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Interference in the time domain of a decaying particle with itself as the physical mechanism
for the exponential-nonexponential transition in quantum decay
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By using an exact analytical non-Hermitian approach in terms of resonance states, we show that the
exponential-nonexponential transition of decay at long times physically represents a process of interference
in the time domain of the decaying particle with itself. We also show that actually the regeneration mechanism
proposed by Fonda and Ghirardi [L. Fonda and G. C. Ghirardi, Nuovo Cimento A 7, 180 (1972)] is not the
relevant mechanism for nonexponential decay.
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I. INTRODUCTION

In the early days of quantum mechanics, Gamow imposed
on physical grounds outgoing (radiative) boundary conditions
to the solutions of the Schrödinger equation to describe α

decay in radioactive nuclei [1–3]. This led to complex energy
eigenvalues and to the derivation of the exponential decay law
exp(−�t/h̄) for the evolving probability density, where the
decay rate � corresponds to the imaginary part of the complex
energy eigenvalue. Around three decades later, Khalfin [4]
pointed out that in decaying systems where the energy spectra
are bounded by below, i.e., E ∈ (0,∞), which includes most
physical systems of interest, it follows, due to a theorem by
Paley and Wiener [5], that the exponential decay law cannot
be valid at all times. Khalfin considered in his analysis the
survival probability, which yields the probability that at time
t the decaying particle remains in its initial state. He was able
to show that this quantity exhibits, in addition to a purely
decaying exponential behavior that follows by assuming a
complex pole located on the energy plane, an integral con-
tribution that behaves at long times as an inverse power of
time. Most subsequent work on this subject [6–13] has been
strongly influenced by the work by Khalfin.

One should note, however, that the result obtained by
Khalfin is based on a mathematical argument and hence it
does not provide a physical mechanism to understand the
exponential-nonexponential transition. An approach to deal
with this question was considered by Fonda and Ghirardi
[14], who, following the work by Ersak [15], argued that
the physical mechanism for the deviation from exponential
decay law at long times is a partial regeneration process of
the initial state caused by rescattering of the decayed states
[14]. However, as discussed below, exact model calculations
show that the proposed mechanism yields a negligible con-
tribution to the exact nonexponential behavior at long times
and more importantly it does not provide a description of the
exponential-nonexponential transition.
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It is worth mentioning that the failure to find deviations
of the exponential decay law at long times in radioactive
nuclei [16,17] contributed to the widespread view that non-
exponential decay contributions were beyond experimental
reach or even to the alternative explanation that the interaction
of the decaying system with the environment would enforce
exponential decay at all times [18,19]. However, the exper-
imental verification in recent times of short-time deviations
from exponential decay [20] and the quantum Zeno effect
[21,22] together with the measurement of the deviations from
exponential decay law at long times in organic molecules in
solution, which exhibited distinct inverse power behaviors in
time [23], have demonstrated that nonexponential decay is an
observable quantum effect.

The present work rests on an exact analytical non-
Hermitian formulation of quantum tunneling decay [24]
which involves the complex poles of the propagator and the
resonance (quasinormal) states to the problem to address
the issue of the physical mechanism of the exponential-
nonexponential transition at long times. We demonstrate that
the decaying wave function may be written as the sum of
exponentially and nonexponentially decaying wave functions.
The latter involves the propagation of almost vanishing values
of the wave number and as time evolves eventually interferes
with the exponentially decaying terms which refer to wave
components close to the resonance energies. This interference
yields the exponential-nonexponential transition. We show
that physically it corresponds to a phenomenon of interference
in the time domain of the decaying particle with itself.

The formulation considered here refers to the full Hamil-
tonian to the problem and hence it differs from approaches
where the Hamiltonian is separated into a part corresponding
to a closed system and a part responsible for the decay which
is usually treated to some degree in perturbation theory, as in
the work by Weisskopf and Wigner on the exponential decay
of an excited atom interacting with a quantized radiation field
[25] or in studies concerning the deviation of exponential
decay in these systems [26].

The paper is organized as follows. Section II provides a
brief review of the formalism of resonance states. In Sec. III
we discuss the interference in the time domain of the decaying
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function. Section IV considers the approach by Fonda and
Ghirardi on the mechanism to produce the deviation from
exponential decay. In Sec. V we discuss a model calculation to
exemplify our findings. Section VI presents some concluding
remarks.

II. RESONANCE-STATE FORMALISM

The eigenfunctions associated with complex energy eigen-
values, the resonance states, increase beyond the interaction
region exponentially with distance, implying that the usual
rules concerning normalization and completeness do not ap-
ply. For these reasons, the approach by Gamow has been
considered a phenomenological and no fundamental approx-
imation for the description of decaying systems. However,
modern developments of the formalism of resonance states
have solved, in a consistent fashion, the above issues [24].
It has been shown that this non-Hermitian approach yields
exactly the same results for the time evolution of decay as
a Hermitian approach based on continuum wave solutions for
generic exactly solvable models [27–29].

Here we briefly recall the relevant aspects of the derivation
of the decaying wave solution for a single particle confined
initially within the internal region of a spherically symmet-
ric real potential with the condition, imposed on physical
grounds, that it vanishes beyond a distance, i.e., V (r) = 0 for
r > a. We choose natural units h̄ = 2m = 1 and for simplicity
of the discussion and without loss of generality we refer
to s waves. The solution to the time-dependent Schrödinger
equation may be written in terms of the retarded Green’s
function g(r, r′; t ) of the problem as [24]

�(r, t ) =
∫ a

0
g(r, r′; t )�(r′, 0)dr′, (1)

where �(r, 0) stands for an arbitrary initial state which is
confined within the internal interaction region. The retarded
time-dependent Green’s function g(r, r′; t ) is the relevant
quantity to study the time evolution of the initial state. It may
be evaluated by a Laplace transformation into the complex
wave number plane k aimed to exploit the analytical properties
of the outgoing Green’s function to the problem G+(r, r′; k)
[24,30],

g(r, r′; t ) = 1

2π i

∫
c0

G+(r, r′; k)e−ik2t 2k dk, (2)

where c0 refers to the Bromwich contour which corresponds
to a hyperbolic contour along the first quadrant of the k
plane. A consequence of the condition that the potential
vanishes after a distance is that G+(r, r′; k) may be extended
analytically to the whole complex k plane where it has
an infinite number of complex poles distributed in a well
known manner [31]. Resonance states and complex energy
poles are intimately related. Resonance states are solutions to
the radial Schrödinger equation [En − H]un(r) = 0 obeying
outgoing (radiative) boundary conditions [dun(r)/dr]r=a =
iκn(a), where En = κ2

n = En − i�n/2. Here En stands for the
resonance energy of the decaying particle and �n for the
corresponding resonance width. As is well known, the longest
lifetime sets up the timescale of the decay process. Reso-
nance states may be also obtained from the residues at the

complex poles {κn} of the outgoing Green’s function which
also provides its normalization condition [24,30], namely,∫ a

0 u2
n(r)dr + iu2

n(a)/2κn = 1. It is worth mentioning that res-
onance states satisfy flux conservation [24]. The above con-
siderations allow for the rigorous derivation of the resonance
expansion of the outgoing Green’s function [24]

G+(r, r′; k) =
∞∑

n=−∞

un(r)un(r′)
2κn(k − κn)

, (r, r′)† � a, (3)

where the above sum includes the resonance states u−n(r)
and poles κ−n located on the third quadrant of the k plane
which are related to those located on the fourth quadrant
by symmetry relations that follow from time reversal invari-
ance: κ−n = −κ∗

n and u−n(r) = u∗
n(r) [24,32]; the notation

(r, r′)† � a means that the point r = r′ = a is excluded in the
above expansion, since otherwise it diverges.

The representation of G+(r, r′; k) given by (3) satisfies the
closure relation [24,27]

Re

{ ∞∑
n=1

un(r)un(r′)

}
= δ(r − r′), (r, r′)† � a, (4)

and the sum rules [24]
∞∑

n=−∞

un(r)un(r′)
κn

= 0, (r, r′)† � a (5)

and
∞∑

n=−∞
un(r)un(r′)κn = 0, (r, r′)† � a. (6)

One may also write the resonance expansion of the Green’s
function given by (3), using the identity 1/[2κn(k − κn)] ≡
(1/2k)[1/(k − κn) + 1/κn] and (5) as

G+(r, r′; k) = 1

2k

∞∑
n=−∞

un(r)un(r′)
k − κn

, (r, r′)† � a (7)

The evaluation of g(r, r′; t ) as a resonance-state expansion
involving the poles of G+(r, r′; k) may be obtained by distinct
deformations of the contour c0. One of them leads to an inte-
gral extending along the full real k axis [24]. Then substitution
of (7) into (1) allow us to write the time-dependent decaying
wave function as [24,27]

�(r, t ) =
∞∑

n=−∞

{
Cnun(r)M(y0

n ), r � a

Cnun(a)M(yn), r � a,
(8)

where the sums run over the full set of poles, the coefficients
Cn are defined by

Cn =
∫ a

0
�(r, 0)un(r)dr, (9)

and the functions M(yn), the so-called Moshinsky functions,
are defined as [24]

M(yn) = i

2π

∫ ∞

−∞

eik(r−a)e−ik2t

k − κn
dk

= 1

2
ei(r−a)2/4tw(iyn), (10)
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with yn = e−iπ/4(1/4t )1/2[(r − a) − 2κnt], and the function
w(z) = exp(−z2)erfc(−iz) in (10) stands for the Faddeyeva-
Terent’ev or complex error function [33] for which there exist
efficient computational tools to calculate it [34]. The argument
y0

n of the functions M(y0
n ) in (8) is that of yn with r = a,

namely,

y◦
n = −e−iπ/4κnt1/2. (11)

Assuming that the initial state �(r, 0) is normalized to unity,
it follows from the closure relation (4) that

Re
∞∑

n=1

{CnC̄n} = 1, (12)

where C̄n follows by taking the conjugate of �(r, 0) in (9).
Equation (12) indicates that Re{CnC̄n} cannot be interpreted
as a probability, since in general it is not a positive-definite
quantity. Nevertheless, one may see that it represents the
strength or weight of the initial state in the corresponding
resonant state. One may see the coefficients Re{CnC̄n} as some
sort of quasiprobabilities.

The solution �(r, t ) for r � a, given by the first equation
in (8), is the relevant ingredient to calculate the survival
probability, as discussed in [24,27,28]. For r � a, the solution
�(r, t ), given by the second equation in (8), describes the
propagation of a single decaying particle along the external
region. This has been discussed in Refs. [24,27,29].

The exponential and nonexponential explicit behavior of
�(r, t ) for r � a may be achieved by using the symmetry
relations mentioned above among the poles located on the
third and fourth quadrants on the k plane, namely, κ−n = −κ∗

n ,
and correspondingly for the resonance states, u−n(r) = u∗

n(r).
As a result, one may write �(r, t ) for r � a as

�(r, t ) =
∞∑

n=1

[
Cnun(r)M

(
y0

n

) + C̄∗
n u∗

n(r)M
(
y0
−n

)]
. (13)

One then may utilize a property of the functions M(y0
n )

that establishes that M(y0
n ) = exp(−iκ2

n t ) − M(−y0
n ), pro-

vided π/2 < arg(y0
n ) < 3π/2 [24,35]. This is in fact the case

for resonance poles with αn > βn, the so-called proper reso-
nance poles. In such a case, the arguments of both M(−y0

n )
and M(y0

−n) satisfy −π/2 < arg(y0
n ) < π/2 and hence do not

exhibit an exponential behavior. As a result, one may write
(13) as

�(r, t ) = �e(r, t ) + �ne(r, t ), r � a, (14)

where �e(r, t ) corresponds to the sum of exponentially decay-
ing terms

�e(r, t ) =
∞∑

n=1

Cnun(r)e−iEnt e−�nt/2 (15)

and �ne(r, t ) stands for the nonexponential contribution

�ne(r, t ) = −
∞∑

n=1

[
Cnun(r)M

(−y0
n

) − C̄∗
n u∗

n(r)M
(
y0
−n

)]
, (16)

where y0
−n follows from (11) by replacing κn by −κ∗

n . The
expressions for �e(r, t ) and �ne(r, t ), given by (15) and
(16), satisfy the time-dependent Schrödinger equation. This

is easily verified for (15), whereas for (16) it is required, in
view of (10), to make use of dw(z)/dz = −2zw(z) + 2i/

√
π

[33] and also of the sum rule (6).
Here we analyze the exponential-nonexponential transi-

tion, without loss of generality, for the time evolution of the
survival probability

S(t ) = |A(t )|2, (17)

where A(t ) stands for the survival amplitude A(t ), which is
defined as

A(t ) =
∫ a

0
�∗(r, 0)�(r, t )dr. (18)

Using the first equation in (8), one may write (18) as

A(t ) =
∞∑

n=−∞
CnC̄nM(y0

n ). (19)

Hence, using (15) and (16), one may write (19) as

A(t ) = Ae(t ) + Ane(t ), (20)

where

Ae(t ) =
∞∑

n=1

CnC̄ne−iEnt e−�nt/2 (21)

and

Ane(t ) = −
∞∑

n=1

[
CnC̄nM

(−y0
n

) − (CnC̄n)∗M
(
y0
−n

)]
. (22)

One sees immediately by inspection of (21) that the ex-
ponentially decaying behavior of the survival amplitude cor-
responds to the sum of distinct resonance energies weighted
by expansion coefficients that fulfill (12). It turns out that
for large values of the argument, the M functions in (22)
exhibit an asymptotic expansion that goes as M(zq) ∼ 1/zq

− 1/z3
q + · · · , with zq = −y0

n or y0
−n [24,33]. The leading term

in these expansions, using (11) and (5), vanishes exactly and
hence

Ane(t ) ≈ −iη Im

[ ∞∑
n=1

CnC̄n

κ3
n

]
1

t3/2
, (23)

with η = 1/(4π i)1/2. Note that for l > 0 the nonexponential
contributions go as t−(l+3/2) [36], which implies that the
leading nonexponential contribution comes from s waves.

III. INTERFERENCE IN THE TIME DOMAIN FOR THE
EXPONENTIAL-NONEXPONENTIAL TRANSITION

In order to establish which energies (wave numbers) con-
tribute to the nonexponential expression given by (23), it is
convenient to evaluate g(r, r′; t ) by closing the contour c0 in
(2) in a different fashion, namely, by considering a line 45◦ off
the real axis that may be evaluated by deforming c0 and using
the theorem of residues to get explicitly the exponentially
decaying contributions plus an integral term along that line
[24,28]. The integral term may be evaluated by the steepest-
descent method. The essential point is that the saddle point
is at k = 0, and making a Taylor expansion of G+(r, r′; k)
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around that point, one may write [24,28]

g(r, r′; t ) ≈
∞∑

n=1

un(r)un(r′)e−iEnt e−�nt/2

− iη

{
∂

∂k
G+(r, r′; k)

}
k=0

1

t3/2
, (r, r′)† � a.

(24)

Equation (24) shows beyond any doubt that the nonexponen-
tial contribution arises from almost vanishing values of the
wave number k and hence of the energy. This behavior is
known [12,37], but has not been used to investigate the physi-
cal mechanism for the exponential-nonexponential transition.
One may use (3) to express the second term in (24) in terms
of resonance states to obtain

−iη Im

{ ∞∑
n=1

un(r)un(r′)
κ3

n

}
1

t3/2
, (r, r′)† � a. (25)

It follows then, using (1) and (20), that (25) leads exactly
to the expression of the nonexponential survival amplitude at
long times given by (23). In an analogous way, the first term
in (24) corresponds exactly to (21).

Using (20), the survival probability may be written as

S(t ) = |Ae(t )|2 + |Ane(t )|2 + 2 Re[A∗
e (t )Ane(t )], (26)

where Ae(t ) and Ane(t ) are given by (21) and (22). Depending
on the parameters of the potential, there is a time t0 where the
first and second terms in (26) are necessarily of the same order
of magnitude. For t < t0, |Ae(t )|2 > |Ane(t )|2, and for t > t0 it
is the other way around. Around t0, the last term in (26) may
be written using (23) as

2 Re[A∗
e (t )Ane(t )] ≈ −2 Re

{[ ∞∑
n=1

CnC̄ne−iEnt e−�nt/2

]∗

×
[

iη Im
∞∑

n=1

CnC̄n

κ3
n t3/2

]}
, (27)

which describes analytically the interference in the time do-
main of the exponential and nonexponential contributions to
the decay process in the transition region. The essential point
is that both Ae(t ) and Ane(t ) originate from the decaying
wave function (14) and hence one may conclude that the
exponential-nonexponential transition process corresponds to
the interference in the time domain of the decaying particle
with itself.

Since the coefficients CnC̄n satisfy the closure relation
given by (12), in practice, depending on the initial state,
a finite number of terms are needed to evaluate (27). It is
straightforward to see that the above considerations hold also
for the time evolution of the probability density |�(r, t )|2.

IV. FONDA-GHIRARDI MECHANISM FOR
NONEXPONENTIAL DECAY

Let us now refer to the physical mechanism proposed by
Fonda and Ghirardi to produce the deviations from the expo-
nential decay law [14]. Following an approach considered by
Ersak [15], these authors argue that during the decay process

of an unstable system one may only observe whether the
system remains undecayed or has decayed. As a consequence
they write the Hamiltonian of the Hilbert space of the system
as the sum of two orthogonal subspaces Hu and H⊥, namely,
H = Hu + H⊥, and assume that the initial unstable state |0〉 is
part of an orthonormal set of states which is complete in Hu.
Then as time evolves one may write, for t ′ � 0 [14],

e−iHt ′ |0〉 = A(t ′)|0〉 + |φt ′ 〉, t ′ � 0, (28)

where A(t ′) is the survival amplitude defined by (18) and |φt ′ 〉
stands for the decayed state at time t ′. From (28) it follows,
provided the initial state is normalized to unity, i.e., 〈0|0〉 = 1,
that

〈0|φt ′ 〉 = 0. (29)

The decayed state |φ′
t 〉 that arises after measurement deter-

mines that the system has decayed. Therefore |φt ′ 〉 represents
presumably a collapsed state at time t ′. By applying to both
sides of (28) the operator exp(−iHt ) with t � 0, it follows,
after a simple mathematical manipulation, that [14,15]

A(t + t ′) = A(t )A(t ′) + I (t, t ′), (30)

where

I (t, t ′) = 〈0| exp(−iHt )|φt ′ 〉 (31)

is the expression that provides, according to Ref. [14],
the physical mechanism for producing the deviation
from the exponential decay law. This follows as a conse-
quence of the fact that I (t, t ′) = 0 implies, using (30), that
A(t ) decays exponentially and since this contradicts the Paley-
Wiener theorem, I (t, t ′) must be �=0. Following the above
reasoning, they affirm that the decayed state reconstructs
partially the initial state through a process of rescattering.
These authors did not discuss or suggest a suitable analytical
expression for |φt ′ 〉 satisfying the orthogonality condition (29)
to evaluate (31). However, from (30) we may express exactly
I (t, t ′) as

I (t, t ′) = A(t + t ′) − A(t )A(t ′), (32)

which may be evaluated by using a solvable model for A(t ).
Notice, however, that I (t, t ′) �= 0 implies that A(t ) and A(t ′)
must contain intrinsic nonexponential contributions because
otherwise I (t, t ′) should vanish exactly as discussed above.
Fonda and Ghirardi ignored this intrinsic nonexponential con-
tribution and focused their discussion on the term I (t, t ′). Here
we will address a comparison between the intrinsic nonexpo-
nential contribution of A(t ) and the rescattering term I (t, t ′).
We find using a generic exact solvable model that, contrary
to the claim by Fonda and Ghirardi, the reconstruction of the
initial state by the decayed state is not the relevant mechanism
to originate the nonexponential decay behavior.

It is of interest to mention that Fonda and Ghirardi [14]
did not discuss the short-time behavior of the nonexponential
term I (t, t ′). As is well known, the survival probability S(t ),
defined by (17), exhibits at short times a deviation from the
exponential decay law that in general follows a quadratic
behavior, namely,

S(t ) ≈ 1 − dt2, (33)
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FIG. 1. Natural logarithm of the survival probability S(t ) (solid
gray line) as a function of the time t/τ in lifetime units for the
potential parameters given in the text. Also shown are the exponential
Se(t ) = |Ae(t )|2 and nonexponential Sne(t ) = |Ane(t )|2 contributions.
Notice the interference region in the time domain for t/τ ≈ 30.0.

with d a constant larger than zero [38]. Using the resonance
state formalism, the short-time behavior of S(t ) has been
analyzed for distinct initial states in Ref. [39]. Since the initial
state is normalized, it follows from (18) that A(0) = 1 and
hence it is straightforward to convince oneself, using (32) for
any t ′ = T , that

I (0, T ) = 0. (34)

The above result is in agreement with an inequality derived
by Fleming [40], i.e., Eq. (3.2) therein, which in our notation
reads

|I (t, t ′)|2 � [1 − S(t )][1 − S(t ′)]. (35)

For t ′ = T and t = 0, Eq. (35) yields also I (0, T ) = 0 as in
(34). Hence, the above considerations imply that the rescat-
tering mechanism proposed by Fonda and Ghirardi does not
describe the deviation from exponential decay at short times.
The above result is exemplified below in a model calculation.

V. MODEL

As an example, let us consider the barrier shell potential,
which consists of an internal region of width w, followed
by a rectangular potential barrier of width b, so w + b = a.
The system parameters are the barrier height V = 30.0, well
width w = 1.0, and barrier width b = 0.3. The resonance
state solutions to the Schrödinger equation obeying outgoing
boundary conditions with the usual continuity conditions at
the distinct interfaces of the potential lead to the equation
whose solution yields, following known procedures [41–43],
the κn’s to the problem. As the initial state we use the
quantum-box state �(r, 0) = √

2/w sin(πr/w) placed at the
center of the quantum well.

Figure 1 shows a typical survival probability graph along
the exponential and long-time regimes (solid grey line), which
exhibits in particular the exponential-nonexponential transi-
tion which is described analytically by (27). Figure 1 also

FIG. 2. Natural logarithm of the Ersak term JT (t ) = |I (t, T |2 for
several values of T as indicated in the figure and its comparison with
ln S(t ), which exhibits the intrinsic nonexponential behavior at long
times. The parameters of the potential are the same as in Fig. 1. See
the text for further details.

displays the exponential ln Se(t ) and nonexponential ln Sne(t )
contributions calculated using (21) and (22). It is worth point-
ing out that (23) yields the same result as (22) except at very
small times. In some cases the exponential-nonexponential
transition time t0 may be evaluated analytically [44]. In order
to guarantee the t−3 asymptotic behavior of the survival prob-
ability, it is sufficient to consider 50 poles in the calculations.

Figure 2 exhibits the exact calculation of the Ersak term
ln JT (t ) versus time in lifetime units, where JT (t ) = |I (t, T )|2
follows using (32). Since Fonda and Ghirardi did not provide
a criterion to choose the value of T , we evaluate ln JT (t ) for
a range of values of T and compare it with ln S(t ) with the
same potential parameters as in Fig. 1. It is also worth noting
in Fig. 2 that as the time t approaches zero, the contribution
of JT (t ) diminishes as T increases and that at t = 0 it goes
to zero, i.e., ln JT (0) = −∞, in agreement with (34) and
(35). This implies, as discussed in the preceding section, that
the Fonda and Ghirardi mechanism says nothing about the
deviation of exponential decay at short times. Note that for
T = 0.001 and 10, which are within the exponential regime of
S(t ), JT (t ) vs t exhibits both exponential and nonexponential
regimes. We also consider values of T corresponding to the
nonexponential regime of the survival probability. These are
the values of T = 100 and 1000 of ln JT (t ) in Fig. 2. One
may understand the distinct behaviors of JT (t ) exhibited in
Fig. 2 by writing down an analytic expression for I (t, T )
using Eqs. (20), (21), and (23). Since the expansion coefficient
Re C2

1 = 0.899 is of the order of unity, in view of (12), we
make the single-term approximation n = 1 in (21) and (23) to
write the leading contributions of I (t, T ) as

I (t, T ) ≈ (
C2

1 − C4
1

)
e−iE1(t+T )e−�1(t+T )/2

− D1

(t + T )3/2
− D2

1

t3/2T 3/2
, (36)

where D1 = iη Im(C2
1 /κ3

1 ). Notice that the coefficient
(C2

1 − C4
1 ) does not vanish, which explains the exponentially
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decaying behavior of JT (t ) observed in Fig. 2. Similarly, the
second and third terms on the right-hand side of (36) describe
the leading inverse power of time behavior of JT (t ). These
terms become the dominant contribution for very large values
of T , because then the exponential contribution is negligible.
We point out that the above approximate formula holds for
any values of t and T , not too close to zero because then
the exact expressions (21) and (22) must be used. Notice that
all calculations yield values much smaller than those of the
survival probability S(t ). This implies that the nonexponential
contribution Ane(t ), given by (23), is larger than the Ersak
term I (t, T ), given by (32). The above results show that the
so-called regeneration or rescattering mechanism proposed
by Fonda and Ghirardi is not the relevant mechanism of the
long-time deviation of exponential decay and says nothing of
the short-time behavior.

VI. CONCLUSION

The main contribution of this work is to show that the
physical mechanism for the exponential-nonexponential tran-
sition exhibited by the survival probability is the interference
in the time domain of the decaying particle with itself. We also
found that the regeneration term proposed several decades
ago by Fonda and Ghirardi is unable to provide the physical

mechanism for the origin of nonexponential decay and
as a consequence it does not describe the exponential-
nonexponential transition. It is worth emphasizing that the cal-
culation of the survival probability using the non-Hermitian
approach discussed here yields exactly the same results as
numerical calculations using the corresponding Hermitian ap-
proach in terms of continuum wave functions [27–29], which
however do not provide any clue to the underlying physical
mechanism that yields the non-Hermitian approach. In our
view, our finding exhibits a unknown feature of nonstationary
solutions to the Schrödinger equation and therefore suggests
to explore its implications on foundational issues of quantum
mechanics. Our approach follows a line of inquiry aimed to
extend the standard formalism of quantum mechanics to in-
corporate in a fundamental fashion the present non-Hermitian
treatment of the Hamiltonian to describe dynamical aspects of
quantum systems [27,45].
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