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Multiple-copy state discrimination of noisy qubits
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Multiple-copy state discrimination is a fundamental task in quantum information processing. If there are two,
pure, nonorthogonal states then both local and collective schemes are known to reach the Helstrom bound, the
maximum probability of successful discrimination allowed by quantum theory. For mixed states, it is known that
only collective schemes can perform optimally, so it might be expected that these schemes are more resilient to
preparation noise. We calculate the probability of success for two schemes, a local scheme based on Bayesian
updating and quantum data gathering, the simplest possible collective measurement, and consider imperfect
preparation fidelity. We find two surprising results. First, both schemes converge upon the same many-copy
limit, which is less than unity. Second, the local scheme performs better in all cases. This highlights the point
that one should take into account noise when designing state discrimination schemes.
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I. INTRODUCTION

In many quantum information processing tasks, one needs
to identify, by measurement, the state of a system given that
the finite and discrete set of states from which it is taken is
known. This task is called state discrimination [1–5]. Unless
the set of possible states is an orthogonal basis for some space
the states cannot be perfectly discriminated and instead the
user usually seeks to minimize one of two figures of merit,
either the probability of incorrectly identifying the state or
that of failing to identify the state. The measurement which
minimizes the former of these is the Helstrom, or minimum-
error, measurement [6]. If there are two possible states, the
optimal measurement has a simple analytic form. In more
complex cases, such as three-or-more pure states [7] or mixed
states [8,9], only limited results are known.

Our above comments relate to single-copy state discrimi-
nation. Given a resource of multiple systems, all prepared in
the same state, it might be expected that the correlations can
be used to improve the probability of success. This intuition
is correct and the Helstrom bound, the optimal value of this
probability, is known for discriminating two states. However,
in this case a physical implementation of the measurement
is typically hard to find. Furthermore, the issue of locality
versus collectivity arises: can the bound be achieved with local
measurements, those on individual systems, only, or must the
discriminator use collective measurements, which are more
difficult to perform? It is known that the best measurement to
discriminate multipartite states is often a collective measure-
ment, even for product states. Famous examples of this are the
double trine ensemble [10–13] and the domino states [14–16].

For two-pure-state discrimination, it is known that a local
scheme can reach the Helstrom bound [17–19]. In other
scenarios, very few analytic results have been acquired and
most knowledge comes from numerical simulations [20,21].
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Here, some counterintuitive results emerge. One example
is that the distinction between local and global optimality
emerges. In some cases, among local schemes, the best overall
measurement involves a fixed measurement on each qubit,
which succeeds locally with a suboptimal probability [20].
For a small number of copies, adaptive schemes perform
better than fixed schemes [22], but in the limit of large
numbers of copies this advantage disappears, even for mixed
states [20,22–25]. Further, it is for almost pure, but strictly
speaking mixed, states that the gap in performance between
collective strategies and local strategies is most pronounced in
the many-copy limit. Such unexpected results signal the need
for further analytical work in this area. Whether collective
measurements, which require a quantum memory, are required
to reach the Helstrom bound is considered an important open
question in state discrimination [26,27].

The work presented in this paper investigates a separate,
but related question. How resilient are multiple-copy state
discrimination schemes to preparation noise? No real prepa-
ration is ever perfect, but for high enough fidelity we may
consider the states to be pure. Further, decoherence properties
of even state-of-the-art qubits can demonstrate significant
variability [28,29], resulting in a corresponding variability in
the rate at which a preparation characterized as very high
fidelity degrades over time. Finally, in a real-world physical
communications system, instabilities in noise properties of
a channel can lead to uncharacterized noise in the received
states. How sensitive are schemes designed for pure states to
a small amount of uncharacterized preparation noise? As the
truly optimal scheme for noisy qubits will be collective, it
might be expected that such schemes will be more resilient
to preparation noise than the equivalent local scheme. Our
approach is to compare two equivalent schemes, one local
[17] and one collective [30], both of which reach the Hel-
strom bound for discriminating two pure states. We apply
each scheme, optimized for a specific pair of pure states,
to the corresponding mixed states and relate the probability
of success to the preparation fidelity. Our results show that,
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surprisingly, the local scheme consistently performs better
than the collective scheme. Neither, however, approaches unit
success probability as the number of copies, N , grows. Rather,
they approach the same fixed bound. We discuss how to
use information which would otherwise be thrown away in
the local adaptive scheme to improve on this bound. This
recovers asymptotic behavior which, as the number of qubits
approaches infinity, tends towards perfect discrimination.

II. PRELIMINARIES

Two pure states of a qubit occupy a single great circle on
the Bloch sphere. For this reason, they can be characterized in
relation to each other by real numbers only and written in the
form

|ψk〉 = cos(θ )|0〉 + (−1)k sin(θ )|1〉 k = 0, 1. (1)

The overlap of these two states is 〈ψ0|ψ1〉 = cos(2θ ) and,
without loss of generality, 0 � θ � π/4. If a single system
is prepared in either of these states with probabilities pk , the
highest possible probability of successful discrimination is
given by the Helstrom bound:

PH
1 = 1

2 [1 +
√

1 − 4p0 p1 cos2(2θ )]. (2)

If θ = π/4 the two states are orthogonal. In such a case,
PH

1 = 1 and they can be perfectly discriminated. Otherwise,
this quantity is less than 1. The measurement which achieves
this bound is a projective measurement onto the eigenvectors
of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|.

If instead there is a resource of N copies of the state, we are
seeking to distinguish |ψ0〉⊗N from |ψ1〉⊗N . As these can be
considered as two single pure states on the total Hilbert space,
the multiple-copy Helstrom bound is

PH
N = 1

2 [1 +
√

1 − 4p0 p1 cos2N (2θ )]. (3)

In this case, the measurement which achieves this is again
a von Neumann measurement, one that projects onto the
eigenstates of p0|ψ0〉〈ψ0|⊗N − p1|ψ1〉〈ψ1|⊗N . To find these
we must find the eigenvalues of a 2N -dimensional matrix,
a task which is much simplified by the symmetry in the
multiple-copy case. For pure states in particular, there are just
two dimensions that are important, and a number of optimal
schemes are known. We consider two.

In this paper we are concerned with systems in which the
resource qubits are prepared imperfectly. This is represented
by a parameter δθi which characterizes the displacement of
the ith qubit’s state from the ideal case such that∣∣ψ̃ i

k

〉 = cos(θ + δθi )|0〉 + (−1)k sin(θ + δθi )|1〉
= cos(δθi )|ψk〉 − sin(δθi )|ψk⊥〉. (4)

In the second line we relate the noisy form of the state to
the ideal case, Eq. (1), and introduce |ψk⊥〉 to indicate the
state orthogonal to |ψk〉. The fidelity F is the standard way
to parametrize the noise on a system. It can be understood
operationally as the probability that a measurement of the
prepared state will identify it as the ideal state [4]. For pure
states, it is defined as the overlap of the prepared and ideal
states, averaged over the noise’s probability distribution which

we assume is symmetric, i.e., P(δθi ) = P(−δθi ). One can con-
sider this a Gaussian distribution; however, that level of detail
is not required in what follows. The two noise parameters are
then related by

〈cos2(δθi )〉 =
∫ ∣∣〈ψ̃ i

k

∣∣ψk
〉∣∣2

P(δθi ) = F, (5)

where 1/2 � F � 1. From this we also have

〈sin2(δθi )〉 = 1 − F, (6)

〈cos(2δθi )〉 = 2F − 1, (7)

〈sin(2δθi )〉 = 0. (8)

The first two of these follows from the definition of the
fidelity while the third uses the symmetry of the probability
distribution. These are the only functions which are averaged
in what follows. We assume that the noise on each qubit is
independent of the others and average at each stage.

Using these results we express the noisy form of the state,
Eq. (4), as a mixed state. We obtain

ρk = F |ψk〉〈ψk| + (1 − F )|ψk⊥〉〈ψk⊥|, (9)

where we have averaged over the probability distribution of
δθi. If F = 1 it is the relevant pure state. If instead F = 1/2,
which is the smallest possible value of the fidelity, it is a
maximally mixed state, so that maximum noise erases all
information about the state. For other values of F , the state
varies monotonically between these two points. Our interest
throughout this paper will be in systems which are close to
perfect fidelity.

III. LOCAL-ADAPTIVE MEASUREMENT

An important result in multiple-copy state discrimination
is that it is possible to reach the Helstrom bound, Eq. (3),
using local measurements only. We follow here the scheme
of Acín et al. [17] but similar results have been found by
others [18,19]. They examine a local and adaptive scheme
in which the measurement of the nth copy can depend upon
the outcome of measurements on the previous (n − 1) copies.
We first need to introduce some notation. The sequence of
measurement outcomes is represented by a bit string x with
length equal to the number N of qubits, with the nth result
labeled in. The measurement onto the nth qubit is a projector
onto the basis ∣∣ωn

0

〉 = cos(φx )|0〉 + sin(φx )|1〉,∣∣ωn
1

〉 = sin(φx )|0〉 − cos(φx )|1〉. (10)

Here, we use x for the bit string of the first (n − 1) results
and adopt a different notation when it is required. In the local-
adaptive measurement scheme, the measurement at each point
depends on the previous outcomes in the scheme; however,
the overall result is determined by the final measurement
outcome alone. The optimal scheme of this kind turns out to
be Bayesian updating [17]. On the first qubit, one projects
onto the eigenvectors of p0|ψ0〉〈ψ0| − p1|ψ1〉〈ψ1|. On the
rest, the relevant eigenbasis is instead P(0|x)|ψ0〉〈ψ0| −
P(1|x)|ψ1〉〈ψ1|, in which P(k|x) is the probability, calculated
from Bayes’s theorem, that the state |ψk〉 was prepared given
that bit string x is the measurement record. The φx for which
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this measurement satisfies the Helstrom bound is found to be

cos(2φx ) = (−1)iN−1

√
1 − 4p0 p1 cos2N−2(2θ )

1 − 4p0 p1 cos2N (2θ )
. (11)

The only appearance of the bit string x here is in the single
index iN−1, which is the value of the prior measurement. Thus
the scheme does not use the entire measurement and is in this
sense Markovian as well as Bayesian.

Here we apply the local-adaptive scheme, in the form
optimized for pure states, to the mixed states relevant to
imperfect preparation. A true Bayesian scheme, one that uses
the entire measurement record, would be the best way to
generalize the scheme to mixed states. We return to this point
later. For now, we are interested in a direct comparison of the
pure state schemes and so proceed with the Markovian form.

We begin by showing that this scheme reaches the Hel-
strom bound in the case of perfect preparation. We use a
different approach to that in Ref. [17] as it does not straight-
forwardly generalize to include noise. This calculation gives
a form for the success probability with N qubits in terms of
that for (N − 1) qubits, an inductive formula which is solved
by the Helstrom bound. We then modify the calculation to
include noise. This leads to a different inductive formula,
which is then solved to give the overall success probability.
In these calculations, we make repeated use of the result

P(iN |x, k) = 1
2 [1 + (−1)iN cos(2θ ) cos(2φx )

+ (−1)iN +k sin(2θ ) sin(2φx )] (12)

for the probability that the N th outcome is iN given that the
state |ψk〉 was sent and that the initial (N − 1) results were x.
This is calculated using Eqs. (1) and (10).

In the local-adaptive scheme, the identification of the pre-
pared state is made with the final outcome. For this reason, the
probability of success is

Pad
N =

∑
x,k

pkP(k|x, k)P(x|k). (13)

This is a sum over both signal states k = 0 and 1 and over
all bit strings x of length (N − 1), none of which contribute
directly to the state identification. We first substitute Eq. (12),
with iN = k, into this result to give

Pad
N = 1

2

{
1 +

∑
x,k

[sin(2θ ) sin(2φx )pkP(x|k)

+ cos(2θ ) cos(2φx )(−1)iN−1+k pkP(x|k)]

}
. (14)

The next step is to use Eq. (11) for the optimal value of 2φx in
this equation:

Pad
N = 1

2

⎡
⎣1 + sin2(2θ )√

1 − cos2N (2θ )

∑
x,k

pkP(x|k)

+ cos2(2θ )

√
1− cos2N−2(2θ )

1− cos2N (2θ )

∑
x,k

(−1)iN−1+k pkP(x|k)

⎤
⎦.

(15)

The first sum in this expression is straightforward to evaluate.
It is simply a sum over a complete set of possible scenarios
and we have

∑
x,k pkP(x|k) = 1. The other series is a little

more complicated. We use the usual rules of conditional
probability to write

P(x|k) = P(iN−1ẋ|k) = P(iN−1|ẋ, k)P(ẋ|k), (16)

where we introduce the notation ẋ for the bit string of the first
(N − 2) results. We use also Eq. (12), with x replaced by ẋ
and iN replaced by iN−1, for the probabilities P(iN−1|ẋ, k) in
this equation. Bringing together all of these results, a short
calculation reveals∑

x,k

(−1)iN−1+k pkP(x|k)

=
∑
ẋ,k

[
sin(2θ ) sin(2φẋ )pkP(ẋ|k)

+ cos(2θ ) cos(2φẋ )(−1)iN−2+k pkP(ẋ|k)
]
. (17)

This should be compared with Eq. (14), in which the same
expression occurs but over the final rather than penultimate
outcome. This can be used to write the expression as∑

x,k

(−1)iN−1+k pkP(x|k) = 2Pad
N−1 − 1. (18)

After substituting this into Eq. (15), we are left with the
inductive expression

Pad
N = 1

2

[
1 + sin2(2θ )√

1 − cos2N (2θ )

+ cos2(2θ )

√
1 − cos2N−2(2θ )

1 − cos2N (2θ )

(
2Pad

N−1 − 1
)⎤⎦. (19)

The general solution to this equation is the multiple-copy
Helstrom bound, Eq. (3), which can be verified by direct
substitution. The N = 1 case corresponds to single-copy state
discrimination and that bound is derived in the usual man-
ner. That the probability expression has this inductive form
follows as the measurement strategy is Markovian. We have
followed others in showing that the Helstrom bound can be
reached with local measurements only [17–19]. Our main
result in this section is a generalization of this expression to
the regime of imperfect preparation fidelity.

The calculation proceeds in the same manner as that with-
out noise. The difference is in the probability of a specific
result iN given that the state |ψk〉 was prepared, which changes
when the latter is replaced with a noisy state. To take this
into account, Eq. (12) is replaced by an equivalent expression
calculated using Eqs. (9) and (10). The new probability is

P(iN |x, k) = 1
2 [1 + (2F − 1)(−1)iN cos(2θ ) cos(2φx )

+ (2F − 1)(−1)iN +k sin(2θ ) sin(2φx )] (20)

so that the only change in the noisy case is the appearance of
the factor (2F − 1) here. We use this to derive, in exactly the
same manner as in the perfect-fidelity case, the probability of
success. The result of this, as might be expected based on the
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change to the individual probabilities, is simply

Pad
N = 1

2

[
1 + (2F − 1)

sin2(2θ )√
1 − cos2N (2θ )

+(2F − 1) cos2(2θ )

√
1 − cos2N−2(2θ )

1 − cos2N (2θ )

(
2Pad

N−1 − 1
)⎤⎦.

(21)

This relation is hardly more complicated than the noiseless
case, Eq. (19), but its solution is much more complicated. By
recursive application of this formula using the N = 1 case,
which can be evaluated analytically, we establish that the
solution is

Pad
N = 1

2

[
1 + (2F − 1)N

√
1 − cos2N (2θ )

+ sin2(2θ )√
1 − cos2N (2θ )

SN

]
, (22)

where we introduce the notation

SN =
N∑

i=1

(2F − 1)N+1−i[1 − (2F − 1)i−1] cos2N−2i(2θ ).

This solution can be verified by substitution into the inductive
relationship. The series SN can be evaluated using the usual
formulas for geometric progressions. After some algebraic
manipulation we find

SN = (2F − 1)
1 − (2F − 1)N cos2N (2θ )

1 − (2F − 1) cos2(2θ )

− (2F − 1)N 1 − cos2N (2θ )

1 − cos2(2θ )
. (23)

Between Eqs. (22) and (23), the probability that the local-
adaptive scheme successfully identifies the state is defined
in terms of the preparation fidelity F . In the perfect-fidelity
case F = 1, substitution shows that SN = 0, and we have that
the usual Helstrom bound is achieved. If instead F = 1/2, the
prepared state is by definition a completely mixed state for
both |ψ0〉 and |ψ1〉, so that the states are indistinguishable.
For this value of the fidelity, the probability becomes 1/2,
which corresponds to guessing. The other interesting limit is
the behavior of the scheme if there are many copies of the
state. We look at this in a later section where we also plot the
success probability.

IV. QUANTUM DATA GATHERING

The previous measurement scheme is purely local. It pro-
duces a classical bit value for each of the resource qubits. It
is known that schemes of this type are in general not able
to perform optimal state discrimination when the possible
states are mixed. One requires collective measurements. Here,
we are interested in the ability of these schemes to function
in the presence of preparation noise. As an example of one
scheme which measures collectively, we consider quantum
data gathering [30]. A collective measurement does not need
to explore the entirety of H⊗N as the two product states
|ψk〉 occupy a subspace with two dimensions. A single qubit,
therefore, has enough capacity to store the information which
is required for state discrimination. Quantum data gathering
is an algorithm which transfers the information from the
multiple-copy product state to a further qubit. The latter is
then individually measured, which identifies the signal state
with a probability equal to the Helstrom bound.

This scheme requires a quantum memory, a qubit which
does not decohere between interactions. This probe is ini-
tialized in the state |0〉. When required, we label this space
HA. The interaction with the first qubit is a SWAP gate. The
remaining interactions leave the resource qubits, labeled Si

(where i = 1, 2, . . . , N), each in the state |0〉 and, if there is
no preparation noise, leave the probe in one of two states∣∣ψ (n)

k

〉 = cos(θn)|0〉 + (−1)k sin(θn)|1〉, k = 0, 1 (24)

in which

cos(θn) =
√

1
2 [1 + cosn(2θ )]. (25)

These two states have an overlap 〈ψ (n)
0 |ψ (n)

1 〉 = cosn(2θ ),
where n is the number of qubits which the probe has interacted
with until that point in the scheme. Thus, the probability of
success is the Helstrom bound. The protocol works as the
product state of the N systems exists in a two-dimensional
subspace of the overall Hilbert space. This, of course, no
longer holds for mixed states, for which some information
about the states will be retained in the resource qubits. The
interactions between the probe and resource qubits are unitary
operations which map this subspace onto the two dimensions
of the probe’s space through the index k, which is the only
piece of information needed to characterize each state. The
unitary operator Un that performs such an operation has the
property Un|ψk〉Sn |ψ (n−1)

k 〉A = |0〉Sn |ψ (n)
k 〉A. Alone, this does

not span the Hilbert space and we need to include also
the state’s components which appear only if the preparation
is imperfect. The choice we make is Un|ψk⊥〉Sn |ψ (n−1)

k⊥ 〉A =
|1〉Sn |ψ (n)

k⊥〉. The unitary operator, written in the computational
basis for both qubits, is

Un

∣∣0Sn 0A
〉 = cos(θ ) cos(θn−1)

cos(θn)

∣∣0Sn 0A
〉 + sin(θ ) sin(θn−1)

cos(θn)

∣∣1Sn 0A
〉
,

Un

∣∣1Sn 1A
〉 = sin(θ ) sin(θn−1)

cos(θn)

∣∣0Sn 0A
〉 − cos(θ ) cos(θn−1)

cos(θn)

∣∣1Sn 0A
〉
,

Un

∣∣1Sn 0A
〉 = sin(θ ) cos(θn−1)

sin(θn)

∣∣0Sn 1A
〉 + cos(θ ) sin(θn−1)

sin(θn)

∣∣1Sn 1A
〉
,

Un

∣∣0Sn 1A
〉 = cos(θ ) sin(θn−1)

sin(θn)

∣∣0Sn 1A
〉 − sin(θ ) cos(θn−1)

sin(θn)

∣∣1Sn 0A
〉
. (26)
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After all of the resource qubits have been processed, the qubit is measured with a Helstrom measurement which corresponds to
distinguishing |ψ (N )

0 〉 from |ψ (N )
1 〉. Again, the quantity we calculate is the probability that this measurement is successful if the

prepared qubits are instead mixed states.
The strategy that we use to calculate this probability is to find, by representing the interactions as Kraus operators acting on

HA, the probe’s state at each stage of the protocol. These Kraus operators are derived by considering that the resource qubits are
subsequently measured in the computational basis though we sum over both outcomes. This strategy gives us the possibility of
considering that such a measurement, which could be used as a diagnostic for the protocol’s behavior, does occur. The Kraus
operators are calculated as M (n)

i,k = 〈i|SnUn|ψ̃n
k 〉Sn , where i = 0 and 1 and we use the noisy form of the state. As the calculation

involves pairs of Kraus operators, at this point we do not average over the noise. The Kraus operators are best expressed in the
form

M (n)
0,k

∣∣ψ (n−1)
k

〉 = cos(δθn)
∣∣ψ (n)

k

〉
,

M (n)
0,k

∣∣ψ (n−1)
k⊥

〉 = − sin(2θ ) sin(δθn) cos(2θn−1)

sin(2θn)

∣∣ψ (n)
k

〉 + cos(2θ + δθn) sin(2θn−1)

sin(2θn)

∣∣ψ (n)
k⊥

〉
,

M (n)
1,k

∣∣ψ (n−1)
k

〉 = sin(2θ + δθn)
∣∣ψ (n)

k⊥
〉
,

M (n)
1,k

∣∣ψ (n−1)
k⊥

〉 = − sin(δθn) sin(2θn−1)

sin(2θn)

∣∣ψ (n)
k

〉 + sin(δθn) cos(2θn−1) − sin(2θ + δθn) cos(2θn)

sin(2θn)

∣∣ψ (n)
k⊥

〉
. (27)

One way to think about these objects is that the outcome M (n)
0,k

indicates that the protocol is running well and conversely for
M (n)

1,k . This is because the former is the only outcome if the
fidelity is perfect. This is seen in the Kraus representation as
the action of M (n)

0,k is to map the state |ψ (n−1)
k 〉 onto |ψ (n)

k 〉,
thus preserving the information which is encoded in that basis,
whereas the operator M (n)

1,k has the opposite effect: by mapping

the state |ψ (n−1)
k 〉 onto |ψ (n)

k⊥〉 it deletes all the information
which has been acquired up to that point. This is the origin
of the claim that a subsequent measurement of the prepared
qubit can act as a diagnostic. This point is later considered in
more detail.

We are now in a position to calculate the density matrix of
the probe after N interactions. We assume that all noise is in
the state preparation and that the operations are implemented
perfectly. At the first step, the sample is swapped with the
probe, so that the probe is left in the state

ρ1 = F |ψk〉〈ψk| + (1 − F )|ψk⊥〉〈ψk⊥|, (28)

as was shown earlier (to simplify the notation, we drop the
index k from the density operator ρ). We evaluate the next step
in full detail and the result allows us to find, by inspection,
the form of the density matrix in general. The full calculation
is discussed in the Appendix. It is a straightforward though
rather involved process, which results in a density matrix

ρN = AN

∣∣ψ (N )
k

〉〈
ψ

(N )
k

∣∣ + (1 − AN )
∣∣ψ (N )

k⊥
〉〈
ψ

(N )
k⊥

∣∣ + BNσ (N )
x ,

(29)

in which

AN = 1 − (1 − F )
1 − cos2N (2θ )(2F − 1)N

1 − cos2(2θ )(2F − 1)
, (30)

and

BN = (1 − F )
sin2(2θ ) cosN−1(2θ )

sin(2θN )

×
[

1 − (2F − 1)N−1

1 − (2F − 1)
− cosN+1(2θ )(2F − 1)N−1

× 1 − cos2N−2(2θ )

1 − cos2(2θ )

]
. (31)

With Eqs. (29)–(31), we have characterized the probe’s den-
sity matrix in terms of the fidelity and state parameters only.
If F = 1, which corresponds to the perfect fidelity case, AN =
1 and BN = 0. This corresponds to the probe being in the
pure state |ψ (N )

k 〉, as one would expect. If instead F = 1/2,
which corresponds to maximum infidelity, then again BN = 0;
however, here AN = 1/2. This means that the probe is in a
maximally mixed state so that it carries no information about
the prepared state. This corroborates the analysis of the similar
cases in the local-adaptive scheme.

In the quantum data gathering routine, following the uni-
tary interactions between the probe and all resource qubits,
the probe is left in the density matrix that we have calculated.
If the fidelity is perfect, this will be one of two possible states,
either |ψ (N )

0 〉 or |ψ (N )
1 〉. At this stage in the protocol, the probe

is then measured with the Helstrom measurement which best
distinguishes these states. This is the final piece of the cal-
culation, which gives us the probability Pqdg

N that the scheme
succeeds. Helstrom’s conditions tell us that the best measure-
ment is a projector onto the eigenvalues of p0|ψ (N )

0 〉〈ψ (N )
0 | −

p1|ψ (N )
1 〉〈ψ (N )

1 |. The case p0 �= p1 is significantly more in-
volved without adding further understanding. For this rea-
son we restrict our attention to equiprobable preparation

032122-5



FLATT, BARNETT, AND CROKE PHYSICAL REVIEW A 100, 032122 (2019)

p0 = p1 = 1/2 for this scheme. The relevant eigenvectors are

|ψ (N )
+ 〉 =

√
1 + sin(2θN )

2

∣∣ψ (N )
k

〉 +
√

1 − sin(2θN )

2

∣∣ψ (N )
k⊥

〉
,

|ψ (N )
− 〉 =

√
1 − sin(2θN )

2

∣∣ψ (N )
k

〉 −
√

1 + sin(2θN )

2

∣∣ψ (N )
k⊥

〉
,

(32)

where the subscript ± indicates an associated eigenvalue of
λ = ±1. It is the positive eigenvalue which corresponds to the
correct outcome. The success probability derived from this is

Pqdg
N = 〈ψ (N )

+ |ρN |ψ (N )
+ 〉

= 1 − sin(2θN )

2
+ AN sin(2θN ) − BN cos(2θN ). (33)

The Helstrom bound is written in a form useful here as PH
N =

[1 + sin(2θN )]/2. We see that Pqdg
N is leading order in the

Helstrom bound (once AN and BN are entered), followed by
terms which are linearly and inversely proportional to that
object. This structure is similar to the equivalent expression
for the local-adaptive measurement scheme. Equations (30),
(31), and (33) together define the probability of success for
the quantum data gathering.

V. DISCUSSION

In Fig. 1 we plot, as a function of the number N of resource
qubits, the probability of failure for both local-adaptive mea-
surements and quantum data gathering, alongside a majority
voting fixed measurement scheme, for three values of the
angle θ and two values of the fidelity F . For now we focus
on the former two schemes. In both cases, we have used
equiprobable preparation p0 = p1 = 1/2. Despite the range
of parameters, some broad features emerge. We comment on
the many-copy limit, in which both quantities converge upon
the same value, below. What is relevant at this point is that,
in all cases, the local scheme approaches this limit with fewer
qubits than the collective scheme. This improvement is small
enough, in the fourth or fifth decimal place for some cases,
that it is probably not experimentally significant. Nonetheless,
we have shown that the local adaptive scheme is more resilient
to noise than the quantum data gathering scheme.

The third scheme plotted in Fig. 1 is a majority voting
scheme in which the Helstrom measurement is performed on
each qubit and the most common outcome in the measurement
record is the overall outcome. There is no simple analytic
expression for the success probability but it is straightfor-
ward to find numerically [22]. The Helstrom measurement is
that for discriminating the two mixed states, rather than the
original pure states, though this will be the same for equal
priors. Thus, this measurement scheme takes into account
both the whole measurement record and the noise in the
preparation. In general, we find that this simple generalization
is enough to outperform the other two schemes. In particular,
it is not limited by the same asymptotic behavior as those
schemes. If there is only a small amount of noise, as can be
seen in the graph with F = 0.999 and θ = π/12, majority
voting no longer outperforms the local adaptive and quantum
data gathering schemes. As the fidelity becomes closer to 1,

the two previously analyzed schemes will become closer to
the genuine optimal scheme, hence they perform better for
moderate N in the high-fidelity case.

A. Asymptotic regime

Special attention should be paid to the many-copy limit of
both quantum data gathering and the local adaptive scheme.
Interestingly, one finds the same value in both cases:

lim
N→∞

Pqdg
N = lim

N→∞
Pad

N

= 1 − 1 − F

1 − (2F − 1) cos2(2θ )
. (34)

In the limit F = 1, this equation reaches unity and so the
states can be perfectly discriminated given an infinite number
of copies. If instead the two states are the same θ = 0, then
we find a probability of 1/2. This makes sense as it should
be impossible to distinguish two equal states and all that can
be done is to guess. These two limits are noncommuting.
This occurs because the measurement schemes are ill defined
when discriminating equal states, i.e., the unitary operation for
quantum data gathering would need to map two orthogonal
states onto the same state, which is clearly not possible.

It is intriguing that both the local adaptive and quantum
data gathering scheme approach the same asymptote, which
in general is less than unity, reaching that value only if
F = 1. This behavior suggests that the asymptote could be
identified with a systematic error which arises when a state
discrimination scheme, one which is optimized for a particular
pair of states, is applied to a different pair of states. As the
preparation fidelity in some cases may be further from F = 1
than those we considered above, we plot in Fig. 2 Eq. (34) as
a function of F . This gives an idea of the kind of values which
will be found experimentally.

The specific form of the many-copy limit can be calcu-
lated in a different manner, by understanding the behavior
of the local-adaptive measurement scheme in such a regime.
Analyzing this behavior also helps in improving intuition of
that scheme. Inspection of Eq. (11) reveals that the scheme
in this case can be understood as hypothesis checking. If the
outcome on one qubit suggests that |ψ0〉 was the prepared
state, the next measurement will be onto the basis |ψ0〉, |ψ0⊥〉,
with the latter outcome associated with a preparation of |ψ1〉.
This explains why the strategy cannot perfectly discriminate.
When applied to mixed states, neither measurement outcome
is impossible. This hypothesis-checking scheme can be used
to calculate the probability of success. We assume that the
strategy of hypothesis checking is used for an infinite number
of qubits. We find agreement with the original calculation.
Two probabilities are required. First,

P(a|iN−1 = a, a) = F (35)

is the probability of finding outcome a, given that the previous
outcome was a (so that the measurement at this stage is
|ψa〉, |ψa⊥〉), given that |ψa〉 was sent. We require also

P(a|iN−1 = a, a) = F − cos2(2θ )(2F − 1), (36)

which is the probability of outcome a (i.e., the state |ψa⊥〉)
given that the previous measurement gave the outcome a, the
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FIG. 1. The probability of failure for three different multiple-copy state discrimination schemes with imperfect preparation: local-adaptive
measurements (Local, solid), quantum data gathering (Coherent, dashed), and voting based on fixed measurements (Voting, dotted). The former
two schemes do not take into account the preparation noise; however, the latter scheme does. A range of parameters for the angle θ and fidelity
F is used.

other possible state, and that |ψa〉 was sent. In terms of these
objects, the probability of success on the (N + 1)th qubit is
written in terms of the probability of success on the N th qubit:

Pad
N+1 = P(a|iN−1 = a, a)Pad

N + P(a|iN−1 = a, a)
(
1 − Pad

N

)
= F − cos2(2θ )(2F − 1) + cos2(2θ )(2F − 1)Pad

N .

(37)

This result is then used iteratively to find an expression for the
probability of success after N ′ more measurements:

Pad
N+N ′ = [cos2(2θ )(2F − 1)]N ′

Pad
N

+ [F − cos2(2θ )(2F − 1)]
N ′−1∑
i=0

cos2i(2θ )(2F − 1)i.

(38)
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FIG. 2. The asymptote of the probability of success varying with
preparation fidelity F for a variety of different angles.

Finally, as N ′ is increased the first term will be suppressed,
and in the limit of an infinite number of copies the probability
of success at a given point makes no contribution to the overall
expression. All that remains is to evaluate the geometric
summation and to rearrange for

lim
N ′→∞

Pad
N+N ′ = 1 − 1 − F

1 − (2F − 1) cos2(2θ )
, (39)

the same value which was found previously. Here, it has
been found with a different method to the more general case.
Unfortunately, a similar method for confirming the calculation
does not exist for quantum data gathering; however, inspection
of the unitary Eq. (26) reveals similar behavior. In the many-
copy limit there, the probe states become the diagonal basis
states |+〉, |−〉. One example of the behavior of the unitary
in this regime is UN |ψ0〉SN |+〉A = |0〉SN |+〉A, so that all the
unitary has done is to delete the resource qubit’s information
conditioned upon it matching what is already known.

B. Gate noise

We have considered here only preparation noise. In the
quantum data gathering scheme, there will also be noise in
the gates needed to implement the unitary Eq. (26). This
operation takes the form of a rotation controlled upon binary
addition of the register of each individual qubit, which can be
implemented by two CNOT gates alongside single-qubit gates.
Thus, 2N two-qubit gates are needed to perform quantum
data gathering on a resource of N qubits. We assume that the
contribution to the noise from single qubit gates is negligible.
Because the diamond norm [31–33], the standard measure of
gate noise, satisfies the triangle inequality, that there are 2N
gates required means that the total gate noise scales linearly
with N . This will appear as a noisy channel acting upon the
probe’s state, and decrease further the probability of success.
To make further comments, we would need to understand the
form of the noise in more detail [34].

C. Improving the scheme

In the large N limit, any two states are in principle distin-
guishable, as with an infinite-qubit resource one could simply
perform tomography to reconstruct the state. It is clear that

the bound Eq. (34) can be improved upon. With finite N , it is
desirable to tailor the scheme to the states used.

Some obvious methods exist to improve the performance
of each scheme. The local scheme which we have considered
up to this point is Markovian, so that N − 1 of the previous
results are discarded. In the pure state case, there are symme-
tries between the probabilities of different bit strings such that
this does not lessen the overall probability of success [17];
however, when the preparation is imperfect this no longer
holds, and information is wasted. The whole measurement
record could be taken into account when updating the prior
probabilities of the state, and this would improve the perfor-
mance of the scheme.

A full analysis of the modified scheme would be beyond
the scope of this paper. What can be discussed is the asymp-
totic behavior of the scheme, which was shown earlier to
consist of measuring projectively with |ψ0〉 or |ψ1〉 as one of
the outcomes, depending on the previous measurement result,
so that the measurement record in the many-copy limit can be
broken down into two fixed measurements. Postselection of
either measurement is equivalent to classical sampling of two
probability distributions, a problem which is known to asymp-
totically decay with an exponent determined by the Chernoff
bound [20,35], and thus outperforms the Markovian scheme.
This exponent will be determined by the number of fixed
measurements in each set and will give worse performance
than the quantum Chernoff bound, which is found as the op-
timal bound in asymptotic multiple-copy state discrimination
[36–38].

In quantum data gathering, the scheme can be modified by
measuring the resource qubits at each step and acting based
upon the outcome. As noted, an outcome of |1〉 indicates that
all quantum information gathered up until that point has been
lost. So, one way to modify the protocol is to restart whenever
such an outcome occurs. Some care must be taken as only a
finite number of consecutive |0〉 outcomes can occur before a
bad outcome. In Fig. 1 it is seen that only a small number,
three or four, of interactions are required to get very close
to the best-possible probability. However, numerical evalua-
tion of the relevant probabilities reveals that even this small
number is unlikely enough (while still being highly probable,
p � 0.97 typically) to bring the overall probability of state
discrimination below that which occurs if the qubits are not
measured. This is played off against two things. First, success
here is heralded at the expense of increasing ambiguity in
some cases, similar to unambiguous state discrimination. Sec-
ond, if there are many resource qubits available, a small run
of successes becomes likely to occur at some point. Thus, in
some scenarios it may be advantageous to postselect based on
the measurement outcomes. A hybrid scheme in which subsets
of systems are measured collectively, followed by majority
voting on the measurement output, would give an improved
probability of success, but still less than the local scheme.
Here we chose to evaluate the performance of a scheme requir-
ing a single qubit of memory as the quantum probe. A fully
general scheme, which would achieve the optimal Helstrom
measurement for arbitrary many-copy states, would require
a processor of size log N [30]. Our results show that how
a collective measurement is implemented has a considerable
effect on its robustness to noise.
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VI. CONCLUSION

We have considered the ability of two multiple-copy state
discrimination schemes to perform when the state preparation
is imperfect. We find two surprising results. First, for small
amounts of uncharacterized noise, the optimal local adaptive
measurement is more robust than the simple, single qubit
collective scheme. We also find that both schemes have the
same many-copy limit, which is less than unity. Despite the
different physical mechanisms used in each scheme, they have
precisely the same behavior in this regime. This suggests
that the quantity found is a generic property of applying an
incorrect scheme, and should be investigated further. With
a modification of the local adaptive scheme, we are able to
surpass this limit and recover the desirable exponential decay
with increasing N .

It would be useful to know an optimal state discrimina-
tion scheme for mixed states of the type considered here.
A natural starting point would be to generalize the local-
adaptive scheme to use the entire measurement record when
updating the prior probabilities in a Bayesian manner and to
calculate the range, if any, in which this strategy is optimal.
In general, more analytic work is required in multiple-copy
state discrimination. Some of the techniques used here may
be found to be useful in that task.
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APPENDIX: STATE OF THE PROBE QUBIT
IN QUANTUM DATA GATHERING

In this Appendix we evaluate the density matrix of the
probe qubit which is used in the quantum data gathering
scheme.

The density matrix of the probe in this scheme after the
first interaction, a SWAP gate, is given by

ρ1 = F |ψk〉〈ψk| + (1 − F )|ψk⊥〉〈ψk⊥|. (A1)

From this point on, the probe and resource qubit interact
according to the relevant unitary, defined above. In order
to find the former object’s density matrix after the second
interaction, we multiply by the Kraus operators in Eq. (27) and
then average over δθi in one step here. It is a straightforward
(though lengthy) calculation to find

ρ2 = M (2)
0,kρ1M (2)†

0,k + M (2)
1,kρ1M (2)†

1,k

= [F − (1 − F )(2F − 1) cos2(2θ )]
∣∣ψ (2)

k

〉〈
ψ

(2)
k

∣∣
+ [1 − F + (1 − F )(2F − 1) cos2(2θ )]

∣∣ψ (2)
k⊥

〉〈
ψ

(2)
k⊥

∣∣
+ (1 − F )

cos2(2θ ) sin2(2θ )

sin2(2θ2)
σ (2)

x , (A2)

where σ (2)
x = |ψ (2)

k 〉〈ψ (2)
k⊥| + |ψ (2)

k⊥〉〈ψ (2)
k |. We keep the con-

vention of using a superscript on the Pauli matrix to indicate
the basis in which it is written. This density matrix can be
understood as two pieces: a trace-1 diagonal piece consisting

of the first two terms and another consisting of only the σx

matrix. We can expect, based on this, that the same is true of
the general density matrix, which we expect can be written

ρN = AN

∣∣ψ (N )
k

〉〈
ψ

(N )
k

∣∣ + (1 − AN )
∣∣ψ (N )

k⊥
〉〈
ψ

(N )
k⊥

∣∣ + BNσ (N )
x .

(A3)

This is confirmed by the following analysis, in which we eval-
uate AN and BN by calculating how each piece (diagonal and
Pauli) is updated. We again multiply by the Kraus operators
and average over δθi in a single step. The first result is

AN−1

∑
i

M (n)
i,k

∣∣ψ (N−1)
k

〉〈
ψ

(N−1)
k

∣∣M (n)†
i,k

+ (1 − AN−1)
∑

i

M (n)
i,k

∣∣ψ (N−1)
k⊥

〉〈
ψ

(N−1)
k⊥

∣∣M (n)†
i,k

= [F − (1 − AN−1)(2F − 1) cos2(2θ )]
∣∣ψ (N )

k

〉〈
ψ

(N )
k

∣∣
+ [1−F+(1−AN−1)(2F−1) cos2(2θ )]

∣∣ψ (N )
k⊥

〉〈
ψ

(N )
k⊥

∣∣
− (1 − AN−1)

(2F − 1) sin2(2θ ) cos(2θN )

sin(2θN )
σ (N )

x . (A4)

Notice that again we find the same structure, that of a diagonal
piece and a Pauli matrix. The other update is∑

i

M (n)
i,k σ (N−1)

x M (n)†
i,k

= (2F − 1) cos(2θ ) sin(2θN−1)

sin(2θN )
σ (N )

x . (A5)

It is seen that both terms contribute in the form, written in the
natural basis of the next step, that we have predicted and the
density matrix will always take the form of Eq. (A3). Repeated
application of the above two results allow us to evaluate
AN and BN , which are both written in terms of geometric
progressions. We find

AN = F cos2N−2(2θ )(2F − 1)N−1+[F−(2F − 1) cos2(2θ )]

×
N−2∑
i=0

cos2i(2θ )(2F − 1)i, (A6)

BN = (2F − 1) sin2(2θ )
N−1∑
i=1

cos(2θi+1)

sin(2θi+1)

×
N∏

j=i+2

(2F − 1) cos(2θ )
sin(2θ j−1)

sin(2θ j )
. (A7)

It is straightforward to evaluate the summation to give

AN = 1 − (1 − F )
1 − cos2N (2θ )(2F − 1)N

1 − cos2(2θ )(2F − 1)
, (A8)

which is then used alongside Eq. (25) to evaluate

BN = (1 − F )
sin2(2θ ) cosN−1(2θ )

sin(2θN )

×
[

1 − (2F − 1)N−1

1 − (2F − 1)
− cosN+1(2θ )(2F − 1)N−1

× 1 − cos2N−2(2θ )

1 − cos2(2θ )

]
. (A9)
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The denominators of the two fractions inside the braces could
each be simplified; however, we leave them in this form so

that it is clear that there are no convergence issues in the limit
F → 1/2 or θ → 0.
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