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Experimental simultaneous readout of the real and imaginary parts of the weak value
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The weak value, the average result of a weak measurement, has proven useful for probing quantum and
classical systems. Examples include amplifying small signals, investigating quantum paradoxes, and elucidating
fundamental quantum phenomena such as geometric phase. A key characteristic of the weak value is that it
can be complex, in contrast to a standard expectation value. However, typically only either the real or imaginary
component of the weak value is determined in a given experimental setup. Weak measurements can be used to, in
a sense, simultaneously measure noncommuting observables. This principle was used in the direct measurement
of the quantum wave function. However, the wave function’s real and imaginary components, given by a
weak value, are determined in different setups or on separate ensembles of systems, putting the procedure’s
directness in question. To address these issues, we introduce and experimentally demonstrate a general method
to simultaneously read out both components of the weak value in a single experimental apparatus. In particular,
we directly measure the polarization state of an ensemble of photons using weak measurement. With our method,
each photon contributes to both the real and imaginary parts of the weak-value average. On a fundamental level,
this suggests that the full complex weak value is a characteristic of each photon measured.
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I. INTRODUCTION

Weak values and weak measurements have attracted a
considerable amount of interest in recent years [1]. Weak
values were introduced in 1988 [2,3] as the average result of a
gently probing measurement (i.e., a weak measurement) of an
quantum observable for an input quantum state and followed
by a projective measurement. They have been used to inves-
tigate quantum paradoxes, such as the three-box [4,5], the
Cheshire cat [6,7], and Hardy’s paradoxes [8,9]. Weak values
are deeply connected to other fundamental and uniquely quan-
tum phenomena, such as geometric phase [10], time-reversal
symmetry violation [11–13], Bayesian quantum estimation
[14], and noncontextuality [15–17]. They have also found
application in the field of metrology. In a technique called
weak-value amplification, the weak value can become much
larger than the standard expectation value of an observable,
thereby amplifying the associated measurement signal [2].
This has been used to measure small shifts in quantities such
as phase, time, frequency, angle, and temperature [18–22].

Most relevant to this work, weak measurement has been
used to directly measure the quantum wave function of a
system [23–26]. This procedure weakly measures one variable
(e.g., position x) and then strongly measures the complemen-
tary variable (e.g., momentum p). The real and imaginary
parts of the wave function ψ (x) appear directly on the mea-
surement apparatus as the real and imaginary parts of the weak
value. In this way, an unknown input quantum state can be
determined. And, in contrast to quantum state tomography,
this can be accomplished without the need for a complicated
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mathematical reconstruction such as an inversion or fitting.
Nevertheless, there has been a degree of indirectness in almost
all experiments that measure both the real and imaginary parts
of the weak value. In particular, each part is measured by
averaging over a separate subensemble. This happens in two
possible ways: (1) A different apparatus is used to measure
each of the two parts. (2) A single apparatus randomly chooses
whether it is the real or imaginary part that is measured in a
given trial. In either case, the real and imaginary parts of the
wave function are determined separately, which diminishes
the purported directness of the technique.

Another motivation for this work is to establish whether
the weak value is fundamental to a physical system. The
experiments described above suggest that measurements of
the real and the imaginary parts of the weak value are mutually
exclusive. It may be fundamentally impossible to measure
them simultaneously, much like the Heisenberg Uncertainty
Principle forbids the simultaneous precise measurement of
complementary observables. If true, it may be incorrect to
consider both the real and imaginary parts of the weak value
as the average result of weak measurement or as simultaneous
properties of the measured system. This would contradict
particular interpretations of quantum physics that take weak
values as deterministic (i.e., “real” or ontological) properties
of a system [4,27,28].

Recently, an experiment demonstrated the simultaneous
readout of the real and imaginary parts of the weak value using
orbital angular momentum states of light [29]. However, it was
unclear whether orbital angular momentum was inherently
necessary or whether the technique was more general. In this
work, we show that the technique in Ref. [29] can be general-
ized to a broad class of weak-measurement implementations
by performing a sequence of two separate weak measurements
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of the same observable. We experimentally demonstrate the
method by directly measuring the polarization state of an
ensemble of photons while simultaneously reading out both
the real and imaginary parts of the weak value for each photon.

We begin by reviewing the theory behind weak values. We
then theoretically introduce the two above-mentioned general
methods to concurrently measure the real and imaginary parts
of the weak value. Next, we describe an experiment in which
we directly measure the photon polarization. The main benefit
of our method is to conceptually and experimentally simplify
weak measurement. In the the last section, we discuss this in
more detail along with the method’s precision.

II. THEORETICAL DESCRIPTION
OF WEAK MEASUREMENT

The concept of weak measurement is best introduced
within von Neumann’s model of quantum measurement. Ar-
guably, any type of measurement can be described with this
model [30]. The key feature of this model that distinguishes it
from the standard treatment of measurement in quantum me-
chanics is that both the measured system S and the “pointer” P
of the measurement apparatus are treated quantum mechani-
cally. That is, both have quantum states. The measured system
begins in an arbitrary superposition state |ψ〉S = ∑

n cn|an〉S ,
where |an〉S is an eigenstate of the observable Â that is to be
measured, with eigenvalue an. The measurement apparatus
incorporates a pointer that will indicate the result of the
measurement. The pointer is in state |ξ 〉P. Initially, |ξ 〉P =
|q̄ = 0〉P, a state with standard deviation σ and center q̄ in
some variable q (e.g., position). Together, the pointer and
measured system compose the total system T , which has state
|�〉T = |ψ〉S ⊗ |q̄ = 0〉P initially.

To perform the measurement, the system observable is
coupled to the conjugate pointer variable k (e.g., momentum)
by the von Neumann measurement interaction

Û = exp(−iδÂ ⊗ k̂), (1)

where δ is the coupling strength. The action of unitary Û is
as follows. The pointer will be shifted by �q = δan for state
|an〉S in |ψ〉S . Thus, the final state of the total system is given
by |�′〉T = ∑

n cn|an〉S|q = δan〉P, which is now entangled
between S and P. Lastly, in the “readout” step of the model,
one measures q̂ on the pointer to read out the measurement
of Â. If the shift is large compared to the initial spread of the
pointer, δ � σ , then the outcome of the measurement can be
read out unambiguously in a single trial with minimal error.
However, given outcome an, the system will then be left in
a single state |an〉S , destroying the initial superposition (i.e.,
“collapse”). This is a standard (i.e. “strong”) measurement.

The opposite limit, δ � σ , defines the regime of weak
measurement. In this limit, the shifted pointer states in |�′〉T

overlap in q, making the result of the measurement ambiguous
in any given trial. However, since the the measured system is
now only minimally entangled with the pointer, reading out
Â by measuring q̂ now only minimally disturbs the initial
measured-system state |ψ〉S . Subsequent measurement will
now reveal additional information about that state. Consider
a subsequent projective measurement onto state |ϕ〉S . In the
subensemble of trials that have been successfully projected

onto |ϕ〉S (i.e., “postselection”), the pointer will on average be
shifted by an amount proportional to the weak value [2]:

〈Â〉W = 〈ϕ|Â|ψ〉
〈ϕ|ψ〉 . (2)

For this to be valid, the pointer shift, δ〈Â〉W (i.e., the “signal”),
must be much smaller than the pointer spread σ (i.e., the
“noise”) [31]. In other words, for a single trial the signal to
noise ratio in a weak measurement is small. Nonetheless, by
repeating the weak measurement in a large number of trials
one can reduce the effect of noise by averaging. The average
result is the weak value.

Unlike standard expectation values, the weak value can be
complex valued. The real and imaginary parts of the weak
value manifest as shifts in the two conjugate pointer variables
q and k:

〈Â〉W = 1

δ
(〈q̂〉 + i4σ 2〈k̂〉), (3)

where the expectation values on the right-hand side are taken
for the final pointer state.

The heart of the problem of determining Re〈Â〉W and
Im〈Â〉W simultaneously is that q̂ and k̂ do not commute,
and, thus, cannot be measured at the same time. Instead, past
experiments have measured Re〈Â〉W and Im〈Â〉W on separate
subensembles of the measured system. This was achieved
with one of two methods, which we call method A and method
B (see Fig. 1). In method A, the ensemble is divided in two.
Each subensemble is then sent through the von Neumann in-
teraction [i.e., Eq. (1)] and to the subsequent strong projective
measurement, i.e., the postselection of system state |ϕ〉S . In
the reading out of the weak measurement, only one of the
pointer variables, q or k, is measured for each subensemble.
An example of this strategy is the original direct measurement
of the wave-function experiment [23]. There, the photon’s
polarization was used as a pointer. The two conjugate pointer
observables were σ̂x and σ̂y, the polarization Pauli matrices.
To measure a given Pauli matrix, the angle of the wave
plate is set at a specific angle. Thus, Re〈Â〉W and Im〈Â〉W

were determined separately for two subensembles of photons
delineated by time.

In method B, the ensemble is divided after the von Neu-
mann interaction. An example of this is in another direct
measurement experiment [32]. In it, the photon’s polarization
was the measured system and its transverse spatial mode
was used as the pointer. Just before the weak-measurement
readout, a beamsplitter divided the ensemble of photons in
two. For one subensemble the transverse momentum was
measured. For the other subensemble the transverse photon
position was measured. In this way, in each trial either the
pointer momentum or position were determined depending on
which way the photon exited the beamsplitter. Consequently,
the real and imaginary weak values were determined with
distinct subensembles.

III. GENERAL METHOD TO MEASURE THE FULL
COMPLEX WEAK VALUE

We now introduce method C (Fig. 1), which allows one
to determine the real and imaginary parts of the weak value
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FIG. 1. Schemes for measuring the real and imaginary parts of
the weak value, Re〈Â〉W and Im〈Â〉W . In method A, an identical
ensemble of system states |ψ〉S is divided into two before the von
Neumann measurement interaction Û couples system observable Â
to the pointer P, initially in state |ξ〉P. In both subensembles, the
system is postselected in state |ϕ〉S . One subensemble is then used
to read out Re〈Â〉W from the pointer while the other subensemble is
used to read out Im〈Â〉W . Method B is similar except that the division
into two subensembles happens after the measurement interaction.
In method C, two pointers are coupled to the system in two mea-
surement interactions. One pointer is used to read out Re〈Â〉W while
the other is used to read out Im〈Â〉W . Only in method C does each
member of the identical ensemble contribute to the readout of the
full complex weak.

simultaneously. This was first achieved in Ref. [29] by using
an orbital angular momentum pointer, which had a ring-like
transverse probability distribution. Shifts of the center of the
ring along two orthogonal directions gave the two parts of the
weak value. While in Ref. [29] this is framed as an effect that
relies on orbital angular momentum, we will show that the key
to the simultaneous determination is the use of the two spatial
directions as independent pointers.

Since weak measurements minimize disturbance to the
system, multiple weak measurements can be performed in
sequence without altering their individual results, i.e., weak
values. Consider, two weak measurements but of the same
system observable Â. A pointer P1 is used for the first von
Neumann interaction and, then, another pointer P2, is used for
the second von Neumann interaction [Eq. (1)] giving a total
evolution of

Û = exp(−iδ1Âk̂1)exp(−iδ2Âk̂2) (4)

= exp[−iÂ(δ1k̂1 + δ2k̂2)], (5)

where k̂ j is observable k̂ for the jth pointer (and likewise for
q̂). While q̂ and k̂ for an individual pointer do not commute,
q̂1 and k̂2 do commute. Consequently, the weak value can
now be determined by measuring q̂1 for the first pointer and
simultaneously measuring k̂2 for the second pointer:

〈Â〉W = 1

δ1
〈q̂1〉 + i

4σ 2
2

δ2
〈k̂2〉. (6)

Note that the two pointers need not be the same type of
quantum systems. They could be an electron and photon, for
example. As well, the pointer degrees of freedom, q1 and
q2, might be distinctly different, e.g., spin and position. This
procedure, based on a sequence of two weak measurements
of Â, constitutes our method to simultaneously measure both
parts of the weak value. A given trial will contribute to the
average for both Re〈Â〉W and Im〈Â〉W .

IV. EXPERIMENT TO SIMULTANEOUSLY MEASURE
THE FULL WEAK VALUE

We demonstrate method C by directly measuring the polar-
ization state of a photon. We describe the direct measurement
concept in the Appendix. Since photons typically do not inter-
act strongly with other quantum systems, instead of using an
external system as a pointer, we use two photonic degrees of
freedom as the system and pointer, polarization and transverse
mode. This allows us to use linear optics to implement the
von Neumann interaction, which will couple a polarization
observable to the transverse position of the photon.

For a two-dimensional pointer, such as transverse position,
method C can be significantly simplified. A photon traveling
along z has a transverse position (x, y), so that q1 = x and
q2 = y. Consider if the two couplings are equal, δ1 = δ2 ≡√

2δ. With this, the two-pointer unitary in Eq. (4) reverts to
the standard von Neumann interaction [Eq. (1)] with a single
pointer and a single-pointer degree of freedom:

Û = exp(−iδÂp̂D/h̄), (7)

where x̂D = (x̂ + ŷ)/
√

2 is the photon position along the di-
agonal direction D (it is the

√
2 in x̂D that necessitates the

√
2

in δ). While, we now only require the standard von Neumann
single-pointer unitary interaction [Eq. (1)], the final pointer
readout must still be two dimensional. That is both x and the
transverse momentum py (i.e., along y) must be measured in
order to simultaneously evaluate both Re〈Â〉W and Im〈Â〉W

according to Eq. (6).
The experimental setup is shown in Fig. 2. Our ensemble

of photons is produced by a helium-neon laser with a wave-
length of λ = 633 nm. A polarizing beamsplitter (PBS) sets
the photon polarization state to horizontal |H〉S . The spatial
distribution is Gaussian in both the x and y directions and is
set to have a 1/e2 half-width of σ = σx = σy = 306 ± 2 μm
with a beam expander. We use a half-waveplate (HWP) with
its optical axis at an angle θ from the horizontal followed
by a quarter-waveplate (QWP) with its axis −45◦ from the
horizontal to produce an input polarization state,

|ψ (θ )〉S = cD|D〉S + cA|A〉S

= sin(2θ − π/4)|D〉S − i cos(2θ − π/4)|A〉S, (8)
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FIG. 2. Experimental setup for simultaneous readout of the real and imaginary parts of the weak value. This setup implements method C in
Fig. 1. To create the input polarization state |ψ (θ )〉S (the state of the measured system) we use a polarizing beamsplitter (PBS), half-waveplate
(HWP) at angle θ , and quarter-waveplate (QWP). The pointers are the two transverse degrees of freedom of the photon, x and y. A beam
expander sets the width σ of the pointer states. The walk-off crystal (xtal) displaces the two-dimensional pointer along the diagonal direction
by δ if the system is diagonally polarized, |D〉S . This implements the measurement interaction by coupling the pointer to the observable π̂D.
A 4f lens arrangement images the crystal plane onto an image sensor. The cylindrical lens is used to Fourier transform the spatial distribution
solely along the y axis. The image sensor records the average photon number at a pixel index (nx′ , ny′ ). This index is proportional to (x, py ).
By evaluating the pointer shifts, 〈x̂〉 and 〈 p̂y〉, we find Re〈π̂D〉W and Im〈π̂D〉W via Eq. (6).

where |D〉 and |A〉 are the diagonal and antidiagonal polar-
ization states, respectively. In order to test our method with a
range of system states, we vary |ψ (θ )〉S by rotating the angle
θ of the HWP.

We implement the von Neumann interaction by using a
birefringent crystal (beta barium borate) to couple the po-
larization of the photon to its spatial distribution. A photon
with a polarization along the crystal optical axis will be
transversely displaced along the direction of the axis, whereas
a photon with the orthogonal polarization will not. We use
a single crystal (xtal) to displace the position xD of photons
with polarization |D〉S by δ = 163 ± 2 μm. Since δ < σ , this
interaction is in the weak measurement regime. The weakly
measured observable is π̂D ≡ |D〉〈D|S . While, in our case, the
displacement and polarization are collinear, by sandwiching
such a “walk-off crystal” between waveplates, any polariza-
tion projector can be measured.

Following the walk-off crystal, we project the measured
system |ψ〉S onto the horizontal polarization state |H〉S with
a polarizing beamsplitter. The transmitted photons are then
sent through a 4f lens system (spherical lenses, focal lengths
f1 = 1 m and f2 = 1.2 m) that images the crystal plane onto
an image sensor (a CMOS sensor with resolution 2560×1920
and a pixel pitch of 2.2 μm× 2.2 μm). The final photon
position x′ on the sensor is given by x′ = Mx, where magnifi-
cation M = f2/ f1 = 1.2. The use of a 4f system creates room
between the image sensor and the xtal for a long focal length
cylindrical lens ( fFT = 1 m, curved along the y direction) to
be placed one focal length before the sensor. The cylindrical
lens performs a Fourier transform such that the final position
is proportional to the initial transverse momentum, y′ = bpy,
where b = λ fFT/2π h̄. The large value of fFT ensures the
distribution will cover many pixels in the y′ direction.

To read out the result of the weak measurement we must
determine the average shift of the pointer along x′ and y′.
Thus, we record the average number of photons (i.e., the
intensity) detected at a given position, I (x′, y′). From this,
Re〈π̂D〉W and Im〈π̂D〉W can be calculated by taking x = x′/M

and py = y′/b in Eq. (6). However, we do not do this. Because
it is more direct, a more accurate method is to calculate the
expectation values in terms of pixel index (nx′ , ny′ ) rather than
position:

〈Â〉W = 1

δx′

(
〈n̂x′ 〉 + i

σx′

σy′
〈n̂y′ 〉

)
. (9)

To arrive at this expression, M has been expressed in terms
of δx′ = 62.8 ± 0.9 and σx′ = 167 ± 1, which are δ and σ in
units of pixels. In addition, b has been expressed in terms of
σy′ = 62.9 ± 0.4 in units of pixels, the pointer width along the
y′ pixel direction. See Ref. [26] for the details of this method.
We vary input system state |ψ (θ )〉S over range θ = 0 to 90◦
in 3◦ steps. For each step three images were collected and
averaged and then used to determine pointer shifts 〈n̂x′ 〉 and
〈n̂y′ 〉. The full range was stepped through seven times. These
seven trials were used to determine the mean pointer shifts
and their standard error. Based on these, in the next section,
we present the measured weak values.

V. RESULTS

In Figs. 3(a) and 3(b), we respectively plot the Re〈π̂D〉W

and Im〈π̂D〉W points experimentally determined using method
C. The solid line plotted in each panel of Fig. 3 is the
corresponding theoretical prediction:

〈π̂D〉W = cD

cD + cA

= 1

2

[
1 + cos

(
4θ + π

2

)]
− i

2
sin

(
4θ + π

2

)
, (10)

which is found from Eqs. (8) and (6). This weak measurement
directly measures the amplitudes of |ψ〉S . Note that the cA

amplitude can be eliminated or determined through normal-
ization |cA|2 = 1 − |cD|2. The phases of the amplitudes are
determined up to a global phase that changes with the input
state |ψ〉S .
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FIG. 3. Real and imaginary parts of the measured weak value.
In (a) and (b), we plot the results of a weak measurement of π̂D

using method C in Fig. 1. The weak value 〈π̂D〉W is found from the
measured shifts along x′ and y′ according to Eq. (9) (blue circles). For
system state |ψ (θ )〉S = cD|D〉S + cA|A〉S the predicted weak value
is given by Eq. (10) (red line). In (c) and (d), we use the fact that
〈π̂D〉W ∝ cD to directly measure the system state (see the Appendix
for details). We plot measured system state amplitudes, cD (blue
circles) and cA (red squares). The nominal amplitudes are indicated
by the solid lines given by Eq. (8). The error bars indicate the
standard error found from repeated trials.

The data points closely follow the theoretical curve, indi-
cating that method C works. However, they do not agree with
theory to within error. We attribute this to systematic errors
such as offsets from the nominal birefringent retardance of the
waveplates, the axis direction of the crystals, and movement
of the beam with waveplate rotation.

VI. DISCUSSION AND CONCLUSION

Since their introduction, weak values 〈Â〉W have been
the focus of debate [33–37]. In addition, there has been
confusion and disagreement about what they fundamentally
represent [3,38–44]. Should they be interpreted as the value
of the weakly measured parameter [45] (even though it can
lie outside the range of the observable’s eigenvalues [2]),
as the average value of that parameter [46,47], or as a real
deterministic property of the measured system [4,27,28], or
perhaps not regarded as a measurement result at all? This
confusion has been compounded by the fact that the weak
value is generally complex, in contrast to the standard quan-
tum expectation value. Indeed, in some papers the imaginary
part of the weak value is not considered part of the result of
the weak measurement at all [48].

There are arguments for and against considering Im〈Â〉W

as part of the result of the weak measurement. An argument
in favor of this is that both Re〈Â〉W and Im〈Â〉W have clear
physical manifestations: as shifts in two conjugate variables
of the measurement apparatus pointer, e.g., position and mo-
mentum, respectively. An “against” argument is that the ap-
pearance of an imaginary component of the average result of a
measurement is completely unexpected and, in the context of

probability theory, nonsensical. Another “against” argument
is that the momentum shift is usually much smaller than the
position shift and thus should be considered a side effect of
the measurement (i.e., reverse “backaction” [49]).

This confusion about the complex nature of the weak value
is compounded by the fact that Re〈Â〉W and Im〈Â〉W were not
measured simultaneously in experiments. That is, since the
two pointer variables are conjugate, the two shifts could not be
determined at the same time. This is particularly consequen-
tial when considering the weak-measurement-based concept
of direct measurement of the wave function. There, the di-
rectness is partly a reflection of the full weak value appearing
on the measurement apparatus in a straight-forward manner.
If the real and imaginary parts do not appear simultaneously
then it puts this directness in question.

While it is conceptually and experimentally simpler,
method C may come with a decrease (or increase) in precision.
Consider that in method C both the real and imaginary compo-
nents of the weak value are measured using the full ensemble.
This will double the sample size relative to methods A and
B and thus reduce the uncertainty in the pointer expectation
values by a factor of

√
2. However, one must also consider the

signal size when discussing precision. In order to compare the
three methods, we consider them with the same total coupling
strength, δ. This also sets the measurement backaction of
the three methods to be equal. As with Eq. (7), the real and
imaginary pointer shifts along x and y (i.e., our signals) will
then be

√
2 smaller in method C than methods A or B. In

short, the decrease in signal size exactly cancels the decrease
in uncertainty. While this is not a rigorous proof, it suggests
that the method introduced in this paper is as precise as the
existing weak-measurement techniques.

In this paper, we introduced and experimentally demon-
strated a general method to simultaneously measure both
the real and imaginary components of the weak value. The
method uses a separate pointer and von Neumann measure-
ment interaction for each weak-value component. We simpli-
fied the method in the case of an inherently two-dimensional
system, such as transverse position, so that only one measure-
ment interaction is required. In the method, each and every
trial contributes to both the Re〈Â〉W and Im〈Â〉W averages.
Thus, two pointer shifts can manifest themselves at the same
time, giving the real and imaginary parts of the wave function
in a direct measurement. In summary, this paper supports the
notion that the full complex weak value should be considered
the average result of a weak measurement and, in that sense,
a fundamental property of the measured system.
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APPENDIX: DIRECT MEASUREMENT
OF THE QUANTUM STATE

Our experimental demonstration performs a direct mea-
surement of a quantum state. Below we describe what is meant
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by a direct measurement. Consider if one wants to measure
the amplitudes of an arbitrary polarization state of a photon
expressed in the A/D basis,

|ψ〉S = cD|D〉S + cA|A〉S, (A1)

where cD = 〈D|ψ〉 and cA = 〈A|ψ〉. We define |H〉, |V 〉, |D〉,
and |A〉, as the horizontal, vertical, diagonal, and antidiagonal
polarization states, where |D〉 = (|H〉 + |V 〉)/

√
2. The con-

cept for direct measurement was introduced in Ref. [23]. In
it, a weak measurement of a variable is followed by a strong
measurement of a complementary variable. The weak value
is proportional to the quantum state. For polarization, this
entails weakly measuring π̂J ≡ |J〉〈J| for J = A, D and then
strongly projecting the measured system on |H〉. A successful
projection defines a subensemble of trials in which the average
result of the weak measurement, the weak value, is

〈π̂J〉W = 〈H |π̂J |ψ〉
〈H |ψ〉 =

√
N〈J|ψ〉, (A2)

where
√

N is a constant, independent of J .

In terms of this weak value, the quantum state is given by

|ψ〉S = 1√
N

(〈π̂D〉W |D〉S + 〈π̂A〉W |A〉S ) (A3)

= 1√
N

[〈π̂D〉W |D〉S + (1 − 〈π̂D〉W )|A〉S]. (A4)

The second line is a simplification using Î = π̂D + π̂A. Nor-
malization fixes N = (|〈π̂D〉W |2 + |1 − 〈π̂D〉W |2). Typically,
one would also fix the global phase, which otherwise would
vary with |ψ〉S . We do this by setting cD = |cD| exp(iφD)
to be real always. Summarizing, for polarization we need
only weakly measure π̂D to directly measure the quantum
state. This procedure was demonstrated in Ref. [32], but
as discussed in the main body of the paper, a beamsplitter
was used to randomly measure either x or px for a given
photon. In contrast, in our method, each member of our photon
ensemble will contribute to both the Re〈Â〉W and Im〈Â〉W

averages.
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