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Quantum phase transition with inhomogeneous driving in the Lechner-Hauke-Zoller model

Andreas Hartmann * and Wolfgang Lechner
Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

(Received 3 July 2019; published 11 September 2019; corrected 12 June 2020)

We study the zero-temperature phase diagram of the Lechner-Hauke-Zoller model. An analytic expression for
the free energy and critical coefficients for finite-size systems and in the thermodynamic limit are derived and
numerically verified. With the aim to improve standard quantum annealing, we introduce an inhomogeneously
driven transverse field with an additional time-dependent parameter that allows one to evade the first-order
quantum phase transition and, thus, improve the efficiency of the ground-state preparation considerably.
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I. INTRODUCTION

With the recent experimental progress, intermediate scale
quantum computers are now available in the laboratory
[1–14]. Although these experiments are not yet ready for scal-
able quantum computing with error correction, these highly
developed platforms are suitable for next generation quantum
simulations with full control over the individual degrees of
freedom. This has motivated the concept of computation by
quantum simulation, i.e., to use the simulation toolbox to
solve computational problems. In particular, adiabatic quan-
tum computing [15] (also known as quantum annealing) as
a metaheuristic to solve combinatorial optimization problems
has been studied extensively [16–27]. Despite the sizable
theoretical and experimental efforts, the path towards demon-
strating any quantum advantage in adiabatic quantum comput-
ing is still elusive.

From the viewpoint of statistical mechanics, solving op-
timization problems with adiabatic quantum computing can
be understood as driving a random transverse Ising model
through a zero-temperature quantum phase transition (QPT)
in a one-dimensional phase diagram. In the thermodynamic
limit, the QPT is associated with a minimal energy gap
that closes exponentially for first-order phase transitions and
polynomially for second-order transitions. The limiting factor
for the efficiency of quantum annealing is the scaling of the
inverse of the squared minimal energy gap between ground
and first excited states [28,29]. For a random all-to-all model,
one would expect a second-order phase transition; however,
it was recently shown that additional first-order transitions
appear in the regime of small transverse fields [30].

The Lechner-Hauke-Zoller (LHZ) mapping [31] is an
alternative to the Ising spin-glass model. LHZ consists of
four-body interactions which are problem independent and
random local fields. The associated quantum phase transition
is, thus, fundamentally different compared to the all-to-all
spin glass. However, LHZ is similar to an ordered p-spin
model with a random local field, and one expects a first-order
phase transition in the limit where the four-body interactions
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are dominant. Recently, Susa and co-workers [32,33] (see
also Refs. [34–36]) showed, for p-spin models, that inho-
mogeneneous driving of the transverse field can circumvent
the first-order phase transition and improve the ground-state
preparation.

In this paper, we derive the expression for the free en-
ergy of the LHZ model and the critical coefficients of the
associated quantum phase transition for the thermodynamic
limit and estimate finite-size effects. We apply an inhomo-
geneous driving protocol for the transverse field which has
been recently introduced for p-spin models [32,33] to alter
the phase diagram. The inhomogeneous driving introduces
an additional dimension in the phase diagram, and in this
two-dimensional parameter space, we are able to evade a
particular first-order phase transition in the adiabatic proto-
col. We numerically demonstrate the implementation of the
inhomogeneously driven transverse fields in LHZ and find an
enhanced final ground-state fidelity and an enlarged minimal
energy gap compared to standard quantum annealing.

II. FREE ENERGY OF THE LHZ MODEL

A. Four-body transverse Ising model

Transverse Ising models are a cornerstone of modern sta-
tistical mechanics, and their quantum phase transitions have
been studied extensively (for a review, see, e.g., Ref. [37]).
The quantum phase transition of random transverse Ising
spin models (so-called spin glasses) has recently regained
considerable interest with the emergence of quantum an-
nealing as a possible application. Quantum annealing is a
metaheuristic that aims at solving combinatorial optimization
problems which are encoded in Ising spin glasses [16,17]. In
this scheme, finding the minimum energy of the spin glass
is equivalent to determining the solution of the optimization
problem [38]. In typical examples of encoding optimization
problems in the form of Ising models HP =∑i< j Ji jσ

z
i σ z

j , the
interaction matrix Ji j has infinite range and is random.

In quantum annealing, the ground state of HP is obtained
by adiabatically connecting it to a trivial Hamiltonian, e.g.,
HI =∑N

k σ x
k . The system is initially prepared in the ground

state of HI and further sufficiently slowly transferred to
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the problem Hamiltonian HP via the protocol H(s) = [1 −
f (s)]HI + f (s)HP where f (s) is a smooth function in the
normalized time s = t/t f with f (s = 0) = 0 and f (s = 1) =
1 and t f is the running time of the sweep. In switching from
HI to HP, the system undergoes a quantum phase transition
which limits its efficiency. For an Ising spin glass, one would
expect a second-order phase transition at critical time s∗ with
a polynomial closing gap. However, it was recently shown
that additional exponentially closing gaps are present for
s > s∗ [30].

An alternative to the spin-glass encoding of optimization
problems has been recently introduced by LHZ [31]. In
this model, physical qubits describe the relative configura-
tion of two logical spins taking the values +1 for parallel
(i.e., ↑↑, ↓↓) and −1 for antiparallel (↑↓, ↓↑) alignment.
The time-dependent Hamiltonian in LHZ reads

HLHZ(s) = HI (s) + HP(s), (1)

HI (s) = −
Np∑

k=1

hk (s)σ x
k , (2)

HP(s) = −
Np∑

k=1

Jk (s)σ z
k −

Nc∑
l=1

Cl (s)σ z
l,nσ

z
l,wσ z

l,sσ
z
l,e, (3)

where σ x
k and σ z

k are the x- and z-Pauli matrices for the
physical qubit at site k and the strengths of all local fields
hk, Jk and constraints Cl , respectively, depend on time. Here,
HI (s) is the driver term, and HP(s) is the encoded problem
Hamiltonian to be solved.

The strengths of the controllable local magnetic-fields hk

and Jk in Eqs. (2) and (3) are applied to all Np = Nl (Nl − 1)/2
physical qubits where Nl is the number of logical spins in the
original model. The third sum runs over Nc = Np − Nl + 1
four-body constraints among nearest-neighbor qubits on a
square lattice, and Cl is the strength of a four-body constraint
at plaquette l . The introduction of these four-body constraints
accounts for the increased number of degrees of freedom
from Nl -logical to Np-physical qubits. This notation excludes
Na = Nl − 2 auxiliary physical qubits in the bottom row of
the LHZ architecture to obtain four-body constraints on the
whole square lattice. The indices (l, n), (l,w), (l, s), and
(l, e) denote the northern, western, southern, and eastern
physical qubits of the constraint l , respectively (more details
in Ref. [31]). Given that the constraints are the dominant
energy scale, the model is, thus, similar to the p-spin model.

B. Inhomogeneous transverse field

The p-spin model [39] with a standard homogeneously
driven tranverse field undergoes a first-order quantum phase
transition in the zero-temperature phase diagram. Thus, in
LHZ—with its similarity to the p-spin model for p = 4—a
first-order QPT is also expected during a quantum annealing
sweep. As the minimal energy gap of Hamiltonian (1) between
the ground state and the first excited state decreases exponen-
tially with increasing system size N at the critical point (i.e.,
∝e−aN , a > 0), the computation time t f grows exponentially
(i.e., t f ∝ |〈1|dH/dt |0〉|/�2 with � as the minimal energy
gap and |0〉 and |1〉 as the instantaneous ground state and first

excited state, respectively) with the system size according to
the adiabatic theorem and Landau-Zener’s formula.

Spatiotemporal inhomogeneous driving [32,33,40] of the
transverse field introduces an additional parameter and, thus,
an additional dimension in the phase diagram. This allows one
to avoid first-order phase transitions by connecting HI and
HP via a continuous path around the critical point. This is
achieved by switching off the strength of the transverse field
inhomogeneously. With the goal to apply this to LHZ in mind,
we modify our Hamiltonian (1) as

HLHZ(s, r) = sHP(s) −
Np∑

k=1

hk (s, r)σ x
k , (4)

where hk (s, r) is the strength of the inhomogeneously driven
transverse field. In this paper, we choose a protocol for the
strength of the transverse field that reads

hk (s, r) =
⎧⎨
⎩

1, if s < sk+1,

Np(1 − sr ) − (Np − k − 1), if sk+1 � s � sk,

0, if s > sk,

sk = [1 − (Np − k)/Np]1/r,

sk+1 = [1 − (Np − k − 1)/Np]1/r . (5)

This protocol first switches off the transverse field of the
qubits in the first row and the auxiliary qubits in the last row
(see Fig. 5 in the Appendix).

The protocol hk (s, r) is chosen as a continuous piecewise-
differentiable function to avoid diverging derivatives of the
Hamiltonian (4). Here, we have included a new parameter r
which enters in an additional time-dependent function τ = sr

with 0 � τ � 1. In this spatiotemporal formulation, s and τ

are both controlled as a function of time with s = τ = 0 at
time t = 0 and s = τ = 1 at time t = t f , the total sweep time.

C. Inhomogeneously driven LHZ

In the following, we derive the free energy of Hamil-
tonian Eq. (4) with an inhomogeneous driving field. This
derivation follows the Suzuki-Trotter decomposition used in
Refs. [41,42]. The partition function of Hamiltonian Eq. (4)
reads

ZLHZ = Tr[e−βHLHZ (s,r)]. (6)

Using the Suzuki-Trotter decomposition e(A+B) =
limn→∞(eA/neB/n)n with A, B being quantum operators,
the partition function reads

ZLHZ = lim
M→∞

ZLHZ,M = lim
M→∞

Tr[e−βsHP/Me−βHI /M]M

= lim
M→∞

∑
{σ z}

〈{σ z}|
⎧⎨
⎩exp

⎡
⎣ sβ

M

Np∑
k=1

Jkσ
z
k + β

M

Np∑
k=1

hkσ
x
k

⎤
⎦

× exp

[
sβ

M

Nc∑
l=1

Clσ
z
l,nσ

z
l,eσ

z
l,sσ

z
l,w

]⎫⎬
⎭

M

|{σ z}〉 , (7)

where
∑

{σ z} refers to the summation over all 2Np

possible spin configurations in the z basis and with
{σ z} =⊗Np

k=1 |σ z
k 〉. We introduce M replicas of the quantum
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(b)(a)
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FIG. 1. Energy as a function of the magnetization. (a) For small system sizes (blue, upper line), energy from Eq. (4) contains an
antisymmetric contribution from the three-body terms and a symmetric contribution form the four-body terms. For large system sizes (pink,
lowest line), the symmetric four-body terms dominate the energy. (b) The relative error of the energies decrease with system size and show a
maximum at intermediate magnetization. The color code for Np as in panel (a) from upper descending to the lowest line. (c) The relative error
of the energies for magnetization m = 0.0 as a function of the sampling MS. The relative errors of the energies for magnetizations m = 0.0
(lower dark gray line) and m = ±0.5 (upper lighter gray line), respectively, for increasing system sizes Np are shown in (d). The inset in
(d) depicts the relative error multiplied by

√
Np for magnetization m = 0.0 and increasing system sizes. The error arises due to the statistical

error of the shuffling. Figures in panel (a), (b), and (d) are performed with MS = 10 000.

state |σ (α)〉, each labeled α(=1, . . . , M ) such that 1̂(α) =∑
{σ z (α)} |{σ z(α)}〉 〈{σ z(α)}|∑{σ x (α)} |{σ x(α)}〉 〈{σ x(α)}|. In

these replicas, α can be understood as an imaginary time in
the dynamic evolution through all these replicas.

Next we derive the expression for the energy of the four-
body term in Eq. (4), i.e., E as a function of the magnetization
m for a given number of physical qubits Np.

LHZ consists of Nl − 2 three-body plaquettes and (Nl −
1)(Nl − 2)/2 − Nl + 2 four-body plaquettes. Thus, the model
resembles a mixture of a p-spin model with p = 3 and p = 4
and sparse connectivity. Counting the numbers of constraint
terms, the energy as a function of magnetization expressed as
a function of the number of logical qubits Nl reads as

ENl (m) = −C

(
N2

l

2
− 5

2
Nl + 3

)
m4 − C(Nl − 2)m3. (8)

The same equation expressed as a function of the physical
qubits Np reads as

ENp (m) = −C(Np −√1 + 8Np + 2)m4

−C(
√

0.25 + 2Np − 1.5)m3. (9)

Here, we assumed that the constraints are the dominant energy
in the system and we neglected the random field terms. Note,
that local fields that are drawn randomly form a distribution
with mean at 0 and their contribution to the energy averages
out for all magnetizations.

In order to verify the energy expression (9), we calculate
numerically the energy of LHZ averaged over MS samples
of each magnetization and fit the result to a function f (m) =
am4 + bm3. We repeat this for system sizes between Np =
6 up to Np = 5886. In order to sample the magnetization,
we randomly shuffle the configurations of spins being up or
down whereas keeping the total number of spins up constant.
For example, for the case of the magnetization value m =
0.0, Np/2 physical qubits are spin-up and Np/2 spin-down.
We calculate the energy for randomly shuffled configurations
in LHZ with Np/2 qubits being spin-up and Np/2 spin-down
and compute the mean energy and standard deviation of the
four-body term. Similarly, we proceed for all other possible
magnetization values for a chosen number of physical qubits
in LHZ.

Figure 1 depicts the energy of the constraints in Eq. (3) and
its fluctuations using the sampling method described above.
The origin of the fluctuations in the energy as a function of
magnetization is twofold. One is the result of finite sampling
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MS, and the other is the result of entropy, i.e., configurations
with the same m can have different energies. Let us first
consider the error from sampling.

Figure 1(a) depicts the energy as a function of the mag-
netization for various system sizes Np. For small systems,
the energy is asymmetric and resembles a cubic function.
For large system sizes, the energy approaches a quartic and
symmetric function in m. The standard deviation of the en-
ergies is depicted in Fig. 1(b) for the same system sizes.
Figure 1(c) depicts the relative errors as a function of the
shuffling parameter MS. The standard deviation scales as
expected with the system size as 1/

√
Np. For small and large

values of shuffling parameter MS, we plotted the relative error
of the energy for magnetization m = 0.0 for different system
sizes Np. Figure 1(d) shows the relative error for magneti-
zations m = 0.0 and m = ±0.5 and different system sizes
Np. The inset in Fig. 1(d) shows the relative error multiplied
by the inverse of the scaling, i.e.,

√
Np, for magnetization

m = 0.0 and increasing system sizes Np. Thus, for small
systems, the entropic energy fluctuations persist for all system
sizes.

With the numerical data for the energy, we can now verify
the individual terms in the analytical expression of Eq. (8).
Figure 2 depicts the comparison of Eq. (9) and the numerical
data with a fit f (m) = am4 + bm3 with parameters a and b.
The analytical expressions from Eq. (9) are in excellent agree-
ment with the data for both the cubic and the quartic terms.

As expected from the Np dependence in Eq. (9), the quartic
m4 term dominates in the thermodynamic limit as shown in
Fig. 6(b) in the Appendix for the case of Nl = 109 logical
and, thus, Np = 5886 physical qubits in LHZ.

Plugging expression Eq. (9) into Eq. (7), the decomposed
partition function ZLHZ,M reads with the help of the integral
definition of the δ function, i.e., δ[Npm(α) −∑Np

k=1 σ z
k (α)] =∫

dm̃(α) exp{−m̃(α)[Npm(α) −∑Np

k=1 σ z
k (α)]} as

ZLHZ,M =
M∏

α=1

∫
dm(α)dm̃(α) exp

{
M∑

α=1

βsC

M
[(Np −√1 + 8Np + 2)m(α)4 + (

√
0.25 + 2Np − 1.5)m(α)3] − Npm̃(α)m(α)

}

× exp

⎧⎨
⎩

Np∑
k=1

ln tr
M∏

α=1

exp

[(
m̃(α) + βs

M
Jk

)
σ̂ z

]
exp

[
β

M
hk σ̂

x

]⎫⎬
⎭

=
M∏

α=1

∫
dm(α)dm̃(α) exp [−Npβ fNp,M ({m(α)})], (10)

where fNp,M ({m(α)}) is the free energy of the system consisting of Np physical qubits as a function of the magnetization m. The
parameter M denotes the number of imaginary time slices, and β is the reciprocal temperature.

We are interested in an expression for m̃ that minimizes the integrand of the partition function and, thus, the free energy of
LHZ. This saddle-point condition for m̃(α), i.e., ∂ZLHZ,M/∂m = 0 and solving for m̃, reads

m̃(α) = βsC

M

[(
4 −
√

16 + 128Np + 8

Np

)
m(α)3 +

√
2.25 + 18Np − 4.5

Np
m(α)2

]
, (11)

and the free energy, thus, becomes

fNp,M ({m(α)}) = sC

M

M∑
α=1

(
3 + 6 −√9 + 72Np

Np

)
m(α)4 +

(√
1 + 8Np − 3

Np

)
m(α)3 − 1

βNp
ln tr

M∏
α=1

× exp

{
βs

M

[
C

(
4 −
√

16 + 128Np + 8

Np

)
m(α)3+C

(√
2.25 + 18Np − 4.5

Np

)
m(α)2+Jk

]
σ̂ z

}
exp

(
β

M
hk σ̂

x

)
.

(12)

We now apply the static approximation m = m(α) for all α and take the reverse operation of the Suzuki-Trotter decomposition
for M → ∞. We can further rewrite the strength hk of the inhomogeneously driven transverse field as a continuous function
h(τ ′) with τ ′ ∈ [0, 1] as denoted in Eq. (6) to obtain the integral form of the free energy in the zero-temperature limit β → ∞,
i.e., 1/β ln 2 cosh β → 1, as

f (m, s, τ ′,C, J, Np) = sC

[(
3 + 6 −√9 + 72Np

Np

)
m4 +

(√
1 + 8Np − 3

Np

)
m3

]

−

⎧⎪⎨
⎪⎩
∫ 1

0
dτ ′

√√√√s2

[
C

(
4 −
√

16 + 128Np + 8

Np

)
m3 + C

(√
2.25 + 18Np − 4.5

Np

)
m2 + J

]2

+ h(τ ′)2

⎫⎪⎬
⎪⎭
(13)
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(a)

(b)

FIG. 2. Energy of the constraints. The energy in Eq. (9) contains
a cubic m3 and a quartic m4 term, both functions of the system size
Np. The analytical expression for the cubic term a is shown in panel
(a) and for the quartic term b in panel (b) [both as solid blue (dark
gray) line]. For comparison, the numerical data are depicted with
green (gray) cross symbols. The inset shows the same data on the
logarithmic scale of the absolute values. Note that there are no fit
parameters used in this figure.

where the square brackets [· · · ] over the integral denote the
average value over the distribution of the strengths Jk of
the longitudinal magnetic field denoted as J according to
the law of large numbers limNp→∞ 1/Np

∑Np

k=1(· · · ) = [(· · · )].
This means the integral is evaluated for uniformly distributed
values of Jk . Equation (13) together with the protocol h(s, r)
in Eq. (6) for the inhomogeneously driven transverse field
[i.e., h(τ ′) in (13)] describes the free energy of LHZ for finite
sizes with respect to the number Np of physical qubits (see the
Appendix for further information).

For finite-size systems with Np physical qubits in LHZ, we
use the expression h(s, τ ) of Eq. (6) for h(τ ′) in Eq. (13).
In the thermodynamic limit Np � 1, the interval [sk+1, sk]
for s of Eq. (6) becomes infinitesimally small, and thus,
the protocol for the strength of the inhomogeneously driven
transverse field can be written as

h(τ ′) =
{

1, for 0 < τ ′ < 1 − τ,

0, for 1 − τ < τ ′ < 1.
(14)

For this choice of inhomogeneous transverse field strength h,
the free energy of LHZ in the thermodynamic limit can be

written as

f (m, s, τ,C, J ) = 3sCm4 + [−τ s(4Cm3 + J )

− (1 − τ )
√

s2(4Cm3 + J )2 + 1], (15)

where C and J are the strengths of the constraints and longi-
tudinal magnetic fields, respectively.

The critical coefficients mc, sc, and τc of the free-energy
term Eq. (15) are obtained by a Landau-type expansion of
the free-energy term with the condition that the first three
derivatives vanish [43], i.e., we have to solve the system of
equations,

∂

∂m
f (m, s, τ,C, J )

∣∣∣∣
m=mc

= 0, (16a)

∂2

∂m2
f (m, s, τ,C, J )

∣∣∣∣
m=mc

= 0, (16b)

∂3

∂m3
f (m, s, τ,C, J )

∣∣∣∣
m=mc

= 0, (16c)

with respect to its critical coefficients mc, sc, and τc. Note,
that the critical coefficients are a function of the constraint
strength C and the distribution of J . The values of the critical
coefficients for a uniform distribution of the strength of the
longitudinal magnetic-field J with values between −1 and 1,
and constraint strength C = 2 are

mc ≈ 0.679 795, sc ≈ 0.219 232, τc ≈ 0.389 11. (17)

We can obtain these critical coefficients with our thermody-
namical free-energy term Eq. (15) [or with finite-size free-
energy term Eq. (13) by increasing the number of physical
qubits Np] and which can be seen in Fig. 3. Here, we have plot-
ted the free-energy term of Eq. (15) with respect to the mag-
netization m for different points (s, τ ) in the two-dimensional
phase diagram. On the first-order transition line [points (a), (b)
and (d)], we see a degenerated minimum of the free energy. At
the crossing of the first-order transition line starting from (c)
and going to (e), we see that the value for the magnetization
that minimizes the free energy changes discontinuously from
the paramagnetic solution m = mp = 0.0 to the ferromagnetic
solution m = mf = 1 and which depicts a quantum phase
transition of first order.

III. NUMERICAL RESULTS

Let us now apply the results to a quantum annealing
protocol. For quantum annealing, an important measure of the
efficiency is the ground-state fidelity F (t f ) = 〈ψ (t f )|φ0(t f )〉
with |ψ (t f )〉 as the state of our system and |φ0(t f )〉 as the
ground state of our final Hamiltonian at time t = t f . Another
important measure is the minimal energy gap �Emin of the
corresponding energy eigenspectra.

Figure 4 shows the statistics of the squared final ground-
state fidelities F 2(t f ) for sweeps with different running times
t f for an ensemble of 100 randomly uniformly distributed in-
stances of interactions Jk for homogeneous (1) and inhomoge-
neous Eq. (4) drivings, respectively. The system size is Np = 6
plus two auxiliary physical qubits, strengths of the constraints
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(c) (d) (e)

(a) (b)

(c) (d) (e)

(a)

(c) (d) (e)

(b)

FIG. 3. Critical coefficients. The evolution of the critical coeffi-
cients τc and sc of Eq. (13) for increasing number of physical qubits
from Np = 28 [blue (dark gray) plus on the right] to Np = 499 500
[gray plus at (a)] is shown. In the thermodynamic limit, we reach the
critical coefficients of Eq. (17) of the thermodynamic free-energy
term Eq. (15) at (a). The subplots (a)–(e) show the free energy with
respect to the magnetization m for different values of s and τ of
Eq. (15).

are each C = 2 for all three constraints, and 10 is the value
of the strength of the auxiliary local fields in the bottom row
of LHZ. The free parameter in the inhomogeneously driven
transverse field is r = 0.5. One can see that inhomogeneous
driving of the transverse field can enhance the performance
of traditional quantum annealing considerably. Furthermore,
the ratio of the squared final ground-state fidelities of inho-
mogeneous to homogeneous driving improves with increasing
system size as shown in Fig. 4(b).

A free parameter in the protocol is the choice of the control
parameter r in the inhomogeneous sweep, i.e., the path we
take in the two-dimensional s − τ diagram. Figure 8 in the
Appendix shows that the control parameter r can considerably
enhance the performance of inhomogeneous driving.

The excess energy can also be lowered considerably by
inhomogeneous driving of the transverse field. For the same
ensemble of 100 randomly chosen instances for system size
Np = 6 plus two auxiliary physical qubits, we have plotted
the excess energy E =∑n En − E0 (where En denotes the

(a)

(b)

FIG. 4. Final ground-state fidelities and minimal energy gaps for
sweeps with homogeneous and inhomogeneous drivings. (a) shows
the statistics of the squared final ground-state fidelities for an en-
semble of 100 instances with system size Nl = 4 logical qubits
and, thus, Np = 6 physical qubits plus two auxiliary qubits with
uniformly distributed interaction strengths Jk and constraint strength
C = 2. (b) shows the comparison of the squared final ground-state
fidelities of homogeneous (1) and inhomogeneous Eq. (4) drivings
with parameter r = 0.5. The inset in (a) depicts the statistics of the
minimal energy gap of these chosen uniformly distributed instances
Jk for different system sizes.

energy of the nth lowest eigenstate) for homogeneous (1) and
inhomogenous (4) driving of the transverse field in Fig. 9 in
the Appendix.

An interesting question arises whether the particular order
at which the transverse fields of the qubits are switched
off is relevant for the performance. Statistics of the ground-
state fidelities and excess energies of homogeneous (1) and
inhomogeneous Hamiltonian (4) with value r = 0.5 and de-
scending order are included in Fig. 10 in the Appendix. The
ground-state fidelities and excess energies are the same as
for the ascending order case. The method is insensitive to
the precise order in which the transverse fields are switched
off.

The minimal energy gap is considered one of the main
limiting factors in quantum annealing. The inset of Fig. 4(a)
depicts the statistics of the minimal energy gaps of homo-
geneous Hamiltonian (1) and inhomogeneous Hamiltonian
(4) with value r = 0.5 for different system sizes Np over an
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ensemble of 100 randomly chosen instances of interaction
strength Jk .

Due to inhomogeneous driving of the transverse field,
we can considerably enlarge the minimal energy gap for all
instances compared to standard quantum annealing. Also, the
ratio of the minimal energy gap of inhomogeneous driving to
homogeneous driving increases with system size.

IV. CONCLUSION AND OUTLOOK

In this paper, we have introduced an inhomogeneously
driven transverse field of the Hamiltonian in the LHZ lattice
gauge model architecture. We find that by using inhomoge-
neous driving of the transverse field in LHZ the ground-state
fidelities are increased considerably compared to standard
quantum annealing. The method is insensitive to the order in
which the fields are switched off.

As an important step, we analytically derived an energy
expression of the four-body constraint term σ zσ zσ zσ z in LHZ.
The term in front of the m4 term stems from the four-body
constraints of LHZ whereas the term in front of m3 stems
from the three-body constraints in the lower row of LHZ.
As the ratio of three-body to four-body constraints converges
towards the value 0 for increasing system sizes Np, i.e., the
finite-size effect of the three-body constraints vanish, the
m4 term dominates as can be seen in Figs. 1(a) and 6 in
the Appendix. In our derivation, we followed the Suzuki-
Trotter decomposition, the saddle-point approximation as well
as the static approximation. We believe that these approx-
imations are valid for LHZ as it was shown recently that
it reproduces the exact free-energy term under some valid
constraints [44].

From our free-energy expression (13) of LHZ, we calcu-
lated the critical coefficients for different system sizes and for
the thermodynamic limit, respectively, and where we further
computed the line of first-order quantum phase transitions. We
note here that, for small system sizes, we can always avoid
first-order phase transitions for different values of the control
parameter r, i.e., taking different paths through the two-
dimensional s − τ diagram. We further note that, for quantum
annealing in LHZ for larger system sizes, the strength of the
constraints obey a scaling behavior which changes the values
of its critical coefficients considerably. We have included
an analytical expression of the free-energy expression for
a scaling behavior of C ∝ √Np and the calculation of the
critical coefficients for different system sizes in the Appendix
(see also Fig. 7).

Furthermore, we numerically demonstrated an increase in
the minimal energy gap and final ground-state fidelity due
to avoiding first-order quantum phase transitions by inho-
mogeneously driving the strength of the transverse field. We
note that the ratio of the final ground-state fidelities of inho-
mogeneous driving Eq. (4) to homogeneous driving Eq. (1)
increases with the system size Np of physical qubits in LHZ
which we expect due to the exponential closing of the minimal
energy gap with system size. This is an encouraging result
which we will further study numerically for larger system
sizes by using path-integral Monte Carlo methods [45–47] in
future work.

We note that the minimal gap of random Ising models
is not directly at the critical point but rather in the spin-
glass phase close to the end of the adiabatic protocol [30].
Whether inhomogeneous driving also affects these additional
exponential closing gaps is an interesting question for future
studies.

As a future direction, the inhomogeneous driving scheme
in the LHZ model may be applied to the counterdiabatic
driving of LHZ as described in Ref. [48] where quantum phase
transitions during the sweep may decrease the efficiency of the
approximate counterdiabatic term added to speedup quantum
annealing. This may open a new branch of developing fast
near-term quantum annealer devices.
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APPENDIX

1. Inhomogeneous driving of the transverse field

The inhomogeneous driving of the transverse field hk (s, r)
in the main text is assumed to be a linear function with
different slopes and delays. Figure 5 shows the function
hk (s, r) of Eq. (6) in the main text for Nl = 4 logical and, thus,
Np = 6 plus two auxiliary physical qubits in the bottom row
in LHZ with parameter value r = 0.5 in the inhomogeneous
driving scheme. Here, s = t/t f is the normalized time, k = 1
denotes the physical qubit on the lower left in LHZ, and k = 8
denotes the additional physical qubit fixed to a value of 1 on
the bottom right in LHZ, i.e., we first switch off the transverse

0.0 0.2 0.4 0.6 0.8 1.0
s
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0.6
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h
k
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,r
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k = 7

k = 8

FIG. 5. Continuous function hk (s, r). The value of the contin-
uous piecewise function hk (s, r) of Eq. (6) in the main text over
the normalized time s = t/t f for Np = 6 plus two auxiliary physical
qubits and parameter value r = 0.5 as used for the results in the main
text are shown. The blue (dark gray) solid line corresponds to the
protocol of the first qubit and similar in ascending order and the gray
solid line for the last qubit in the bottom row of LHZ, i.e., k = 8.
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FIG. 6. Energy in thermodynamic limit. The dependence of the
energy on the magnetization for Nl = 109 logical and thus Np =
5886 physical qubits in LHZ is plotted. In the thermodynamic limit
Np → ∞, the behavior of m4 fully dominates the energy term (9).

field of the physical qubit in the lower left and at last the
additional qubit in the bottom right.

2. Derivation of the free energy in LHZ

The free energy of LHZ in the thermodynamic limit Np →
∞ [Eq. (15) in the main text] is similar to the free-energy
expression of the p-spin model for p = 4 [32,33]. Compared
to the p-spin model, the LHZ model contains m4 and m3

terms with a ratio that depends on the system size. In LHZ,
the ratios N4/Nc of the number of four-body constraints to
all constraints as well as the ratios N3/Nc of the number of
three-body constraints to all constraints read

F4 = N4

Nc
= 1 − Nl − 2

N2
l

2
− 3

2
Nl + 1

,

F3 = N3

Nc
= Nl − 2

N2
l

2
− 3

2
Nl + 1

. (A1)

10−1 100

sc

0.0
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0.4

0.6

0.8

1.0

τ c

FIG. 7. Scaling with the constraint C. The critical coefficients
of finite-size free-energy Eq. (A3) in LHZ with randomly chosen
instances of interaction strengths Jk for increasing number of Nl = 7,
i.e., Np = 21 physical qubits [blue (dark gray) plus on the right] to
Nl = 25, i.e., Np = 300 [beige (light gray) plus on the very left] are
shown. The scaling of constraint strength for all constraints is chosen
to be C ∝ √Np.

These scalings translate to the terms in front of m4 and m3

[i.e., Eqs. (8) and (9)] compared to the p-spin model with
p = 4. The ratio F4 of four-body constraints to all constraints
converges towards 1 and the ratio F3 = 1 − F4 towards 0,
meaning that the finite-size effect of three-body constraints
are negligible in the thermodynamic limit and vice versa the
term of the four-body constraints dominates. With this fact in
mind, Fig. 6 shows the energy which approaches a symmetric
function due to the fact that the m4 term is dominant for the
case of Np = 5886 physical qubits.

For the derivation of the finite-size free-energy expression
Eq. (13) in LHZ, we need to apply the static approximation
m = m(α) for all α and take the reverse operation of the
Suzuki-Trotter decomposition for M → ∞ for the expression
Eq. (12). This gives us the expression,

f (m, Np) = sC

[(
3 + 6 −√9 + 72Np

Np

)
m4 +

(√
1 + 8Np − 3

Np

)
m3

]

− 1

βNp

Np∑
k=1

ln 2 cosh β

√√√√s2

[
C

(
4 −
√

16 + 128Np + 8

Np

)
m3 + C

(√
2.25 + 18Np − 4.5

Np

)
m2 + Jk

]2

+ h2
k

(A2)

where we further use the zero-temperature limit T → 0, i.e., β → ∞, and rewrite the sum into an integral for large Np. In
this thermodynamic limit Np → ∞, the actually stepwise function hk becomes continuous, i.e., hk (τ ′) and, thus, we obtain the
free-energy expression for a finite-size system in LHZ as in Eq. (4) in the main text.

A scaling of the constraint strengths in the form of Cl ∝ √Np may have to be applied in LHZ to suppress any unreasonable
solutions in the emerging unreachable sub-Hilbert space due to the increase in Nl logical to Np ≈ N2

l qubits and, thus, increasing

032110-8



QUANTUM PHASE TRANSITION WITH INHOMOGENEOUS … PHYSICAL REVIEW A 100, 032110 (2019)

Hilbert space. To account for this, the finite-size free energy term Eq. (13) in LHZ can be rewritten as

f (m, s, τ ′, J, Np)

= s

[
3m4
√

Np +
√

8(m3−3m4) + 1√
Np

[
m4

(
6 − 3

4
√

2

)
+ m3

(
1

4
√

2
− 3

)]
− 1

128
√

2

1

Np
(m3 − 3m4)

]

−

⎧⎪⎨
⎪⎩
∫ 1

0
dτ ′

√√√√s2

{
4m3
√

Np+
√

8

(
3

2
m2−4m3

)
− 1√

Np

[
8

1√
2

m3−m2

(
3

8
√

2
− 9

2

)]
− 1

Np

(
1.5m2−4m3

128
√

2

)
+J

}2

+h(τ ′)2

⎤
⎥⎦

(A3)

Here, it can be clearly seen that the four-body term dominates
with increasing system size. In the second term is a constant
offset of the free energy which stems from the finite-size
three-body constraints in LHZ. The critical coefficients of
the finite-size free-energy expression (A3) in LHZ can, thus,
be calculated according to Eq. (16) in the main text and are
plotted in Fig. 7. We can see that the critical coefficients
wander from the right of the sc − τc diagram to the left. The
critical coefficients for a system size Nl = 7 logical spins and,
thus, Np = 21 physical qubits in LHZ, read sc ≈ 0.505 and
τc ≈ 0.242 (blue plus); whereas for a system size Nl = 25
and, thus, Np = 300, the critical coefficients read sc ≈ 0.029
and τc ≈ 0.371 (beige plus). For the thermodynamic limits
Np → ∞ and C → ∞, the critical coefficients will be on
the τc axis (i.e., sc = 0) so that first-order quantum phase
transitions cannot be avoided for any choice of the control
parameter r.
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)〉|
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r = 4.0

r = 5.0

FIG. 8. Control parameter r. The statistics of the final ground-
state fidelities F 2(t f ) = |〈ψ (t f )|φ0(t f )〉|2 of Hamiltonian Eq. (4) for
an ensemble of 100 instances of randomly uniformly distributed
interaction strengths Jk with system size Nl = 4 logical spins and,
thus, Np = 6 plus two auxiliary physical qubits and constraint
strength C = 2 for all three constraints, and different values of
the control parameter r are depicted. The blue (dark gray) upper
line corresponds to the value of r = 0.5 and, subsequently, down-
wards and the brown lowest solid line corresponds to the value of
r = 5.0.

3. Additional numerical results

a. Choice of control parameter r

As mentioned in the main text, the free control parameter
r sets the path in the s − τ diagram one chooses in order
to avoid first-order quantum phase transitions. Its choice can
also further enhance the performance of quantum annealing
by not only avoiding first-order QPTs, but also enlarging
the probability of finding the ground state of our problem
Hamiltonian to be solved.

Figure 8 depicts the statistics of the squared final
ground-state fidelity F 2(t f ) = |〈ψ (t f )|φ0(t f )〉|2 for Hamilto-
nian Eq. (4) with system size Np = 6 plus two auxiliary phys-
ical qubits in LHZ for an ensemble of 100 randomly chosen
instances of Jk and different values of the control parameter
r. As can be seen here, an appropriate choice of the control
parameter r can enlarge the squared final ground-state fidelity
of the inhomogeneously driven Hamiltonian considerably. For
a value of r = 0.5, the final ground-state fidelity squared
reaches its maximum.
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Δ
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FIG. 9. Excess energies for sweeps with homogeneous and inho-
mogeneous drivings. The statistics of the excess energies for an en-
semble of 100 randomly uniformly distributed interaction strengths
Jk with system size Nl = 4 logical qubits and, thus, Np = 6 physical
qubits plus two auxiliary qubits and constraint strength Cl = 2 for all
three constraints for homogeneous (1) and inhomogeneous Hamilto-
nian Eq. (4) with parameter r = 0.5 is depicted.
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(a) (b)

(c) (d)

FIG. 10. Statistics of descending order. (a) and (c) show the statistics of the final ground-state fidelity of the homogeneous (1) and
inhomogenous Hamiltonian Eq. (4) with parameter r = 0.5 for system sizes Np = 3 and Np = 6 physical qubits, respectively, each for an
ensemble of 100 uniformly distributed instances of interaction strength Jk . (b) and (d) show the statistics of the corresponding excess energies
for Np = 3 and Np = 6 physical qubits, respectively, and same ensemble of Jk and control parameter r = 0.5 as for (a) and (c).

The excess energy is another measure for the performance
of quantum annealing as it gives rise to the amount of transi-
tions to higher excited eigenstates that have occurred during
quantum annealing sweeps.

Figure 9 depicts the excess energies of the homogeneously
driven Hamiltonian (1) and inhomogeneously driven Hamilto-
nian Eq. (4) with parameter r = 0.5 and where the parameters
of LHZ are as described in the main text. The excess energies
of the inhomogeneously driven Hamiltonian (4) are smaller
than for the homogeneously driven Hamiltonian (1) in LHZ,
meaning that less transitions to higher excited states have
occurred during these sweeps.

b. Different orders of inhomogeneous driving

An interesting question arises whether the order in which
we switch off the transverse field of each qubit is of matter
for our theory. Figure 10 depicts the statistics of final ground-
state fidelity and excess energies of the descending order of
inhomogeneously driven transverse fields of the qubits over
an ensemble of 100 uniformly distributed interaction strengths
Jk for system sizes Np = 3 plus one auxiliary and Np = 6

plus two auxiliary physical qubits, respectively. Here, we first
switch off the transverse field of the qubit at the top of the
triangular LHZ structure and the qubits 1 in the left lower row
and auxiliary qubits in the last row. We see the same results as
in the case of ascending order from the main text with function
hk (s, r) as in Fig. 5, meaning that the order in which we switch
off the transverse field of the qubits does not matter for the
efficiency of our method.

c. Energy spectrum

As we can enlarge the minimal energy gap by inhomoge-
neous driving of the transverse field in LHZ, we are interested
in the energy spectrum during the whole sweep. Figure 11
shows the energy spectra of the homogeneous (1) and inho-
mogenous Hamiltonian Eq. (4) with parameter r = 0.5 for
system size Np = 6 plus two auxiliary physical qubits and a
randomly chosen instance Jk with constraint strength Cl = 2
for all constraints. We can see that the minimal energy gap is
enlarged and shifted in time from around t/t f ≈ 0.5 for the
homogeneous Hamiltonian to t/t f ≈ 0.8 for the inhomoge-
neous Hamiltonian.
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(a) (b)

(c) (d)

FIG. 11. Energy spectrum. (a) and (c) show the energy spectrum of the homogeneous Hamiltonian Eq. (1) with Np = 6 physical qubits for
a randomly chosen instance of interaction strength Jk . (b) and (d) show the energy spectrum of the inhomogeneous Hamiltonian Eq. (4) with
parameter r = 0.5 with Np = 6 physical qubits with the same instance Jk . The constraint strength is Cl = 2 for all three constraints.
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