B. Propagator

We handle the propagator via the Zassenhaus formula (A5)
with λ = −it and X̂ = ĤI. This implies that Ŷ is proportional
to g, and we can implement the weak-coupling constraint (17)
by only taking terms in Eq. (A2) which are linear in g, thus
getting

Cn+1 = g

2

(
σ̂ z

A + σ̂ z
B

)
hn

(n + 1)!

∑
i

[(−1)n+1ŝ+
i − ŝ−

i ]. (21)

By carefully manipulating the factors of the Zassenhaus for-
mula, we get

e−it Ĥ
para 

[
N∏

i=1

exp

(
σ̂ z

A + σ̂ z
B

2
[l (t )ŝ−

i − l (t )∗ŝ+
i ]

)]
e−it ĤI ,

(22)
with

l (t ) = g

h
(1 − e−ith). (23)

C. Evolved state

The evolved state is obtained by acting with the propaga-
tor (22) on the initial state (20). In fact, the form of the above
propagator dictates to first evaluate the action of e−it ĤI on the
initial state of the ring. As we are in the paramagnetic case,
the state (19) is a good approximation of the ground state

of ĤI with energy Eg.s.; therefore, the second factor on the
right-hand side of Eq. (22) gives rise to an irrelevant overall
phase factor exp{−itEg.s.} that we will hereafter drop. We thus
find

|�para (t )〉 =
∑

γ

cγ |γ 〉 (⊗N
i=1 eπγ [l (t )ŝ−

i −l (t )∗ ŝ+
i ] |0i〉

)
, (24)

where πγ are the eigenvalues of (σ̂ z
A + σ̂ z

B)/2. As each expo-
nential in this expression is the displacement operator [see
Eq. (B1)] for one spin of the ring acting on the respective
reference state, it is

|�para (t )〉 =
∑

γ

cγ ⊗N
i=1 |ωγ (t )〉i (25)

for

ωγ (t ) = πγ l (t ) (26)

and l (t ) as in Eq. (23).

V. DIABATIC CASE

In this section we study the dynamical process underlying
our proposal for protecting internal entanglement by the crit-
ical slowing down implied by the KZM. We recall that we
now consider the model in the weak-coupling regime, with a
time-dependent field h(t ) = h0 − vt , and h0 � 1 so as to set
R in its disordered critical region, where domains of dynam-
ically correlated spins exist according to the phenomenology
described in Sec. II. If the ring has already entered the diabatic
region t > t̄ , these domains are effectively noninteracting and
frozen in size, their length being on the order of ξd := ξ [ε(t̄ )],
which is the same as saying that each domain involves ξd

adjacent spins of the ring, given the dimensionless character
of all our expressions. Since R is made of N spins, the number
of distinct domains is nd = N/ξd .

Spins within the same domain stay roughly aligned with
each other by definition. Therefore, the internal dynamics of
each domain can be neglected, and the evolution of R can
be described in terms of spin operators relative to distinct
domains. In other terms, one can replace the notion of a
domain as a set of ξd spin- 1

2 particles with that of a single
spin-Sd system, with Sd ∼ ξd/2. Formally, this is done by
defining the collective spin operators Ŝ := ∑ξd

i=1 ŝi, such that
|Ŝ|2 = Sd (Sd + 1), so that the whole ring can be described
by a set of nd spin operators {Ŝδ}, with δ = 1, . . . , nd , each
describing a spin-Sd system, with the same Sd ∼ ξd/2, as
depicted in Fig. 3.

Once the above description is adopted, the original ex-
change interaction in Eq. (2) is mapped into the effective one

− jeff

nd∑
δ=1

Ŝx
δ Ŝx

δ+1, (27)

with a dimensionless coupling jeff which is determined
according to the following reasoning. Given the nearest-
neighbor nature of the original Ising exchange, its contribution
from one single domain is ∼ξd/4 and from the whole ring is
∼ndξd/4 = N/4, i.e., a constant that can be safely neglected.
This means that the total exchange energy of the original
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FIG. 3. Schematic representation of the spins Sj with the central
qubit pair.

model must equal the interaction energy between neighboring
spins on the edge of adjacent domains, i.e., jeffndS2

d m2 
nd m2, where we have written 〈ŝi

x ŝx
i+1〉 as m2 by Eq. (7) with

r = 1 and ξ � 1. In fact, as we are in the disordered critical
region, it is m = 0; however, the above reasoning works
regardless of what side of the QPT is considered, and we can
safely use it to determine how jeff scales with the domain size.
Finally, recalling that Sd ∼ ξd/2, we get

jeff ∼ 2

ξ 2
d

� 1. (28)

The strong reduction of the Ising coupling between domains
represented by Eq. (28) is consistent with the KZM picture
of approximately noninteracting domains and allows us to
neglect the Ising term in Eq. (2) and write the effective
Hamiltonian in the diabatic setting as

Ĥdia (t )  −h(t )
nd∑

δ=1

Ŝz
δ − g

2

(
σ̂ z

A + σ̂ z
B

) nd∑
δ=1

(Ŝ+
δ + Ŝ−

δ ). (29)

It is worth noting that all the operators {|Ŝδ|2} commute with
Ĥdia (t ) at any time, which formally confirms our considering
Sd fixed.

A. Initial state of the ring (diabatic)

Consistently with the above picture, we take the initial state
of the ring as

|Rdia〉 = ⊗nd
δ=1|δ〉, (30)

where |δ〉 is the initial state of the δth domain, which
is determined by the following reasoning. The KZM im-
plies that each domain behaves as a spin-Sd system, with
Sd � 1: Given the large value of Sd , one can resort to a
semiclassical picture and say that each domain points in
some direction nδ (0) := n(ϑδ (0), ϕδ (0)), where n(ϑ, ϕ) =
(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) is the unit vector along the
direction defined by the spherical polar angles (ϑ, ϕ). On the
other hand, there exist quantum spin-S states which are in
one-to-one correspondence with unit vectors in R3 and that
formally transform into those vectors in the S → ∞ limit;
they are the spin-S CSs introduced in Appendix B. Therefore,

it makes sense to choose

|δ〉 = |�δ (0)〉 = e�δ (0)Ŝ−
δ −[�δ (0)]∗Ŝ+

δ |0δ〉, (31)

where �δ (0) is in one-to-one correspondence with the above
direction nδ (0) via Eq. (B3). As for the choice of the set of
initial domain directions, i.e., of the nd parameters {�δ (0)},
we have used a specific procedure to make it consistent with
the expected value of the ring magnetization along the z
direction, as described in Appendix C.

B. Propagator (diabatic)

The Hamiltonian in the diabatic setting is inherently time
dependent, meaning that, at variance with the paramag-
netic case considered in Sec. IV, the propagator embod-
ies a troublesome time-ordering operator. However, since
[Hdia (t1), Hdia (t2)] ∼ v(t1 − t2)/Sd and we are dealing with
extended domains (Sd � 1), the propagator can still be writ-
ten as exp{−it Ĥdia (t )} as long as vt is not too large, which is
guaranteed, via Eq. (11), by the diabatic setting, h0 � 1 and
ε(t ) > 0.

Therefore, we can again handle the propagator via the
Zassenhaus formula (A5) with λ = −it , now setting X̂ =
−ht

∑nd
δ Ŝz

δ , and Ŷ = − g
2 (σ̂ z

A + σ̂ z
B)
∑nd

δ (Ŝ+
δ + Ŝ−

δ ), where
ht := h(t ) for the sake of simpler notation. Since Sd � 1 we
use the approximation (18) and get

Cn+1 ∼ (−1)n

(n + 1)!
(it )n+1hn

t

g

2

(
σ̂ z

A + σ̂ z
B

)
×
∑

δ

[
Ŝz

δ, . . . ,
[
Ŝz

δ︸ ︷︷ ︸
n times

, Ŝ+
δ + Ŝ−

δ

]
. . .

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(it )n+1

(n + 1)!
hn

t

g

2

(
σ̂ z

A + σ̂ z
B

)∑
δ

(Ŝ+
δ + Ŝ−

δ ) if n is even

(it )n+1

(n + 1)!
hn

t

g

2

(
σ̂ z

A + σ̂ z
B

)∑
δ

(Ŝ+
δ − Ŝ−

δ ) if n is odd.

(32)

By carefully manipulating the factors of the Zassenhaus for-
mula, we obtain

e−it Ĥ
dia ∼

∏
δ

eitht Ŝ
z
δ e[(σ̂ z

A+σ̂ z
B )/2][ f (t )Ŝ−

δ − f ∗(t )Ŝ+
δ ], (33)

with

f (t ) = g

ht
(eitht − 1). (34)

C. Evolved state (diabatic)

Under the effect of the above propagator, the initial
state (3), with |R〉 as from Eqs. (30) and (31), evolves into

|�dia (t )〉 =
∑

γ

cγ |γ 〉 ⊗δ eitht Ŝ
z
δ eπγ [ f (t )Ŝ−

δ − f (t )∗Ŝ+
δ ]|�δ (0)〉,

(35)

where πγ are the eigenvalues of (σ̂ z
A + σ̂ z

B)/2. To evaluate the
action of the propagator on the initial state, we first note that

eπγ [ f (t )Ŝ−
δ − f (t )∗Ŝ+

δ ] = e�γ (t )Ŝ−
δ −[�γ (t )]∗Ŝ+

δ = �̂
γ

δ (t ), (36)
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with �γ (t ) := πγ f (t ), i.e., via Eq. (B2),

ϑγ (t ) = g|πγ |2√
2

ht

√
1 − cos(tht ),

ϕγ (t ) = arctan

(
πγ g

ht
[cos(tht ) − 1],

πγ g

ht
sin(tht )

)
. (37)

Then, using the composition rule (B10) and the defini-
tion (31), we obtain

�̂
γ

δ (t ) |�δ (0)〉 = |�γ

δ (t )〉 ei�γ

δ (t )Sd , (38)

with �
γ

δ (t ) = �(�γ (t ),�δ (0)) ∈ R, and

nγ

δ (t ) = R�γ (t )nδ (0), (39)

with R�γ (t ) the rotation in R3 defined in Eq. (B5). The final
state thus reads

|�dia (t )〉 =
∑

γ

cγ |γ 〉 ⊗δ ei�γ

δ (t )Sd eitht Ŝ
z
δ

∣∣�γ

δ (t )
〉
. (40)

The further action of the exponential containing Ŝz
δ can be

made explicit via the decomposition (B8) of the spin-S CSs
on the eigenstates of Ŝz reported in Appendix B. However, as
this is irrelevant in what follows, we keep the state |�dia (t )〉
as it is in Eq. (40).

VI. ENTANGLEMENT EVOLUTION

In this section we focus upon the internal entanglement
featured by the evolved states in the paramagnetic and diabatic
setting, Eqs. (25) and (40), respectively. We first notice that in
both cases it is

|�(t )〉 =
∑

γ

cγ |γ 〉 |Rγ (t )〉, (41)

and hence, by partially tracing |�(t )〉 〈�(t )| upon the Hilbert
space of the ring, the state of the device reads

ρD(t ) =
∑
γ γ ′

(cγ c∗
γ ′ |γ 〉 〈γ ′|) 〈Rγ ′

(t )|Rγ (t )〉, (42)

with

〈Rγ ′
(t )|Rγ (t )〉para =

N∏
i=1

〈
ω

γ ′
i (t )

∣∣ωγ
i (t )

〉
(43)

in the paramagnetic case and

〈Rγ ′
(t )|Rγ (t )〉dia =

nd∏
δ

ei[�γ

δ (t )−�
γ ′
δ (t )]Sd

〈
�

γ ′
δ (t )

∣∣�γ

δ (t )
〉

(44)

in the diabatic one.
To proceed with a quantitative analysis, we must choose a

specific initial state for the device, and we go for

|D〉 = 1√
2

(|00〉 + |11〉), (45)

which is a maximally entangled state. This implies that in
all our formulas γ takes just two values, hereafter labeled
by + and −, corresponding to π± = ±1. Moreover, we have
to evaluate the overlaps between coherent states entering
Eqs. (43) and (44), which we do by means of Eq. (B6).

Finally, a comparison between the time dependence of
the internal entanglement in the paramagnetic and diabatic
settings can be developed in terms of the concurrence CAB(ρ)
between A and B relative to the state ρD(t ) in the two cases.
Using Eq. (25), in the paramagnetic setting we find

Cpara
AB [ρD(t )] = max

{
0, cos

(
�(t )

2

)N
}

, (46)

where

cos[�(t )] : = cos θ+(t ) cos θ−(t )

+ sin θ+(t ) sin θ−(t ) cos[φ+(t ) − φ−(t )], (47)

with (θ±(t ), φ±(t )) such that ω±(t ) = θ
2 eiφ and ω±(t ) from

Eq. (26). Using Eq. (40), in the diabatic setting we get

Cdia
AB [ρD(t )] = max

⎧⎨
⎩0,

[
nd∏

δ=1

cos

(
�δ (t )

2

)]2Sd
⎫⎬
⎭, (48)

with

cos[�δ (t )] : = cos ϑ+
δ (t ) cos ϑ−

δ (t )

+ sin ϑ+
δ (t ) sin ϑ−

δ (t ) cos[ϕ+
δ (t ) − ϕ−

δ (t )],

(49)

and (ϑ±
δ (t ), ϕ±

δ ) from Eqs. (39) and (B3).

VII. RESULTS

In this section we present and discuss our results, Eqs. (46)
and (48), for the time dependence of the entanglement be-
tween the qubits A and B, due to their interaction with the
magnetic environment R. We recall that the form (33) used
to obtain Eq. (48) holds when the ring is in its diabatic
region, i.e., for t > t̄ . Therefore, in what follows we describe
a dynamical process that starts at a time t0 > t̄ and show
our numerical data versus the interval t − t0. Regarding the
interaction, a weak-coupling constraint is enforced via the
condition (18), meaning that, in order to keep the interaction
between R and D finite, we consider domains of large but finite
size.

The following analysis is carried out by comparing the
evolution of the concurrence CAB in the paramagnetic and
the diabatic settings, with CAB(t0) = 1 due to our choice of
preparing D in the maximally entangled state (45). This com-
parison is complicated by the fact that, besides the common
parameters N and g, other parameters can be independently
varied within the same setting so that different values of the
magnetic field can be considered in the paramagnetic case,
independently of the choice of different quench velocities and
initial magnetic fields in the diabatic one. Therefore, for the
sake of clarity, we first compare results for the two settings
and then consider different realizations of the diabatic one. In
this part of the analysis we set N = 120 and g = 0.15 (which
ensures that the weak-coupling condition holds); at the end of
the section, however, we also consider the difference between
the time dependence of CAB in the two settings as a function
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FIG. 4. Plot of CAB vs t − t0. The solid line shows the diabatic
setting with h0 = 1.01, v = 0.6 × 10−3, and t0 = t̄ + 12. The dashed
line shows the paramagnetic setting with h ranging from 1.4 to 2.2
in steps of 0.2. The inset shows the difference between data in the
two different settings, with h = 2 in the paramagnetic one. The other
parameters are N = 120 and g = 0.15.

of g and for N = 1000. As for the constant ξ0 entering Eq. (8),
it will be hereafter set equal to 1.

Let us start by comparing the time dependence of the
concurrence in paramagnetic settings with different values of
the field,with that observed in the simplest nontrivial diabatic
setting (namely, that where R is effectively described by just
two independent domains, of size N/2). Data are shown in
Fig. 4 for t − t0 ∈ [0, 1]. The paramagnetic curves are ob-
tained for values of the field from h = 1.4 to h = 2.2, in steps
of 0.2. The diabatic curve is for h0 = 1.01, v = 0.6 × 10−3,
t0 = t̄ + 12, and nd = 2.

The decline of the concurrence is evidently slower in the
diabatic setting. However, such a decline is seen to slow down
with the lowering of h and, given that the diabatic curve cor-
responds to the lowest value of the field, one might argue that
decreasing the field is a way to reduce the detrimental effect
of the environment per se. Aiming at better insight on this
point, in Fig. 5 we plot CAB at a specific time t̃ = 0.5 + t0 as a
function of h; these data show that there actually is a relevant
difference between the way CAB behaves in the paramagnetic
setting (purple circles) and in the diabatic one (blue circles),
with the transition towards the second one implying a much
better performance as far as the entanglement protection is
concerned. This confirms that the KZM allows one to maintain
higher values of the concurrence due to the formation and
substantial freezing of noninteracting large-S domains in the
ring.

In order to further highlight the role played by the specific
features of the domains, let us briefly recall the idea behind
our strategy. We expect the entanglement protection to emerge
when (i) R splits into macroscopic and independent domains
with large S and (ii) the disentangling effect that such do-
mains exert on D, by inducing a magnetic alignment of A
and B separately, vanishes on average, due to the domains
being uncorrelated and their magnetic moments consequently
pointing in different directions. On the other hand, while
macroscopicity in (i) requires a small number of domains,
the vanishing of the net magnetic effect in (ii) is more likely

FIG. 5. Plot of CAB vs h at time t̃ = 0.5 + t0. The purple circles
show the paramagnetic setting. The blue circles show the diabatic
setting with the domain size as indicated and t0 = t̄ + 12 for ξd = 60,
t0 = t̄ + 1.5 for ξd = 30, t0 = t̄ + 0.5 for ξd = 10, and t0 = t̄ + 0.1
for ξd = 5. Lines are guides for the eyes. The other parameters are
N = 120 and g = 0.15.

when such a number is large, and it is hard to say whether a
better protection is obtained by giving priority to one or the
other mechanism. Note that this is not a moot point, since the
number of domains depends on the quench velocity, which is
an external parameter that can be chosen to control the overall
dynamics. In fact, recalling the phenomenology described in
Sec. II B, it is easily seen that diabatic settings with different
quench velocities drive the very same R into effective systems
with a different number of domains. Specifically, as the speed
v decreases, R splits into a decreasing number of larger
domains.

Returning to Fig. 5, the data suggest that a lower number
of domains of larger size should be preferred. To check if
this is a general result, in Fig. 6 we show the time depen-
dence of CAB for different values of the quench velocity, v =
0.6 × 10−3, 2.2 × 10−3, 20 × 10−3, corresponding to R being

FIG. 6. Plot of CAB vs t − t0 in different diabatic settings. The
blue curve shows v = 0.6 × 10−3, h0 = 1.01, t0 = t̄ + 12, and ξd =
60. The red curve shows v = 2.2 × 10−3, h0 = 1.03, t0 = t̄ + 1.5,
and ξd = 30. The green curve shows v = 20 × 10−3, h0 = 1.09,
t0 = t̄ + 0.5, and ξd = 10. The other parameters are N = 120 and
g = 0.15. The inset shows the corresponding time dependence of the
applied field, h = h0 − v(t − t0 ).
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FIG. 7. Density plot vs g and t − t0 for the difference between
CAB in the diabatic setting, with v = 5 × 10−5, h0 = 1.001, t0 = t̄ ,
and nd = 5, and CAB in the paramagnetic setting, with h = 5; N =
1000 in both settings.

described by a number nd = 2, 4, 12 of domains, with initial
values of the magnetic field h0 = 1.01, 1.03, 1.09, respec-
tively. The curves indicate that a slower quench works better,
i.e., that a lower number of bigger domains (as low as just a
couple) should be preferred. Referring to the time dependence
of the applied field during the quench, shown in the inset of
Fig. 6, we note that the slower decay of the concurrence is
actually obtained in the diabatic realization where the field
is closer to its critical value throughout the whole evolution.
The advantage of keeping R as close as possible to the QPT
might follow from the fact that condition (ii) is better fulfilled
for smaller magnetization of the ring in the z direction. On
the other hand, a well-known prodrome of the QPT in the
static QIF is just the steep reduction of such magnetization
for h � 1, and we expect that a similar reduction characterizes
the dynamical model (as this is necessary to allow the order
parameter, i.e., the magnetization in the x direction, to become
finite for h � 1). Therefore, the best fulfillment of condition
(i), which is obtained when the ring splits into just a pair of
independent domains, meets the requirement implied by point
(ii) if the quench of the field keeps R as close as possible to
the QPT during the whole dynamics, which explains why a
slower quench of a field initially set to a lower value is seen to
work better in Fig. 6.

The advantage of working well within the critical region is
also appreciated in Fig. 7, where we return to the difference
between the concurrence in the diabatic and the paramagnetic
settings, shown as a function of g and t − t0 with an initial field
for the diabatic setting which is very close to the critical point,
namely, h0 = 1.001, and t0 = t̄ ; in this case, considerable
entanglement protection is observed for an extended time
interval and values of g on the order of 0.1–0.2. Note that,
despite the QPT featured by the model that describes the ring
being essential to ensure that the KZM occurs, the protection

effect is not a critical phenomenon and can be obtained for
values of the relevant parameters that do not need to be fine-
tuned.

VIII. CONCLUSION

In this work we have considered a couple of qubits with a
magnetic environment featuring a QPT driven by an external
magnetic field. We have studied the way the entanglement be-
tween the qubits dynamically deteriorates in two different set-
tings, namely, when the environment is kept in its disordered
and paramagnetic phase by a constant field sufficiently larger
than the critical one and when it is instead driven towards the
critical point by linearly quenching the applied field. We have
modeled the magnetic environment so that it features a KZM,
with the latter setting leading to a slow diabatic evolution,
characterized by the formation of uncorrelated and essentially
frozen magnetic domains.

Referring to the effective description of the KZM, we have
found that when the environment splits into a small number
of larger domains, pointing in different directions due to
their being uncorrelated, better protection of the entanglement
between the two qubits is obtained. In fact, our results show
that the best protection is obtained when the formation of the
above domains occurs as close as possible to the critical point
so as to guarantee a net magnetization of the environment
in the field direction as small as possible, compatibly with
the large size of the domains. It is relevant that this setting
can be realized by properly choosing the initial value of the
field and its quench velocity, which are indeed amenable to
external control. In fact, we have described the environment as
an Ising chain in a transverse field not only because this is the
paradigmatic model where the KZM is known to take place,
but also to relate our analysis to possible experimental studies,
given that several realizations of such a model exist [36–38],
with signatures of quantum critical behavior seen to persist
at finite temperature [36,38–41] and recognized even for a
rather small number of spins [42,43]. Moreover, experimental
observations of the KZM have been recently made available
via different types of quantum simulators [44–47]. Besides the
results found as far as the entanglement protection between
the two qubits is concerned, this work has also allowed us
to obtain some analytical solutions, based on the use of spin
coherent states and the Zassenhaus formula, for the quantum
propagator of a composite system with a time-dependent
Hamiltonian, which we believe might be useful also in dif-
ferent contexts.
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APPENDIX A: ZASSENHAUS FORMULA

Given two noncommuting operators X̂ and Ŷ , the Zassen-
haus formula reads

eλ(X̂+Ŷ ) = eλX̂ eλŶ eλ2C2(X̂ ,Ŷ ) · · · eλnCn(X̂ ,Ŷ ) · · · , (A1)

where the operators Cn(X̂ , Ŷ ) have been recently ex-
pressed [48] as

Cn+1(X̂ , Ŷ )

= 1

n + 1

∑
(i0,...,in )∈In

[
n∏

k=0

(−1)ik

ik!

]
adin

Cn
· · · adi2

C2
adi1

Ŷ
adi0

X̂
Ŷ ,

(A2)

where

ad0
X̂ Ŷ = Ŷ , adk

X̂Ŷ = [X̂ , [X̂ , . . . , [X̂︸ ︷︷ ︸
k times

, Ŷ ], . . . ]], (A3)

with In the set of (n + 1)-tuples of non-negative integers
(i0, i1, . . . , in) satisfying the conditions

i0 + i1 + 2i2 + · · · + nin = n,

k + 1 � i0 + · · · + kik ∀ k � n − 1. (A4)

Equivalently, the left-oriented version of (A1) reads

eλ(X̂+Ŷ ) = · · · eλnC̃n(X̂ ,Ŷ ) · · · eλ2C̃2(X̂ ,Ŷ )eλŶ eλX̂ , (A5)

with C̃n = (−1)n+1Cn, n � 2.

APPENDIX B: SPIN COHERENT STATES

Spin coherent states can be introduced by following the
steps given in Ref. [49]. The first step is the recognition of
the dynamical group pertaining to the spin system at hand:
Since the Hamiltonians in Eqs. (22) and (29) are linear func-
tions of the operators {ŝz

i , ŝ±
i } and {Ŝz

δ, Ŝ±
δ }, respectively, the

group [50,51] is G = SU(2). The Hilbert space HS associated
with a spin S , whose Hamiltonian is a linear combination of

the SU(2) generators, i.e., {Ŝz, Ŝ±}, is spanned by {|S, M〉},
where |S, M〉 are simultaneous eigenstates of Ŝ2 and Ŝz (in
order to simplify the notation, we omit the index i or δ

throughout this Appendix, as it does not affect the construc-
tion of the spin-S CSs). The reference state [49] is usually
taken to be the highest- or lowest-weight state of SU(2); the
most natural choice is the former, i.e., |S,S〉 ≡ |0〉, and this is
the choice hereafter understood. The reference state identifies
the maximal stability subgroup H = U(1), whose elements ĥ
leave |S,S〉 invariant up to a phase factor, according to the
form ĥ = eiαŜz

, α ∈ R. The quotient group is thus G/H =
SU(2)/U(1), which is associated with the two-dimensional
sphere S2. The spin coherent states |�〉 for a system with
|Ŝ|2 = S (S + 1), hereafter indicated by spin-SCSs, are even-
tually defined as

|�〉 = �̂|0〉 = e�Ŝ−−�∗Ŝ+|0〉, (B1)

where � ∈ C parametrizes the sphere via

� = ϑ

2
eiϕ, (B2)

with (ϑ, ϕ) the polar angles and �̂ := exp{�Ŝ− − �∗Ŝ+} the
so-called displacement operator. We note that Eq. (B1), with
the definition of the parameter �, establishes a one-to-one
correspondence between the spin-S CSs, the elements of the
quotient space G/H , and the points on the sphere, represented
as normalized vectors in R3,

�̂ ↔ � ↔ n(�) := (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ). (B3)

With the previous parametrization, the SU(2) representa-
tion of any element �̂ ∈ SU(2)/U(1) is

�(ϑ, ϕ) =
(

cosϑ
2 −sin ϑ

2 e−iϕ

sin ϑ
2 eiϕ cosϑ

2

)
. (B4)

As shown in Ref. [52], from the relation between the groups
SO(3) and SU(2), it is possible to obtain the representation of
�̂ in SO(3), which is

R�(ϑ,ϕ) =
⎛
⎝ cosϑcos2ϕ + sin2ϕ sinϕcosϕ(1 − cosϑ ) −sinϑcosϕ

sinϕcosϕ(1 − cosϑ ) cosϑsin2ϕ + cos2ϕ sinϑsinϕ

sinϑcosϕ −sinϑsinϕ cosϑ

⎞
⎠. (B5)

We recall some properties of the spin-S CSs which turn out
to be useful in our calculation, taking a specific dimension
2S + 1 of the Hilbert space. First of all, spin-S CSs are in
general not orthogonal; in fact, they are

|〈〈�′|�〉〉|2 =
(

1 + n(�′) · n(�)

2

)2S
= cos4S �

2
, (B6)

where � = cosϑ cosϑ ′ + sinϑ sinϑ ′cos(ϕ − ϕ′). Neverthe-
less, the normalization of spin-S CSs is guaranteed, 〈�|�〉 =
〈0|�̂†�̂|0〉 = 〈0|0〉 = 1, and the spin-S CSs become almost
orthogonal for large S , as limS→∞ |〈〈�′|�〉〉|2 ∝ δ(� − �′).
The resolution of the identity reads

Î =
∫

dμ(�)|�〉〈�| = 2S + 1

4π

∫
S2

d�|�〉〈�|, (B7)

where d� is the solid-angle volume element on S2, namely,
d� = sinϑdϑdϕ. Any spin-S CS can be expanded in the
basis {|S, M〉},

|�〉 =
+S∑

M=−S
gM (�)|S, M〉, (B8)

where gM (�) = 〈S, M | �〉 and

gM (�) =
√(

2S
S + M

)(
cos

ϑ

2

)S+M(
sin

ϑ

2

)S−M

ei(S−M )ϕ

(B9)
holds.

Finally, the composition law for different displacement
operators is needed. To this aim, let us consider the operators
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�̂1 and �̂2, which are associated with the unit vectors on the
sphere n(�1) and n(�2), respectively,

�̂1�̂2 = �̂3e−i�(�1,�2 )Ŝz
, (B10)

where �̂3 is associated with the unit vector n(�3), obtained
from n(�2) after the rotation R�1 ∈ SO(3) induced by the
operator �̂1, i.e.,

n(�3) = R�1 n(�2), (B11)

meaning that a displacement operator �̂ transforms any spin-
SCS |�′〉 into another spin-S CS, up to a phase factor.

APPENDIX C: INITIAL STATE OF DOMAINS IN THE
DIABATIC CASE

The initial state of the ring in the diabatic region in
Eqs. (30) and (31) describes each domain pointing in some
direction nδ (0) := n(ϑδ (0), ϕδ (0)), where the spherical polar
angles (ϑδ (0), ϕδ (0)) identify a point on a sphere. Referring
to the strategy for choosing the initial conditions, it is worth
saying that the lack of correlations among domains will allow
for an independent choice of (ϑδ (0), ϕδ (0)).

Nevertheless, their values have to be related to the phe-
nomenology of the KZM in the diabatic region. Indeed, we
must properly take into account that the magnetization of each
domain is proportional to the expectation value of the operator
Ŝδ on the state of the δth domain, averaged on different possi-
ble configurations Mδ (t ) = 〈Ŝδ〉, where the time dependence
of magnetization is due to the time evolution of the state of
each domain.

The choice of ϑδ (0) is related to the value h0 ≡ h(t0) of
the external magnetic field at the time t0 (the time when the
two-qubit system starts to evolve after having been prepared
in a well-defined initial state), within the diabatic region. In
fact, since ϑδ (0) represents the angle between the unit vector
nδ defined by the pair (ϑδ, ϕδ ) and the z axes, then ϑδ (0)
determines the magnetization of the δth domain along the z
direction. We thus select each ϑδ (0) in such a way that the
average magnetization of the entire ring is equal to nmz

0, where
mz

0 is the equilibrium average magnetization per particle of the

FIG. 8. Schematic representation of the selection process for the
initial point (ϑδ (0), ϕδ (0)).

ring for the chosen value h0 of the external field, as given by
Ref. [53].

The selection proceeds as follows. We start by choosing a
domain δ1 and we select the corresponding cos[ϑδ1 (0)] ≡ mz

δ1

from a uniform distribution centered on mz
0 and having width

0 = |mz
d − mz

0|, with mz
d the magnetization corresponding to

the value hd = h(t̄ ) of the external field when the ring enters
the diabatic region. We then move to another domain δ2 and
we select the corresponding cos[ϑδ2 (0)] from a uniform dis-
tribution centered on mz

1 = (n mz
0 − mz

δ1
)/(n − 1) and having

width 1 = min(|mz
d − mz

1|, |mz
0 − 0 − mz

1|) and so on up to
the last ϑδn (0). The selection process of ϑδ1 (0) is sketched in
Fig. 8, where ϑ0 and ϑd are defined such that cos(ϑ0) = m0

and cos(ϑd ) = md .
It is worth noting that the choice of such an initial condition

allows us to distinguish different time instants in the diabatic
region, due to the dependence of the z magnetization on the
external magnetic field. As for ϕδ (0), i.e., the angle between
the projection of the unit vector nδ on the x-y plane and
the x axes, we have to refer to the magnetization in the x
direction, which is the order parameter of the model. Since
we are preparing the ring in the disordered region, we choose
each ϕδ (0) to assume randomly the value 0 or π so that the x
magnetization of each domain can be aligned in the direction
+x or −x with the same probability.
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