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The paradigm of Schrödinger’s cat illustrates how quantum states preclude the assignment of definite
properties to a macroscopic object (realism). In this work, we develop a method to investigate the indefiniteness
of cat states using currently available cold atom technology. The method we propose uses the observation of
a statistical distribution to demonstrate the macroscopic distinction between dead and alive states and uses the
determination of the interferometric sensitivity (Fisher information) to detect the indefiniteness of the cat state’s
vital status. We show how combining the two observations can provide information about the structure of the
quantum state without the need for full quantum state tomography and propose a measure of the indefiniteness
based on this structure. We test this method using a cat state proposed by Gordon and Savage [Phys. Rev.
A 59, 4623 (1999)] which is dynamically produced from a coherent state. As a control, we consider a set
of states produced using the same dynamical procedure acting on an initial thermal distribution. Numerically
simulating our proposed method, we show that as the temperature of this initial state is increased, the produced
state undergoes a quantum to classical crossover where the indefiniteness of the cat state’s vital status is lost,
while the macroscopic distinction between dead and alive states of the cat state is maintained.
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Superposition is at the heart of the many predictions made
by quantum mechanics that clash with everyday intuition. It
allows for the possibility of an experiment in which we must
conclude that some property of an object cannot be prescribed
a definite value before measurement. Instead, this indefinite-
ness of a property must be modeled by a superposition of pos-
sible values and implies a statistical uncertainty that cannot
be reduced by obtaining more knowledge about the universe.
While plausible for microscopic properties, this possibility
directly conflicts with our everyday intuition for macroscopic
objects. The characteristic example is the Schrödinger’s cat
thought experiment [1], where a cat ends up in a superposition
of alive and dead by entangling with the decayed or excited
state of a radioactive source.

When investigating these macroscopic states in an exper-
iment, we are naturally led to two questions: (1) How do
we know the cat’s life was an indefinite property before
measurement? (2) How do we quantify the macroscopicity
of the cat and thus the extent to which it conflicts with our
intuition about the macroscopic world? The first question
is answered by Leggett-Garg [2], who constructed a set of
inequalities on a set of different-time correlation functions
that would only be violated if the cat was in an indefinite
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state at some intermediate time. The second question has been
answered by constructing measures of macroscopicity in two
general ways [3]: Either by focusing on the structure of a
macroscopic cat state [4–10] or by generalizing to any macro-
scopic quantum state [11–18]. For many of these measures, a
state is declared macroscopic based on how the measures scale
with the number, N , of constituent particles. The experimental
observation of these measures often leads to a way to answer
the first question [12,18,19].

In this paper, we will work with a measure that is a
combination of the one proposed by Leggett [4,5] and the
one proposed by Fröwis and Dür [14]. The measure proposed
by Leggett is quantified by two numbers: The extensive dif-
ference, �, which is the difference of the expectation value
for some observable A between the dead and alive states
of the cat, and the disconnectivity, a quantity based on the
entanglement entropy. The extensive difference describes how
macroscopically different the dead and alive cats are, while
the disconnectivity quantifies how indefinite the vital status
of the cat is. The measure of Fröwis and Dür [14], Neff , is
applicable to general quantum states and is based on the ex-
perimentally quantifiable, quantum Fisher information (QFI).
The QFI has been interpreted as a measure of entanglement
[20] and has stimulated a variety of work studying this type
of entanglement [14,20–26]. The QFI has also been shown
to be connected with the resource theory of coherence [27]
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and to be the maximum quantifier for the resource theory
of quantum invasiveness [28]. Inspired by the measure of
Fröwis and Dür and by recent insights relating the QFI to the
convex roof of uncertainty [29,30] (see Sec. II), we replace
the disconnectivity in Leggett’s measure by a function of the
QFI and statistical variance.

This choice is further motivated by the fact that the ex-
tensive difference and the QFI are both experimentally ac-
cessible in bosonic interferometer experiments. The kind of
bosonic interferometer experiments discussed here [21,25,31–
40] can be understood as a way to estimate a phase encoded
onto a macroscopic spin by a projective measurement. The
maximum sensitivity of the interferometer to the encoded
phase is given by the classical Fisher information (CFI) via
the Cramer-Rao bound [41,42] and is restricted by the phase
encoding method and the chosen projective measurement. The
QFI quantifies the sensitivity of the interferometer when the
best projective measurement is used and is bounded from be-
low by the CFI. The CFI and other measures of sensitivity can
be measured by experiments [25,43] and many proposals exist
to optimize the bound the CFI puts on the QFI [19,26,44]. The
extensive difference can also be obtained in an experiment
from the counting statistics of a single-particle observable
[25,43].

Various types of macroscopic states have been produced
in these systems, ranging from squeezed states [23,24] to
non-Gaussian entangled states [25]. There also exists many
proposals to create macroscopic cat states in bosonic inter-
ferometers [22,45–52]. In this article, we work with a cat
state first proposed by Gordon and Savage [50]. The method
for creating this state can be understood from the classical
dynamics of the effective collective spin. As we explain in
Sec. I, the classical dynamics exhibit two different kinds of
trajectories separated in phase space by the separatrix. As
pointed out by Micheli et al. [47], the cat state is prepared
by creating an initial coherent state with a Wigner distribution
that spans the phase space region crossing the separatrix. The
quantum dynamics then separates the components from either
side of the separatrix into the macroscopically distinct alive
(free oscillation) and dead (self-trapping) components of the
cat. They prove this by semiclassically evolving the Wigner
function and finding it produces a double peak distribution in
the z component of the macroscopic spin.

Similar arguments can be applied to mixed states, and
we show that initial thermal distributions also evolve into
a double-peak state. We show that as the temperature in-
creases, the state displays less indefiniteness, and we describe
how an experimenter can observe this transition. These high-
temperature states are particularly appealing because, despite
increasing the temperature, it is still possible to identify
the dead and alive states of the cat. Thus, as temperature
increases, the vital status of the cat becomes definite before
the distinction between dead and alive is lost.

Previous work has suggested the detection of indefinite
properties for similar states by using generalized Leggett-
Garg inequalities [53] or observation of many-body correla-
tion functions [54], but these methods rely on experimental
tools that have yet to be implemented. In this article, we study
the possibility of currently available cold atom technology to

experimentally detect the macroscopic indefiniteness of these
cat states and distinguish them from the classical uncertainty
of the high-temperature mixed states. The method we propose
uses the observation of a statistical distribution to demonstrate
the macroscopic distinction (extensive difference) between
dead and alive states and uses the interferometric sensitivity
(QFI) to detect the indefinite vital status of the cat. We show
how these two types of observations provide information
about the nature of the possible pure states which make up the
density matrix and how this information is useful in observing
the crossover from a cat that is in a superposition of dead and
alive to a cat that is either dead or alive. Next, we numerically
simulate the method for the Gordon and Savage cat state and
demonstrate the quantum to classical crossover. Inspired by
the Schrödinger’s cat thought experiment, we conclude by
considering a cat state which is entangled with an auxiliary
qubit (representing the radioactive source) and show that such
a quantum to classical crossover is controlled by the strength
of entanglement with the auxiliary qubit.

I. INTERFEROMETERS, CAT STATES,
AND DOUBLE-PEAK MIXED STATES

Interferometry in Bose-Einstein condensates has led to new
measurement techniques for magnetic fields [31], gravita-
tional fields [39,40] and rotational motion [38]. In the kind
of interferometry that we are considering, the experiment
consists of the following four steps [21,26]:

(1) State preparation: In the first step, the state, described
by a density matrix ρ, is prepared. This step often involves
condensing particles into a single wave function and perform-
ing entangling operations to allow sensing at higher accuracy.

(2) Phase encoding: The unitary evolution of the interfer-
ometer encodes a phase onto the state prepared in the first
step: ρ → ρψ = U †

ψ,�ρUψ,�. The Hamiltonian of this unitary
evolution is proportional to the parameter to be measured,
such as the magnetic field strength. ψ is the phase encoded,
and � represents the additional parameters of the unitary
transform.

(3) Readout: An additional unitary evolution Ur is applied
to the state to prepare for an effective measurement of an
observable R.

(4) Projective measurement: A destructive measurement of
an observable X is modeled as a projection onto the eigen-
vector |x〉 with measurement value x: 〈x|U †

r U †
ψ,�ρUψ,�Ur |x〉.

Repeating this measurement multiple times produces a distri-
bution:

p(r, ψ,�) = 〈r|U †
ψ,�ρUψ,�|r〉 (1)

with |r〉 = Ur |x〉.
For simple setups, the expectation value of R is directly

proportional to the phase encoded and Hamiltonian parameter
being estimated. In this paper, instead of using the last three
steps to estimate the phase, they are used to verify the indefi-
niteness of some property of the initial state ρ.

A. Phase encoding, readout, and projective measurement

A simple form of interferometry involves two quantization
modes that can interfere. These modes can be external kinetic
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modes in which bosons move in two different guides, or the
modes can be identified with the two sites of a double-well
potential [34–40,55]. These modes could also be associated
with two different internal states of the boson particles (e.g.,
hyperfine states of the bosonic atoms [25,31–33] that can
be coupled by lasers). A highly successful approximation
[47,56–58] assumes that the bosons only occupy these two
modes. This limits the Hilbert space to that spanned by the
Fock states of the two modes: |m1, m2〉, where m1 and m2 are
the number of bosons in the first and second modes. Count-
ing the particles in the two modes constitutes the projective
measurement of step 4: |x〉 = |m1, m2〉.

A single particle in two modes has a two-dimensional
Hilbert space and is described by a spin-half operator, J =
σ/2. The single-particle observable in two modes, for a
system with N particles are described by linear combination
of SU(2) generators of a N/2 spin, J = ∑N

i=1 σi/2:

J (θ, φ) = Jz cos θ + Jx sin θ cos φ + Jy sin θ cos φ, (2)

where these Cartesian components, Jz, Jx, and Jy, satisfy the
standard commutation relations: [Ji, Jj] = iεi, j,kJk . By map-
ping the sum, m1 + m2 = 2 j, and difference, m1 − m2 = 2 jz,
onto the magnitude and z projection of a collective spin, one
can connect the Fock representation with this well-known
SU(2) algebra for describing rotations. The particle number
difference is then mapped to Jz and tunneling between the two
modes is described by Jx [more generally, J (π/2, φ)].

For internal modes, a Hamiltonian Jz can be created by
applying a magnetic field to split the hyperfine states and a
Hamiltonian Jx can be created by applying a Rabi-coupling
laser field. For external kinetic modes, these Hamiltonians are
controlled by shaping the external potential.

The phase encoding and readout operations, Uψ,� and Ur ,
discussed in this paper are all linear single-particle operations:

U (α, θ, φ) = e−iαJ (θ,φ), (3)

where Ur = U (Trεr/h̄, θr, φr ) and Uψ,� = U (ψ, θ�, φ�) and
ε is the energy scale of the Hamiltonian. The collective
spin picture maps a projective two-mode number difference
measurement, m1 − m2, to a measurement of the Jz observ-
able. For single-particle readout, the combined steps 3 and 4
becomes equivalent to an effective measurement on the spin in
a new direction: Jz → Jz′ = U †

r JzUr . For example, a readout
rotation around the x axis (Tr = π h̄

2εr
, θr = π/2, φr = 0, i.e.,

J (θr, φr ) = Jx) produces an effective measurement of Jy.

B. State preparation: Cat states and mixed double-peak states

In this paper, the state prepared in the first step of inter-
ferometry is the Gordon and Savage cat state [50] or a mixed
state with a similar distinction between dead and alive states.
In this section, we describe these states and how they can be
prepared. In the next section, we describe how the last three
steps can be used to verify indefinite properties of this state.

In bosonic interferometry, state preparation begins with
condensation into the ground state of some Hamiltonian
ετ J (θ, φ). In this paper, we will describe partial condensation
using a thermal state,

ρ(β, z, φ) = eβετ J (cos−1(z),φ), (4)

FIG. 1. Classical trajectories. The separatrix is shown in black
(bold) and separates the circular free-oscillation trajectories from the
self-trapping ones. The green dots mark the fixed point and the green
arrows mark the unstable directions.

where we have introduced the scaled difference: z = jz/ j =
[m1 − m2]/N = cos(θ ). States of this form have been pro-
duced for kinetic modes for the Hamiltonian Jx by Gross
et al. [35], and thermal states of any other Hamiltonian of
the form J (cos−1(z), φ) can be produced by rotations of the
form in Eq. (3). For this paper, we will focus on the states
ρ(β, 0 = zc(π ), π ) and ρ(β, |zc(0)|, 0), which we refer to as
the π and 0 state at temperature β−1. The critical imbalance,
zc(φ), is given by the solid black line in Fig. 1.

Following (partial) condensation, cat states can be prepared
by the method mentioned above by Gordon and Savage. We
will describe this method using the explanation provided by
Micheli et al. [47]. There they explain how the twist-and-turn
[21] Hamiltonian

H = tJx + U

2
J2

z (5)

produces cat states via a semiclassical analysis. The classical
analysis assumes a set of variational states which are the
ground state of the Hamiltonian J ( cos−1(z), φ). The classical
equations of motion describe the dynamics of imbalance of
particles between the two modes (projection onto the axis), z
and its conjugate variable φ.

The classical equations of motion have been solved an-
alytically [56] and have two fixed points for all parame-
ters, t and U . Dynamical creation of a cat state takes place
at larger coupling strength (U > 4t/N), where one of the
classical fixed points is unstable. The classical trajectories
for 2J = N = 200, U = 0.1, and t = 1 are shown in Fig. 1
and demonstrates a critical line, ±zc(φ), separating two dis-
tinct dynamical behaviors. Along one set of trajectories, the
effective spin rotates around the x axis so that the variation
of the azimuthal (φ) angle is confined to a finite interval.
These trajectories, confined to the middle region in Fig. 1,
correspond to the Josephson oscillations [34,56,59] observed
in condensed matter Josephson junctions and we refer to them
as “free oscillations.” Along another set of trajectories, the
spin rotates around the z axis so that the φ variable increases
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indefinitely. Along the latter type of trajectories, the particle
imbalance (z) does not change sign and the corresponding
dynamics is known as “self-trapping” dynamics. The phase-
space (φ, z) regions of the two types of trajectories are sepa-
rated by a critical line, zc(φ), called the separatrix, indicated
by the thick black line in Fig. 1. This line is the classical
trajectory of both the π and 0 states in the classical analysis.
The π state starts on the unstable fixed point, while the 0 starts
at [zc(0), φ = 0]. All numerical calculations presented in this
paper have been carried out for the parameters used in Fig. 1:
2J = N = 200, U = 0.1, and t = 1.

Focusing on pure states (β−1 = 0), the first quantum ap-
proximation in a semiclassical analysis treats the initial pure
state as a finite-width Gaussian probability distribution. In
the classical dynamics, the paths of the free oscillation and
self-trapping trajectories diverge near the unstable fixed point
(φ = π, z = 0). In the quantum mechanical evolution of the
π and 0 states, the trajectories of the Wigner-distribution
amplitudes part ways near the same phase space coordinate.
After a time interval during which the z coordinates of the
classically evolving systems on either side of the separa-
trix have separated maximally (a time Tπ = ln(8N )h̄/[NU ]
for the π state and 1.4Tπ for the 0 state), the quantum
state evolves into a superposition of two macroscopically
separated (specified below) states. The corresponding self-
trapping and free oscillation components are the dead and
alive components of the cat state. In the case of the pure
state described above, we a priori know that the vital status is
indefinite.

For the case in which the initial state is at a high temper-
ature, the classical dynamics are the same, but uncertainty in
the evolved probability distribution reflects our lack of knowl-
edge about the classical phase-space position as opposed to
the indefiniteness of the quantum state. As we show below,
the measure that we propose indicates that the thermal states
are definite.

We numerically compute both the thermal and pure states
using exact diagonalization of Eq. (5) followed by a time
evolution of the states ρ(β, z, φ). The probability distributions
for the Jz observable are shown in Fig. 2 for the pure states and
Fig. 3 for the high-temperature states. Both the pure states and
the thermal states demonstrate a double peak suggestive of a
dead and alive labeling. We make this labeling precise for a
pure state |k〉 by decomposing it into a dead and alive state
|k〉 = (|alive〉 + |dead〉)/

√
2:

|alive〉 = 1√
NL

∑
jz

| jz〉〈 jz|k〉�(〈Jz〉 − jz ),

|dead〉 = 1√
NR

∑
jz

| jz〉〈 jz|k〉�( jz − 〈Jz〉),

(6)

where NR and NL are defined so the alive and dead states
are properly normalized. While this decomposition is always
possible, it only make sense to call the pure state |k〉 a
cat state if the dead and alive states are macroscopically
distinct. In other words, the extensive difference �(A) =
〈A〉alive − 〈A〉dead should scale with the number of particles.
For the decomposition above, the extensive difference for the

FIG. 2. Distributions P( jz ) for the state evolved from the π and
0 coherent states (0 temperature) for times Tπ and 1.4Tπ respectively.
These states were computed for N = 200 (spin with size J = 100),
and the x axis, jz, shows the eigenvalues of the observable Jz.

observable Jz can then be computed by

�(Jz ) =
∑

jz

[PL( jz ) − PR( jz )] jz, (7)

where PL( jz ) are the renormalized distributions corresponding
to the dead and alive states:

PL( jz ) = 1

NL
P( jz )�(〈Jz〉 − jz ),

PR( jz ) = 1

NR
P( jz )�( jz − 〈Jz〉),

(8)

where �(x) is the Heaviside-step function which is 1 for x >

0 and 0 for x < 0.
Thus, any double-peak distribution where the peaks are

macroscopically separated will have an extensive difference

FIG. 3. Distributions P( jz ) for the state evolved from the π and
0 states at temperature 10ετ for the same time intervals as in Fig. 2.
As in Fig. 2, these states were computed for N = 200 (spin with size
J = 100).
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scaling with the number of particles. This is true for the
pure states in Fig. 2, where the extensive difference is
65 ≈ 200/3 = N/3. Equation (7) can also be applied to the
mixed states in Fig. 3 and gives a similar extensive differ-
ence ≈N/3. Experimentally, counting statistics provide the
distributions P( jz ) and Eq. (7) can be used to determine if the
observed state can be meaningfully separated into macroscop-
ically distinct dead and alive cats. The next section describes
how to determine the vital status of the cat.

II. INTERFEROMETER SENSITIVITY
AND INDEFINITENESS

To quantify how indefinite the vital status of the cat is, we
use the interferometer sensitivity quantified by the quantum
and classical Fisher information (QFI and CFI). In this sec-
tion, we introduce the interferometer sensitivity and convex
roof of the variance, explain how an experiment can quantify
the indefiniteness, and obtain information about possible pure
states which make up the density matrix.

In the interferometry experiment discussed above, a phase
ψ = ε�t

h̄ is encoded on to a state via time evolution by a
Hamiltonian, H� = εJ (θ�,��), for a time �t . The sensitivity
to the phase ψ is given by the CFI:

Fc(R, ρψ,�) =
∑

r

p(r, ψ,�)[∂ψ ln ( p(r, ψ,�) )]2, (9)

where p(r, ψ,�) = 〈r|U †
ψ,�ρUψ,�|r〉(Eq. (1)). The primary

use of the CFI, Fc, is that its value provides an upper
bound on the estimated phase ψ via the Cramer-Rao bound
[41,42]:

�ψ � 1√
Fc(R, ρψ,�)

. (10)

The CFI, Fc(R, ρψ=0,�), can be measured in experiments
[25]: Repeating the four-step process to obtain measurements
of p(r, 0 + δ,�) for a range of small δ allows the construction
of the derivative with respect to ψ evaluated at ψ = 0 and a
direct use of Eq. (9). Other methods exist to get more accurate
values [19,26,44].

A pure state with larger uncertainty, �J (θ�, φ�) [imply-
ing, since the state is pure, a larger indefiniteness in the
observable J (θ�, φ�)], responds on a faster timescale, ω−1 =
h̄(ε�J (θ�, φ�))−1 and may have a larger CFI. Whether or not
the CFI is larger depends on the observable R in step 3 of the
four-step process: The dependence on the phase (ψ) cancels
out if the {|r〉} basis consists of eigenstates of J (θ�, φ�). To
characterize the sensitivity of the quantum state, independent
of the choice of the observable R, one must optimize over
all Hermitian operators R. The result of this optimization
procedure is the QFI [14,60,61]:

Fq(ρψ,�) = max
R

Fc(R, ρψ,�). (11)

Since the Cramer-Rao uncertainty bound on �ψ of Eq. (10) is
valid for every choice of the measurement observable, R, the
tightest bound on �ψ is obtainable from the QFI:

�ψ = ε�t

h̄
� 1√

Fq(ρψ,�)
. (12)

For a pure state system, ρ = |k〉〈k|, it was shown [60] that

Fq(ρψ = |k〉〈k|,�) = 4〈k|(�J (θ�,��))2|k〉, (13)

where

〈k|(�J )2|k〉 = 〈k|J2|k〉 − 〈k|J|k〉2. (14)

With �ψ = (ε�t )/h̄ and ε�J = �H�, the pure state
Cramer-Rao bound on the phase can be written as

�t
√

〈k|(�H�)2|k〉 � h̄, (15)

in agreement with the Heisenberg energy-time inequality.
Here, we have chosen to consider the sensitivity of the

state ρψ=0 with 0 phase encoded because we are interested
in properties of the state evolved after the first step, not a
different state with phase encoded onto it.

Since the state is pure, we know that any uncertainty in an
observed property of the state directly corresponds to a quan-
tum phenomenon of indefinite properties. For a mixed state
ensemble, it is not immediately clear that the QFI generalizes
the statistical variance as a quantification of indefiniteness. To
address this, Yu [30] and Toth et al. [29] proved the following
illuminating expression for the QFI:

Fq(ρψ=0,�) = min
e

∑
k

Pke Fq(|ke〉〈ke|,�), (16)

where the optimization over e is over all decomposition of a
density matrix, ρψ=0, into an ensemble of pure states ρψ=0 =∑

k Pke |ke〉〈ke|, where the {|k〉} states of this decomposition are
not necessarily orthogonal. This decomposition is not unique
because in the vector space of density matrices, the set of all
pure state density matrices forms an overcomplete basis. Thus,
e represents one of these nonunique decompositions and ke

labels the pure states which make up that decomposition. The
right-hand side of Eq. (16) is known as the convex roof of the
variance [29,30,62].

Cast as a generalization of the concept of statistical vari-
ance, the QFI, Fq, can be seen to provide a valid measure of
indefiniteness. Indeed, the minimization in the space of den-
sity matrices implies that a portion of the sum,

∑
k Pke |ke〉〈ke|,

of significant Pke weight involves pure states, |ke〉, with a
statistical variance 〈ke|(�J (θ�,��))2|ke〉 that is comparable
to the convex uncertainty:

�qJ (θ�, φ�) = 1
2

√
Fq(ρψ=0,�). (17)

This implies that if we were given full knowledge of the
universe and were able to sort the results based on which
pure state, |ke〉, was produced by the experimental apparatus,
the majority of the distributions, Pke ( j) = |〈 j(θ�, φ�)|ke〉|2,
would have a statistical uncertainty larger than �qJ (θ�, φ�).
Since this uncertainty cannot be reduced by obtaining more in-
formation, it must be due to the indefiniteness of the observed
property J (θ�, φ�).

Thus, a measurement of large sensitivity, Fq(ρψ=0,�), im-
plies a large indefiniteness of the phase-encoding Hamiltonian
εJ (θ�, φ�) in the initial state ρ. This was pointed out by
Fröwis and Dür [14] and was used to construct a measure
of indefiniteness Neff [defined below in Eq. (20)] by the way
max� Fq(ρψ=0,�) scales with the number of particles. As
discussed in Appendix A, this optimization over observables
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� can lead to misleading results when considering the indefi-
niteness associated with the superposition of two macroscop-
ically distinct states. Instead, we use the extensive difference
for an observable J� as a measure of the size of the cat, and
we introduce the comparison of the convex uncertainty with
the statistical uncertainty

rq(�) = �q(J�)

�s(J�)
= �q(J�)√

Tr
[
J2
�ρ

] − Tr[J�ρ]2
(18)

as a measure of the quality of indefiniteness. Since the statisti-
cal uncertainty is always greater than the convex uncertainty,
r(�) ranges from 0 to 1. When rq(�) is 1, any observed sta-
tistical uncertainty is due to indefiniteness, while for smaller
rq, only a fraction of the uncertainty is due to indefiniteness.
The statistical uncertainty can be obtained as part of the same
interferometry experiment: If the interferometric procedure
is repeated with ψ = 0, and with the effective observable as
R = J�, the statistical uncertainty follows from counting the
pr distributions obtained after these steps.

We use r(�) and �(J�) because, with the additional
knowledge of a double-peak distribution in the observable
J�, qualitative arguments can be made about the amplitudes
of pure states which could make up a representative density
matrix ensemble, e = {Pke , |ke〉}. If the convex and statistical
uncertainties are approximately equal to each other, �s/�q ≈
1, we know the density-matrix ensemble is, on average, com-
posed of pure states with uncertainty similar to that of the
observed statistical distribution. In addition, since different
pure states in the ensemble can not destructively interfere
with each other, we know that the pure states in the density
matrix have small amplitude for the basis states that have
small probability of occurrence in the full statistical ensemble.
Thus with the additional observation of a double peak, we
can conclude that any representation of the density matrix
is mostly composed of cat states with extensive difference
similar to the observed one.

What can be said when rq is not very close to 1, but
still significant (e.g., rq > 0.1)? To answer this question, we
introduce the product �rq as the “reduced extensive differ-
ence,” where the extensive difference � is given by Eq. (7).
As long as the individual peaks have narrow width (similar
to the pure cat states; see Fig. 2) and the reduced extensive
difference is significantly larger than the peak width, we can
again qualitatively argue that there exists pure states in the
density matrix ensemble with extensive difference similar to
that of the observed extensive difference �. If the reduced
extensive difference is significantly larger than the width
of the peak, there must exist pure states |ke〉 with variance
significantly larger than the width of the peaks and that are
realized with significant probability Pke . Since the peaks are
narrow and there is very low probability between the two
peaks, the only form these states can take is one with double-
peak amplitudes similar to the observed distribution. Thus, we
know the density matrix contains a significant off diagonal
contribution 〈m|ke〉〈ke|m′〉Pke for |m − m′| ≈ �(Jz ), despite
an imperfect quality of indefiniteness, r1 < 1. This makes
a connection with the work done by Opanchuk et al. [54],
who put bounds on 〈m|ρ|m′〉 using multiparticle correlation
functions.

III. RESULTS: DETECTION OF INDEFINITENESS
VIA INTERFEROMETER SENSITIVITY

In this section, we describe how an experiment would
observe the measures discussed in the previous section and
what they would observe for the Gordon-Savage cat state and
the mixed states discussed in Sec. I. The simplest step in such
an experiment requires measuring the probability distributions
in Fig. 2. This requires the state preparation described in
Sec. I, followed by the projective measurement without any
phase encoding or readout. Repeating this reconstructs the
distributions for the observable Jz. The extensive difference
can then be computed by Eq. (7).

For completeness, we have plotted (Fig. 4) the dependence
of the extensive difference for the 0 thermal state at β−1 = 0
and β−1 = 10ετ versus the time spent during the nonlinear
evolution that creates the cat. The extensive difference reaches
a maximum at a time 1.4Tπ = 1.4ln(8N )h̄/NU (β−1 = 0)
and 1.1Tπ (β−1 = 10ετ ). The probability distributions P( jz ) at
these times are shown in Fig. 2. An experimenter interested
in a specific cat state does not need to measure the extensive
difference at all times. Rather, they can do measurements at
time 1.4Tπ for the 0 states or Tπ for the π states [47].

This calculation shows that, for the parameters considered
(N = 200, U = 0.1t), the extensive difference of the 0 state
is expected to peak at 1.4Tπ , and thus suggests 1.4Tπ as a
good time to end state creation (step 1) and begin the statistical
and interferometric measurements (steps 2–4). Measuring the
distribution P( jz ) at this time, they will find an extensive
difference of 65 ≈ 200/3 = N/3 particles (Fig. 4). For an ex-
periment performed for a fixed particle number, the difference
in expectation values between the dead and alive cats (i.e.,
the extensive difference �) would be on the same order of

FIG. 4. In this plot, the extensive difference (dashed lines, left
axis) and quality of indefiniteness (solid lines, right axis) are plotted
vs the time spent during the nonlinear evolution in step 1 of the inter-
ferometric process. The scale of the extensive difference is set by the
number of particles N = 200 (spin of size J = 100), in the evolving
state. These quantities are computed for the 0 state at temperature
0 and 10ετ . An experimenter, testing these cat states shown, would
compute the statistical variance and extensive difference from the
double-peak distributions shown in Fig. 2. They would perform the
interferometry process discussed above to compute the bound on �q

via the CFI.
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magnitude as the number of particles. An experiment could
then be repeated for different number of particles and would
find the extensive difference scales with N [63], suggesting
that if the trends continue, a macroscopic number of particles
would yield a macroscopic cat state.

The second step is to verify the indefiniteness of the cat
state’s vital status. Here, one should compare the statistical
and convex uncertainty of the observable Jz, because this
was the observable which demonstrated the macroscopic dif-
ference [�(Jz )] between the dead and alive cat states. The
statistical uncertainty can be computed directly from the
distributions in Fig. 2. The convex uncertainty [computed
from the QFI using Eq. (17)] for Jz is bounded by measuring
the sensitivity (CFI) of a probability distribution for some
observable Jr to a phase encoding operation Jθ�,φ�

= Jz. The
single-particle observables that provide the best bounds will
be the ones that respond most to rotations around the z axis:
Any spin pointing in the x-y plane. We use Jr = Jy, since
rotations around the x axis are easily implemented, as de-
scribed in Sec. I. Experimentally, the interferometric process
is repeated with Jr = Jy, J� = Jz, and Tr = π h̄

2εr
for multiple

small ψε� = 0 + δ, such that the distribution p( jy, 0, Jz ) and
its derivative can be computed and used in the expression for
the CFI [Eq. (9)]. With a measurement of the CFI, one can
bound the convex uncertainty and quality of indefiniteness via
Eq. (11):

rq(Jz ) = �q(Jz )

�s(Jz )
> rc(Jz ) =

1
2

√
Fc(R = Jy, ρ, Jz )

�s(Jz )
. (19)

Using the statistical distribution for �s and

Fc(R, ρψ,�) = −
∑

r

1

p(r, ψ )
〈r|[ρψ, εJ (θ�, φ�)]|r〉2

for the CFI [64], we numerically compute (and plot in Fig. 4)
rc(Jz ) for the 0 thermal state at β−1 = 0 and β−1 = 10ετ

versus the time spent during the nonlinear evolution which
creates the cat state. For the pure state (β−1 = 0), rq = 1,
and rc < 1 reflects the imperfect bound the choice of the
observable R = Jy puts on the QFI. For the cat state pro-
duced after a nonlinear evolution for t = 1.4Tπ , the quality
of indefiniteness measured by an experiment is about 0.75
(see Fig. 4). Furthermore, the reduced extensive difference,
�rc ≈ N/4 = 50, is significantly larger than the width of the
peaks (approximately N/20 = 10). Thus, in good faith, an
experimenter can believe that the density-matrix ensemble
which they are observing is mostly composed of pure states
with double-peak amplitudes. Furthermore, since rq = 1, one
can expect to be able to account for 100% of the quantum
variance by using a more optimal observable R [19,26,43,44].

For the state evolved (at t = 1.1Tπ ) from the high-
temperature distribution (β−1 = 10ετ ), the quality of indefi-
niteness is 5% and the reduced extensive difference is �rq =
3 = O(1). This is smaller than the width of the peak. We must
therefore conclude that there is no indefiniteness and that the
cat is not dead and alive at the same time. Even with the ideal
bound (see Fig. 5), the reduced extensive difference is still on
the same size as the peak width (�rq = 10).

In the remainder of this section, we show how these exper-
iments are capable of detecting the crossover to a classical

ln

FIG. 5. Quality of indefiniteness, rq, its experimental bound rc,
the extensive difference �(Jz ), and the reduced extensive difference
�(Jz )r(Jz ) are plotted vs the temperature of the initial state. The solid
lines are for the thermal states at π , while the dashed lines are for
the thermal states at 0. A quantum to classical crossover is shown
between temperatures ετ and 10ετ . As in Fig. 4, the scale of the
extensive difference is set by the number of particles N = 100 in
the evolved state.

mixture as the temperature of the initial state is increased.
Figure 5 demonstrates that the quality of indefiniteness, rq,
and its experimental bound rc decay to 0 as the temperature is
increased. The quantum to classical crossover occurs slowly
between β−1 = ετ and 10ετ , where ετ sets the energy scale of
the spin Hamiltonian as in Eq. (3). For β−1 << ετ , the initial
state condenses into the pure state and the quantum variance
plateaus at its pure state value. This system is particularly in-
teresting, in that the live and dead cat are still macroscopically
different [� = O(N )] even at high temperature. Since the
extensive difference remains constant, the difference between
the dead and alive states is still macroscopic, and there are
still two macroscopically distinct states which can be labeled
dead and alive. We can then interpret the decay of the quality
of indefiniteness to 0 when temperature is increased as a
crossover from a cat being dead and alive at the same time
to a cat being either dead or alive.

The metric for quantum macroscopicity proposed by
Fröwis and Dür [14] also shows this quantum-classical
crossover. This metric is given by

Neff = 1

4N
max

�
Fq(ρ,�). (20)

In addition to other methods [19,26,44], this can be ex-
perimentally bounded from below using the CFI as done
above for rq (using rc). The bound provided by Fq(Jz ) and
its experimental bound Fc(R = Jy, Jz ) are plotted in Fig. 6.
The crossover region is the same for Fröwis and Dür’s as
for the measures above (rq and �rq) because the statistical
variance �s and extensive difference � are relatively constant
through the crossover region. Thus, the main difference is the
size of the cat state each quantify: Both are macroscopic in
that they are O(N ), but the extensive difference is roughly
twice as large. The difference stems from the difference in
motivation of the two measures. The extensive difference
attempts to describe the difference between the dead and live
cat, while the measure by Fröwis and Dür aims to quantify
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ln

FIG. 6. The QFI and its experimental bound for convex uncer-
tainty of Jz vs temperature. These are lower bounds on the Fröwis
and Dür measure [Eq. (20)], which also demonstrate the quantum to
classical crossover. The y axis is shown in units of 1

4N .

a relative improvement in sensitivity from unentangled states
[such as those in Eq. (4)]. Furthermore, by focusing on the
indefiniteness in a specific observable Jz, the extensive differ-
ence, �(Jz ), and the quality of indefiniteness, r(Jz ), provide
additional information about the stability of the dead and alive
states as the temperature is increased.

Using this lower bound for Neff , we reach a similar conclu-
sion about quality of indefiniteness, but improving the bound
on Neff could lead to different conclusions. In the Appendix A,
we show that the dead and alive states of the cat have macro-
scopic indefiniteness independent of their superposition. We
can therefore imagine a situation where Neff is large, but the
superposition between the dead and alive states is decohered
and the vital status of the cat is definite. This complication
was known to Fröwis and Dür [14], so they constructed the
relative Fisher information to identify macroscopic superpo-
sition. The relative Fisher information involves finding Neff

for the dead and alive states and therefore requires a compli-
cated projective measurement that may not be experimentally
feasible.

IV. EXPLORING INDEFINITENESS FOR A CAT STATE
ENTANGLED WITH AN AUXILIARY QUBIT

In the above sections, we proposed, motivated, and tested a
measure for macroscopicity and indefiniteness on the Gordon-
Savage cat state. The choice of the Gordon-Savage cat was
made due to its potential relevance for an ultracold atom
experiment. However, we note that the strategy of combining
the extensive difference � with the quality of indefiniteness rq

is applicable to a broader class of cat states. We demonstrate
this by considering a cat state which is conceptually more
similar to Schrödinger’s cat in which the dead and alive
states are entangled with the decayed and excited states of a
radioactive source.

Here, we imagine a cat state entangled with an auxiliary
qubit in which the entanglement with the qubit is controlled

by a parameter η in the following way:

1√
2
{|a〉| ↑〉 + |d〉[| ↑〉 cos(η) + | ↓〉 sin(η)]}, (21)

where |a〉 and |d〉 are the dead and alive states and are
assumed to be (1) symmetric such that 〈 jz|a〉 = 〈− jz|d〉 and
(2) orthogonal with respect to the identity and Jz: 〈a|d〉 =
〈a|Jz|d〉 = 0. In the limit cos(η) = 1, tracing out the qubit
results in an indefinite, pure, cat state, while in the opposite
limit, cos(η) = 0, the trace results in a classical ensemble of
definite alive and dead states.

Performing the analysis of indefiniteness discussed in the
previous section, we compute the QFI. While the state in
Eq. (21) is a pure state, we suppose we do not have access
to the qubit and can only perform measurements on the cat
state’s Hilbert space. Therefore, we must trace out the qubit
and use the general formula for the QFI of mixed states
[60,61]:

Fq[ρ, εJz] = 2
∑
l,l ′

(pl − pl ′ )2

pl + pl ′
|〈l|Jz|l ′〉|2, (22)

where |l〉 and pl are the eigenvectors and eigenvalues of the
reduced density matrix respectively. Using this expression,
one obtains the QFI (see Appendix C) as

Fq(ρψ=0, Jz ) = �(Jz )2 cos2(η) + PW 2 (23)

and a reduced extensive difference as

�rq = �

√
1 + α2 cos2(η)

1 + α2
, (24)

where PW is the peak width of the dead or alive (assumed
to be the same) states: PW = 2

√〈a|J2
z |a〉 − 〈a|Jz|a〉2 and

α = �
PW > 1 is the ratio of the extensive difference to the

peak width.
Here, we see that when the cat and qubit are not entangled,

the quality of indefiniteness, rq, quantifies a phenomenon
of perfect indefiniteness, rq = 1, and when it is partially
entangled there is imperfect indefiniteness, rq < 1. In Sec. II,
we argued that when rq < 1, and not too small, a state can
be classified as indefinite if the reduced extensive difference
is greater than the peak width. For the state in Eq. (21), we
find this to be the case when cos(η) > cos(ηc) = α−2. If an
experiment can provide a good bound using the CFI and rq is
“significant,” it will observe a quantum to classical crossover
when η ≈ ηc, in which the indefinite vital status of the cat
becomes definite.

We may now consider the approximate location of the
crossover, ηc = acos(α−2) in two limits: (1) when α = O(1)
and (2) when α 
 1. In the first limit, the crossover occurs
for arbitrarily small values of η as α → 1. Comparing with
the Leggett-Garg experiment discussed in Appendix C, the
Leggett-Garg inequality is violated for cos(η) > 2

3 . Therefore,
the Leggett-Garg experiment is better at detecting the indef-
initeness of the partially entangled state for α <

√
3
2 . This

implies that, in this limit, the projective measurement onto
a dead or alive cat state done in a Leggett-Garg experiment
obtains more information about the mixed cat state than the
Fisher information measurement does.
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The opposite is true when α 
 1: By making α arbitrarily
large, we can push the approximate location of the crossover
to an arbitrarily amount of entanglement with the auxiliary
qubit. To make sense of this result, we consider a thought
experiment where the auxiliary qubit is measured and the
result ignored before performing the sensitivity analysis. In
the strongly entangled limit, cos(η) << 1, the result of this
measurement is to produce a dead state 50% of the time and
a superposition state, |ψs〉 ≈ |a〉 + cos(η)|d〉, in which the
amplitude for the dead state is small with 〈d|ψs〉 ≈ cos(η) the
other 50% of the time. In this limit, a simple application of
the indefiniteness condition �rq > PW suggest that this
method is capable of detecting a phenomenon of indefinite-
ness even when the superposition produced has very little am-
plitude in the dead state. A more careful consideration would
note that the quality of indefiniteness is unreasonably small
[not O(0.1) as discussed in Sec. II] and its ability to restrict the
possible state which could make up a representative ensemble
is severely limited.

Therefore, as noted above, we must set a bound on the
quality of indefiniteness. One way to get a sense of what
such a bound might be is by analogy to this large α cat state
entangled with an auxiliary qubit. If we specify that we are
only confident of a phenomenon of indefiniteness when the
amplitude of the dead cat state in the superposition state,
〈d|ψs〉 ≈ cos(η) ≈ rq, is greater than 0.1, then we can set the
threshold as rq > 0.1. One could also set a more conservative
threshold on the quality of indefinites by comparison with the
Leggett-Garg experiment in Appendix C. There, the Leggett-
Garg experiment would fail to witness indefiniteness when
cos(η) = 2

3 and our analogous bound would be rq > 2
3 .

V. CONCLUSION AND DISCUSSION

We have examined how the standard interferometric pro-
cess can be used to quantify the indefiniteness of cat states
produced by the two-mode Hamiltonian, Eq. (5). First, we
showed that states with a large extensive difference can
be produced for high-temperature initial states. This al-
lows an experimenter to prepare a state which, similar to
Schrödinger’s cat, has uncertainty between two macroscopi-
cally different states without worrying about coherence. We
then described a possible experiment to determine the source
of this uncertainty and quantify the quality of indefiniteness.
We showed how the results of this experiment can be used to
infer the possible form of the pure states which could make
up a possible density matrix ensemble. This turned out to
be particularly useful when describing a quantum to classical
crossover where the indefinite superposition of a cat, in two
macroscopically distinct states, undergoes a crossover to the
definite occupation of either dead or alive. We then finished
by demonstrating the general applicability of the method to
a model for which the quantum to classical crossover is con-
trolled by the amount of entanglement with an auxiliary qubit.

The experiment described above involves bounding the
QFI by the experimentally observable CFI and is thus fallible
to the same loopholes other Fisher information–based meth-
ods are. In general, these loopholes cannot be tightened in
the same way loopholes in the Bell experiment can because

there is no assumption of causally separated events: Events in
an experiment that measure Fisher information could feasibly
affect each other without violating special relativity. Instead,
one must make reasonable assumptions based on previous
experiments, a control experiment, or a comparison with
simulation.

For example, in the bosonic interferometer experiment
described above, the measurement of the CFI relies on the
assumption that the Hamiltonian during the phase encoding
process (step 2) is proportional to the single-particle Hamil-
tonian encoding the phase (Jz in the example considered in
this paper). If this assumption was violated and the dynamics
during the phase encoding process were highly nonlinear (e.g.,
J4

z , J8
x ), a stronger response, mimicking the effects of an indef-

inite state, could be observed in the distribution p(r, ψ,�).
This assumption cannot be checked by a causality type of
argument, but instead must rely on comparison with simula-
tion or the consistency of previous experiments using bosonic
interferometer. Without the assumption of linearity, the results
of high-precision measurements [65,66] that use the same
interferometers could not be accepted. One could also check
the assumption of linearity by directly simulating, as done
above, the predicted change in distributions p(r, ψ,�) and
comparing with the experimental distributions. The tighter
they match, the harder it would be to come up with a nonlinear
Hamiltonian that reproduces the exact same p(r, ψ,�). These
simulations would also verify the assumptions made during
the interferometry steps 3 and 4 after the phase has been
encoded and in which further loopholes may occur.

While simulations and references to previous experiments
do not rule out peculiar possibilities in the same way the
assumption of causally separated events does for Bell experi-
ments, they do make it hard to imagine simple explanations
alternative to the given assumptions. Thus, the combined
observation of a high quality of indefiniteness (rq ≈ 1) and
a double-peak distribution provides reasonable evidence that
a cat state, which could violate a Leggett-Garg inequality, is
produced by the apparatus. In addition, these measures can
be acquired with current cold atom technology and avoids the
complications of the other measures discussed above.

The interpretation of the reduced extensive difference
�(Jz )rq(Jz ) and the arguments inferring the form of the pure
states which could make up a representative density matrix
ensemble can also be questioned when rq is small. If rq

is measured very close to one, then the observation of the
probability distributions in Fig. 2 can be interpreted as ob-
serving the amplitudes of a pure state because rq is equal
to 1 only for pure states. On the other hand, when rq < 1,
it is a qualitative judgment when comparing �rq with the
peak width. In Sec. IV, we discussed one possible way to
make such a qualitative judgment, but it may be interesting for
future work to more rigorously investigate to what extent the
combined observation of rq and the probability distribution
P( jz ) limit the possible states in a density matrix ensemble.
Such future work may find it useful to consider the relation-
ship between the QFI and the resource theory of quantum
invasiveness [28] which is closely connected to violations of
the Leggett-Garg inequalities. Future work will also include a
study of the effects of a thermal bath and loss mechanism to
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identify requirements on loss, tunneling, and interaction rates
for producing a cat state.
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APPENDIX A: CAT STATES AND MEASURE
BY FRÖWIS AND DÜR

In this section, we discuss the subtleties of using the
measure by Fröwis and Dür, Neff . As defined in Eq. (20),
Neff is defined by maximizing the quantum Fisher information
over all single-particle generators of the phase encoding step 2
[labeled by � in Eq. (20)]. A naive application of this formula
may lead to a wrong assessment of the indefiniteness of cat’s
vital status. This is because the indefiniteness of the cat’s vital
status is in a specific observable (Jz above), and the state of
the system could have a larger QFI for a different observable.
If the conclusions where drawn directly from Neff , one may
mistakenly conclude the vital status of the cat is indefinite,
while, in fact, it is a different property of the cat that is
indefinite.

This possibility is manifested in the Gordon-Savage cat
state discussed in this paper. In Fig. 7, we have plotted the
QFI for all single-particle observables labeled by � = (φ, θ ).
Here we see that the QFI is maximum for spin pointing in
the xy plane. Fq(Jz ) still indicates that the cat is indefinite,
but if one where to measure Neff they would observe the
sensitivity to rotations around a vector perpendicular to Jz

(Jy for the π state), and it would tell them nothing about
the indefiniteness of the cat’s vital status. It would instead
tell them they had a macroscopic quantum state, but the
macroscopic indefiniteness would not be in a property with
clear dead and alive states distinguishable.

FIG. 7. This is Fq(ρ, J (θ, φ))/4N for the 0 (left) and π (right)
cat states.
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FIG. 8. These are the Wigner distributions and the probabilities,
P(z) and P(φ) (black lines), for the 0 (left) and π (right) cat states.

To see how this arises, we consider the Wigner distribution
of the 0 and π cat states. The Wigner distribution, W (z, φ),
is the quasiprobability distribution function representing a
quantum state, |ψ〉:

W (z, φ) =
N 1−z

4∑
n

eiφn

〈
N

z + 1

2
+ 2n|ψ

〉〈
ψ‖N

z + 1

2

〉
, (A1)

where |N z+1
2 〉 are the Fock states |m1, m2〉 with m1 =

N z+1
2 m2 = N − m1. The Wigner distribution has the use-

ful property that the partial integration of one variable
gives the probability distribution for the other [e.g., P(z) =

1
2π

∫ π

−pi dφW (z, φ)]. By considering the Wigner distributions
for the 0 and π states (see Fig. 8), we can understand the struc-
ture of the quantum state and why Neff may give misleading
results. The probability distributions P(z) shown at the bottom
of the figures indicate that the two bright red lines highlight
what might be called the dead and alive cat states. The red
lines individually have macroscopic uncertainty in φ and thus
the xy plane. This implies that the dead and alive cat states are
individually macroscopic quantum states.

One can now easily imagine a situation where the coher-
ence between the dead and alive states is lost, but the dead and
alive states themselves still have a large value for Neff . Thus, if
an experiment measured Fq(Jx ), it would find the macroscopic
indefiniteness of the dead or alive cat states. One might then
wrongly conclude that the vital status of the cat is indefinite
when it is not. This complication was known to Fröwis and
Dür [14], so they constructed the relative Fisher information
to identify macroscopic superposition. The relative Fisher
information involves finding Neff for the dead and alive states
and therefore requires a complicated projective measurement
that may not be experimentally feasible.

APPENDIX B: FISHER INFORMATION FOR A CAT
ENTANGLED WITH A QUBIT

In this section, we derive the expressions for the QFI of a
cat entangled with a qubit discussed in the text. The cat state
entangled with a qubit is written as

1√
2
{|a〉| ↑〉 + |d〉[| ↑〉 cos(η) + | ↓〉 sin(η)]} (B1)

032117-10



DETECTING MACROSCOPIC INDEFINITENESS OF CAT … PHYSICAL REVIEW A 100, 032117 (2019)

and the dead and alive states are assumed to be (1) sym-
metric such that 〈 jz|a〉 = 〈− jz|d〉 and (2) orthogonal with
respect to the identity and Jz: 〈a|d〉 = 〈a|Jz|d〉 = 0. These
two assumptions imply 〈a|Jz|a〉 = −〈d|Jz|d〉 and 〈a|J2

z |a〉 =
〈d|J2

z |d〉. From these assumptions, we derive a relationship
of the variance of a (anti)symmetric cat state, the extensive
difference, and the peak width as

PW 2 + �2 = 4〈c±|J2
z |c±〉 (B2)

and can also write the extensive difference as

�2 = 4|〈c±|Jz|c∓〉|2. (B3)

We can then derive the QFI from the following expression
[60,61]:

Fq[ρ, εJz] = 2
∑
l,l ′

(pl − pl ′ )2

pl + pl ′
|〈l|Jz|l ′〉|2, (B4)

where |l〉 are the eigenvectors of the reduced density matrix
and pl are the eigenvalues. When tracing out the qubit, we
get two nonzero eigenvalues as 1

2 [1 ± cos(η)] which we will
label l = ± for the symmetric and antisymmetric cat states
and N − 1 zero eigenvalues for the spin states orthogonal
to the two cat states. If l = ± and l ′ = ∓, the sum yields
cos2(η)|〈c±|Jz|c∓〉|2. If l = ± and l ′ = ±, we can insert an
identity and obtain 1±cos(η)

2 (〈J2
z 〉± − |〈c±|Jz|c∓〉|2.

Putting everything together with Eqs. (B3) and (B2), we
get

F (Jz ) = �(Jz )2 cos2(η) + PW 2. (B5)

This gives us an rq:

r2
q = �(Jz )2 cos2(η) + PW 2

PW 2 + �2
. (B6)

APPENDIX C: LEGGETT-GARG VIOLATION OF A CAT
STATE ENTANGLED WITH A QUBIT

We imagine an Leggett-Garg experiment in which an initial
state is evolved with respect to a Hamiltonian H

h̄ = |a〉〈a| −
|d〉〈d|, and a measurement of whether the cat is alive or
dead is made at t1 = 0, t2 = 2π

3 , and t3 = 4π
3 . From these

measurements, correlation functions of the form Ki j = 〈HiHj〉
are calculated and if the inequality

1 + K12 + K23 + K13 > 0 (C1)

is violated then the state must have been indefinite at some
time between t = t1 and t = t3 [2]. If the initial state is
the symmetric cat, 1√

2
(|a〉 + |d〉), then the violation is −0.5,

while if the initial state is the partially entangled state in
Eq. (21), the violation is 1 − 3

2 cos(η). Thus, the Leggett-Garg
experiment is not capable of witnessing the indefiniteness of
the entangled state for cos(η) < 2/3.
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