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Assembly of 2N entangled fermions into multipartite composite bosons
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An even number of fermions can behave in a bosonic way. The simplest scenario involves two fermions
which can form a single boson, but four fermions can either behave as two bipartite bosons or further assemble
into a single four-partite bosonic molecule. In general, for 2N fermions there are many possible arrangements
into composite bosons. What determines which fermionic arrangement is realized in a given situation, and is
it truly bosonic? This paper aims to answer the above question. We propose an entanglement-based method to
assess bosonic quality of fermionic arrangements and apply it to study how the ground state of the extended
one-dimensional Hubbard model changes as the strength of interparticle interactions increases.
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I. INTRODUCTION

Most bosons studied in laboratories are composed of ele-
mentary fermions. What makes such composites behave in a
bosonic way? Is it the binding force that keeps them together?
In fact, bosonic behavior stems from the interfermionic en-
tanglement: The more entangled two fermions are, the more
bosonic they behave [1–3]. This result motivated quantum
information oriented studies on composite bosons [4–19]. Up
to now scientists focused on composite bosons made of two el-
ementary components, the quality of which can be quantified
by bipartite entanglement. Here, we propose a generalization
to composite bosons made of 2N fermions, the quality of
which is described by genuine multipartite entanglement.

The main problem of this paper can be formulated in the
following way. Assume that a composite particle is repre-
sented by a single complex creation operator ĉ† acting on
a vacuum ĉ†|0〉 ≡ |1〉. This creation operator satisfies the
commutation relation 〈1|[ĉ, ĉ†]|1〉 = 1 − �. An ideal bosonic
behavior of the composite particle should imply the usual
bosonic commutation relations (� → 0). Here, we take the
complex creation operator c† as a function of elementary
fermionic creation operators c† = f (a†

1, a†
2, . . .). Suppose that

2N fermions are in the state

|ψ〉 =
∑

i1,i2,...,i2N

αi1,i2,...,i2N a†
i1

a†
i2

. . . a†
i2N

|0〉, (1)

where a†
ik

creates a fermion in the mode ik and {αi1,i2,...,i2N }
is the set of antisymmetric coefficients. Does the state |ψ〉
describe a single composite bosonic particle made of 2N
fermions, two bosonic particles each made of N fermions,
or N bipartite bosonic particles? In fact, for 2N fermions
there is a number of possible bosonic assemblies. Which
assembly does the state |ψ〉 correspond to, and what is its
bosonic quality? (E.g., in the case that |ψ〉 corresponds to
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a single composite bosonic particle, we have |ψ〉 = c†|0〉.)
In this paper we are going to address the above questions.
In particular, we will focus on fermionic ground states of
the one-dimensional Hubbard model. We will study how
assemblies of 2N spin-1/2 particles on a lattice, and their
corresponding bosonic qualities, depend on the strength of
interparticle interactions. For clarity we add here that by
restricting our analysis to the ground state the composite
particle concept should not be confused with quasiparticle
description.

There are two motivations behind our studies. Funda-
mentally speaking, what makes a complex quantum system
behave as a single entity? From the engineering perspective,
how can one create composite particles in the laboratory?
This is related to the following problem: In some situations
spontaneous emergence of composite structures can affect
the property one wants to observe. An illustrative example
is the problem of the Bose-Einstein condensation of atomic
hydrogen [20]. Hydrogen atoms naturally try to recombine
into H2 molecules and one needs to discover a method to
prevent it (for example, by spin polarization in high magnetic
fields [21]). Here, we consider a system of 2N interacting
fermions on a one-dimensional lattice and show that the for-
mation of composite structures can be controlled by a proper
tuning of the nearest-neighbor interaction.

II. BIPARTITE COMPOSITE BOSONS

In this section we recall properties of composite bosons
made of two fermions and show that such composite bosons
naturally describe ground states of the Hubbard model for two
fermionic particles.

A. Bipartite composite bosons and the role of correlations

Consider a system made of two fermions whose general
state is given

|ψ〉 =
∑
i, j

αi, ja
†
i a†

j |0〉, (2)
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where the matrix of coefficients αi, j satisfies αi, j = −α j,i,
αi,i = 0, and

∑
i, j |αi, j |2 = 1. The above bifermionic state

admits a Schmidt-like (Slater) representation [22–25], i.e.,
there exists a unitary transformation Ua†

i = ∑
k βi,ka†

k , such
that

|ϕ〉 =
∑
i, j

αi, jUa†
i Ua†

j |0〉 =
∑

k

√
λka†

2ka†
2k+1. (3)

The above representation allows one to divide the fermions
into two different groups, the ones occupying even modes and
the ones occupying odd modes. We therefore set a†

2k ≡ a†
k and

a†
2k+1 ≡ b†

k and assume k = 0, 1, . . . , d − 1, which allows us
to write

|ϕ〉 =
d−1∑
k=0

√
λka†

kb†
k|0〉. (4)

In many situations the division into the two groups of
fermions, call them A and B, is quite natural from the physical
point of view. For example, a†

k can correspond to creation of
a particle with spin up and b†

k can correspond to creation of a
particle with spin down. In the remaining part of this paper we
assume that we deal with these two types of fermions and we
explicitly use the operators a†

k and b†
k .

The real non-negative coefficients {λk} determine the cor-
relations between the two fermions. More precisely, one can
define the purity 1

d � P � 1 of the system as

P =
∑

k

λ2
k . (5)

If P = 1, the system is separable and in any other case the
system is entangled. The smaller the purity, the more entan-
gled it is. For a pair of d-level systems the smallest purity,
corresponding to a maximally entangled state, is 1/d .

While it is true that an even number of fermions can behave
like a boson, the exact conditions under which these fermions
can be treated as a single boson have been studied for a long
time [26–36]; for a review see [37]. In terms of entanglement,
the bifermionic state (4) has properties of a single bosonic
particle in the limit P → 0 [1], which connects the theory
of entanglement with studies on composite particles. The
keystone is the idea that the bosonic behavior of a composite
system does not stem exactly from interactions, but from
entanglement. The above paradigm shift, from interactions to
entanglement, is quite subtle. Nevertheless, although entan-
glement cannot be created without interactions, in principle it
does not require interactions to last, once it is created. This
allows one to study the concept of composite particles that are
bound solely by entanglement [16,17].

The idea of [1] is based on the ladder structure of bosonic
operators. If the state (4) is to be treated like a state of a single
boson

d−1∑
k=0

√
λka†

kb†
k|0〉 ≡ c†|0〉 = |1〉, (6)

then the creation operator c† should obey

〈0|cN c†N |0〉 = N!. (7)

However, due to the fact that c† is not a perfect bosonic
operator one gets

〈0|cN c†N |0〉 = χN N!, (8)

where χN is a factor describing a departure from perfect
bosonic behavior. In addition,

|N〉 ≡ c†N

√
χN N!

|0〉 (9)

and

c†|N − 1〉 = αN

√
N |N〉,

c|N〉 = αN

√
N |N − 1〉 + |εN 〉, (10)

where

αN =
√

χN

χN−1
(11)

and |εN 〉 is a state of N − 1 fermionic A-B pairs. This state is
orthogonal to the Fock state |N − 1〉. Its norm is

〈εN |εN 〉 = 1 − N
χN

χN−1
+ (N − 1)

χN+1

χN
. (12)

In the limit P → 0 one has χN

χN−1
→ 1 for all N [1]. In

this case αN → 1 and 〈εN |εN 〉 → 0, therefore the composite
boson operator c† becomes perfect bosonic. Moreover, χN

χN−1
�

1 − P [1]. A lower bound was presented in [3],

1 − NP � χN

χN−1
� 1 − P, (13)

and tightened in [5]. As a result, in the limit P � 1/N the
composite creation operators become bosonic.

Interestingly, P is directly related to χ2:

χ2 = 2
∑
i< j

λiλ j =
∑
i, j

λiλ j −
∑

i

λ2
i = 1 − P. (14)

Therefore, because of (13), the properties of two composite
bosons tell us about properties of more than two such parti-
cles.

B. Maximally entangled bifermions

In our recent work [16] we introduced the concept of a
maximally entangled composite boson

c†|0〉 = 1√
d

d−1∑
k=0

a†
kb†

k|0〉, (15)

i.e., λk = 1/d for all k; this state was referred to as a “uniform
state” in [5]. The above state has a few nice properties. First
of all, the internal structure is described by only one integer d .
In addition, it is easy to evaluate

χN = d!

dN (d − N )!
(16)

and as a result one gets

αN =
√

d − N + 1

d
, 〈εN |εN 〉 = 0. (17)
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Next, let us define the following bifermionic states:

c†
s,r |0〉 = 1√

d

d−1∑
k=0

ei 2π
d kra†

kb†
k+s|0〉, (18)

where r, s = 0, 1, . . . , d − 1. Each of these states corresponds
to a good composite boson for sufficiently large d , since for
each of these states P = 1/d . This is the smallest possible P
that can be achieved for a bipartite system with d modes [5],
therefore the creation operators c†

s,r provide the best possible
bosonic quality. The d2 states form an orthonormal basis
because

〈0|cs,rc†
s′,r′ |0〉 = δs,s′δr,r′ , (19)

where δx,y is the Kronecker delta. Therefore, any bifermionic
state can be represented as a linear combination of these
states. Interestingly, the above orthogonality relation does not
imply orthogonality of states corresponding to more than one
composite boson, such that c†N

s,r |0〉 and c†N
s′,r′ |0〉 do not need

to be orthogonal. The extreme case corresponds to N = d ,
for which c†d

s,r |0〉 ≡ c†d
s′,r′ |0〉 for any s, s′, r, and r′. In simple

words, for N = d all available modes are filled with fermions
and there is exactly one state describing this possibility. The
fact that higher powers of different composite boson operators
do not preserve orthogonality has been already noticed in [37].

Finally, notice that although a perfect boson remains a
boson even if it is in a superposition the superposition of
composite boson states

d−1∑
s,r=0

αs,rc†
s,r |0〉 (20)

may not correspond to a good composite boson. In the worst
case scenario this superposition can correspond to a product
state a†

kb†
k′ . However, if the number of terms in superposition is

large, the system should still manifest good bosonic behavior.
Still, good bosonic behavior is always a question of how many
composite bosons occupy the same state.

C. Bosonic quality of the Hubbard ground state

In the limit of strong interactions one can use the hard-core
boson approximation (see the end of this section) to prove
that the ground state of the Hubbard model is a composite
boson state of the form (4) with λk = 1/d . In general, the
one-dimensional Hubbard model can be solved exactly using
the Bethe ansatz [38]. Here, we show that the bipartite ground
state can be found using the above maximally entangled
states (18).

The Hubbard Hamiltonian for our system is given by

H = JH0 + UHp (21)

where the parameters J,U � 0,

H0 = −
d−1∑
i=0

(a†
i ai+1 + b†

i bi+1 + H.c.) (22)

is the kinetic-energy (hopping) term, and

Hp = −
d−1∑
i=0

a†
i aib

†
i bi (23)

describes the attractive point interaction between fermions A
and B. In the above formula we assume the periodic boundary
conditions d ≡ 0.

Next, consider the action of the Hamiltonian (21) on
|s, r〉 ≡ c†

s,r |0〉:
H|s, r〉 = −J

(
1 + ei 2π

d r
)|s + 1, r〉

− J
(
1 + e−i 2π

d r
)|s − 1, r〉 − Uδs,0|s, r〉. (24)

The Hamiltonian does not change the parameter r, therefore
for each r one can consider a separate decoupled set of equa-
tions. To find the ground state, we need to choose r, which
minimizes the energy. The hopping amplitude is −J (1 +
e±i 2π

d r ) and the greatest negative contribution occurs for r = 0.
Therefore, we fix r = 0 so the hopping term becomes −2J .

In addition, we assume for the moment that the Hamilto-
nian describes particles hopping on an infinite discrete line.
Therefore, we get −∞ � s � ∞. This corresponds to d →
∞. As a result, the states (18) have an infinite number of terms
and the corresponding purity is

P = lim
d→∞

1

d
= 0, (25)

therefore they can be considered perfectly bosonic for any
number of composite bosons N .

We represent the candidate ground state as

|ψ0〉 =
∞∑

s=−∞
αs|s, 0〉, (26)

for which

H|ψ0〉 = ε|ψ0〉, (27)

where ε is the ground-state energy. The goal is to find the
coefficients αs and the energy ε. The corresponding set of
recurrence equations consists of typical equations

− ε

2J
αs = αs+1 + αs−1, (28)

which apply to cases s 
= 0, and an atypical equation

− (U + ε)

2J
α0 = α1 + α−1. (29)

The solution to the above equations (provided in Appendix A)
yields

αs = A

(√
U 2 + 16J − U

4J

)|s|
, (30)

where A can be determined from normalization. The corre-
sponding energy is

ε = −
√

U 2 + 16J2. (31)

In general, the ground state (26) is a superposition of many
bifermionic maximally entangled states (18), therefore it does
not need to describe a perfect composite boson. However, in
the limit U � J the energy becomes ε → −U , αs → 0 for
s 
= 0 and α0 → 1. Therefore, in this case the ground state of
H is dominated by c†

0,0|0〉, i.e., it can be considered a perfect
composite boson.
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(a) (b) (c)

FIG. 1. Four-fermion assemblies. (a) Free fermions if there are
no interactions—two fermions of type A and two of type B. (b) In the
presence of strong point interactions, two bosonic A-B pairs emerge.
(c) In the presence of strong point interaction and nearest-neighbor
interactions, a single four-partite bosonic molecule is formed.

The system allows us to address the difference between
entanglement and interactions. If the bosonic behaviors of two
fermions were determined solely by interaction, one could
choose J = 0 and the Hamiltonian would consist only of the
interaction part. The corresponding ground state would be
degenerated and would be of the form η

†
k |0〉 ≡ a†

kb†
k|0〉; i.e.,

any pair of fermions A and B occupying the same mode
would be considered a ground state. The operator η

†
k obeys

the following commutation relations:

η
†2
k = 0, η

†
kη

†
k′ = η

†
k′η

†
k . (32)

These relations are not bosonic. The A-B pairs generated by
such operators are sometimes called hard-core bosons. Note
that η

†
k creates two fermions in the product state. This is a

clear manifestation of the fact that bosonic behavior needs
fermionic entanglement. This entanglement is provided by
the introduction of the kinetic-energy term which lifts the
degeneracy.

III. FOUR-PARTITE COMPOSITE BOSONS

In this section, we consider composite bosons made of four
fermions. As shown above, the Hubbard Hamiltonian with
point interaction can lead to formation of bipartite composite
bosons of the A-B type. Now, we would like to observe
the formation of a single four-partite bosonic molecule (see
Fig. 1). Due to Pauli exclusion, the bound pair described by
η

†
k ≡ a†

kb†
k cannot interact via point interaction with any other

such pair. Therefore, in order to observe the formation of
larger compounds, we need to introduce a nearest-neighbor
interaction.

In the following subsections, we introduce a four-partite
molecular state and compare it with a state of two bipartite
composite bosons. Next, we analyze which of these states
dominate the ground state of the extended Hubbard Hamil-
tonian as the strength of the nearest-neighbor interaction
changes. Finally, we analyze bosonic properties of the four-
partite molecular state.

A. Two bipartite composite bosons

The bipartite ground state of (21) in the limit U � J can
be approximated as c†

0,0|0〉. In terms of operators η
†
k , it reads

c†
0,0|0〉 = 1√

d

d−1∑
k=0

η
†
k |0〉. (33)

In the following, we use the operators η
†
k to simplify

notation.
Next, let us consider a Fock state representing two such

composite bosons:

c†2
0,0√
2χ2

|0〉 = 1

d
√

2χ2

d−1∑
k,k′=0

η
†
kη

†
k′ |0〉, (34)

where χ2 = 1 − P = (d − 1)/d . For sufficiently weak
nearest-neighbor interactions and for U � J , the above state
will turn out to dominate the ground state of the extended
one-dimensional Hubbard model.

B. Four-partite entangled states

Consider the following states of four fermions represented
via two η

†
k operators:

q†
s,r |0〉 ≡ 1√

d

d−1∑
k=0

ei 2π
d krη

†
kη

†
k+s|0〉, (35)

where r = 0, 1, . . . , d − 1 and s = 1, . . . , d/2. The latter re-
sults from η

†
kη

†
k+s = η

†
k+sη

†
k and we assume that d is even.

Just like (18), the above states form an orthonormal basis

〈0|qs′,r′q†
s,r |0〉 = δs,s′δr,r′ , (36)

therefore they can be used to represent any state of two
A-B pairs created by η

†
k . In particular, the state (34) can be

represented as

c†2
0,0√
2χ2

|0〉 =
√

2

d

d/2∑
s=1

q†
s,0|0〉. (37)

Note, that the structure of (35) differs from the one of (34).
Due to correlations between A-B pairs the number of terms in
the first one is quadratically smaller than in the second one.
Writing these states explicitly using operators a†

k and b†
k we

see that terms in (35) are of the form a†
kb†

ka†
k+sb

†
k+s, which

indicates four-partite correlations since s is a constant. On the
other hand, terms in (34) are of the form a†

kb†
ka†

k′b
†
k′ , which

indicates bipartite correlations since k and k′ are independent
indices. We already know that bipartite entangled fermionic
states exhibit bosonic properties. At the end of this section
we are going to examine bosonic properties of four-partite
entangled states.

C. Extended Hubbard model

In order to study the formation of four-partite composite
bosons we extend the Hamiltonian (21) to include the nearest-
neighbor interaction. The new Hamiltonian is of the form

H = JH0 + UHp + γHnn (38)

where J,U, γ � 0 and the new term is

Hnn = −
d−1∑
k=0

a†
kakb†

k+1bk+1. (39)

It represents an attractive nearest-neighbor interaction be-
tween fermions A and B. This is a simplified model, since we
could also introduce an attractive nearest-neighbor interaction
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between fermions A and A or between B and B. However,
because in our model A interacts with B via point interaction,
the nearest-neighbor interaction between the fermions of the
same type is going to be mediated by the fermions of the
other type. For example, fermion A in mode k is going to
interact with fermion B in mode k that interacts with another
fermion A in mode k + 1. This leads to indirect interactions
between A in mode k and A in mode k + 1. Moreover, we
are going to show below that in the particularly interesting
limit U � J � γ we can focus on the effective Hamiltonian.
The form of this Hamiltonian does not depend on whether we
choose interaction between A and B, between A and A, or
between B and B.

In general we need to consider a four-partite problem,
however in the limit U � J � γ the above Hamiltonian can
be represented in an effective form using operators η

†
k (for

details see Appendix B):

Heff = −2J2

U

d−1∑
k=0

(η†
kηk+1 + H.c.)

−
(

2γ − 4J2

U

) d−1∑
k=0

η
†
kηkη

†
k+1ηk+1, (40)

for which our four-partite problem reduces to a bipartite
problem.

In order to find the ground state, let us consider the action
of (40) on |s, r〉q ≡ q†

s,r |0〉:
Heff |s, r〉q = −J̄

(
1 + ei 2π

d r
)|s + 1, r〉q

− J̄
(
1 + e−i 2π

d r
)|s − 1, r〉q

− γ̄ δs,1|s, r〉q, (41)

where J̄ = 2 J2

U and γ̄ = 2(γ − J̄ ). This resembles the previ-
ous case. As before, the parameter r is not affected by (40),
therefore we choose r = 0 to minimize the kinetic energy.
Moreover, we consider d → ∞, therefore there is no upper
bound on s.

We assume that the ground state is of the form

|ψ0〉 =
∞∑

s=1

βs|s, 0〉q, (42)

and Heff|ψ0〉 = ε̄|ψ0〉, hence we obtain the following set of
typical recurrence equations,

− ε̄

2J̄
βs = βs+1 + βs−1, (43)

which applies to cases s > 1, and an atypical equation:

− (γ̄ + ε̄)

2J̄
β1 = β2. (44)

Using the same methods as before (see Appendix C) we find
that

βs = B

(
J̄

γ − J̄

)s

, (45)

ε̄ = 4γ J̄ − 4J̄2 − 2γ 2

γ − J̄
, (46)

where B is the normalization constant. The above solution
works for U � γ > 2J̄ , since in this case lims→∞ βs = 0.
This is the prerequisite for the bound state and is the key
assumption behind the solution (see Appendix C). For γ � 2J̄
there is no bound state.

Let us analyze the properties of the ground state. When
γ � 2J̄ the term β1 becomes much larger than any other βs

and the ground state tends to a four-partite state describable
by q†

1,0|0〉. On the other hand, for γ → 2J̄ all coefficients
become equal, i.e., βs → B. This corresponds to two bipartite
composite bosons represented by the state (34) or (37).

It is somehow surprising that the second case occurs for
nonzero γ . In order to understand this effect let us recall the
form of (40) and the relations (32). In order to have (34) as
a ground state each configuration of two pairs η

†
kη

†
k′ needs to

contribute with the same amount of energy. More precisely,
we want the ground state to be of the form

N
∑
k<k′

η
†
kη

†
k′ |0〉 (47)

where N is the normalization constant. After the application
of (40) the state changes to

N
∑
k<k′

εk,k′η
†
kη

†
k′ |0〉, (48)

where εk,k′ are different energy contributions. However, the
above state should be of the same form as before. Only the
normalization constant may change. But this requires that εk,k′

is the same for all k and k′. If the interaction term were zero,
the kinetic energy would result in εk,k′ = −4J̄ for k′ 
= k + 1
and εk,k+1 = −2J̄ . This is due to the Pauli exclusion principle,
which imposes (32). To compensate for this, we need to add
the nearest-neighbor interaction of the strength −γ = −2J̄ .

D. Numerical simulations

In order to confirm our predictions, we studied numerically
the ground state in the limit U � J � γ and for d = 8
(assuming periodic boundary conditions). We found that the
results of numerical simulations using (38) coincide with the
ones obtained using (40). For the fixed J and U we studied
how the ground state |ψ (γ )〉 changes as the parameter γ

increases. We calculated the fidelities |〈ψ (γ )|q†
1,0|0〉|2 and

|〈ψ (γ )| c†2
0,0√
2χ2

|0〉|2. The results are plotted in Fig. 2. The pa-

rameter U was chosen to be of the order 105, J was chosen
to be of the order 102, and γ was chosen to be of the order
of 100. Interestingly, if one fidelity approaches 1, the other
fidelity approaches 1/4. This is because of the finiteness of

space in our simulations. |〈0|q1,0
c†2

0,0√
2χ2

|0〉|2 = d (d
2)−1 holds

[see Eqs. (37) and (35)]. In the limit d → ∞ the two states
become orthogonal.

E. Bosonic properties of the four-partite entangled state

Finally, let us investigate if the state q†
1,0|0〉 can be inter-

preted as a single four-partite bosonic molecule. We do this by
analyzing the bosonic quality of the operator q†

1,0 via the same

methods as in [1]. In particular, we analyze the parameter χ
(2)
N
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FIG. 2. Dependence of fidelities |〈ψ (γ )|q†
1,0|0〉|2 (dashed) and

|〈ψ (γ )| c†2
0,0√
2χ2

|0〉|2 (solid) on parameter γ for few fixed values of J
and U .

defined by

〈0|qN
1,0q†N

1,0|0〉 = χ
(2)
N N!. (49)

The operator q†
1,0 generates the bosoniclike ladder structure

analogous to (10). If the ratio χ
(2)
N

χ
(2)
N−1

→ 1 for all N , then q† can

be considered perfect bosonic. From the results presented in
Appendix D we get that

χ
(2)
N = N!

dN

(
d − N

d − 2N

)
(50)

and

χ
(2)
N+1

χ
(2)
N

=
(

1 − N + 1

d

)
�N

i=1

(
1 − 2

d + i − 2N

)
. (51)

The above is upper bounded by 1 and lower bounded by(
1 − N + 1

d

)(
1 − 2

d + 1 − 2N

)N

, (52)

which in the limit d � N approaches 1. Therefore, for d � N
the action of operator q†

1,0 can be considered as a creation of a
single four-partite bosonic particle.

IV. MULTIPARTITE COMPOSITE BOSONS

Here we consider a composite boson made of 2N fermions.
Such composite particles are expected to appear in the effec-
tive extended Hubbard model (40) if the particle attraction γ

is much stronger than the effective kinetic-energy contribution
J̄ . On the other hand, as discussed above, if the effective
kinetic-energy contribution is just two times stronger than the
attraction between the particles, the system should be describ-
able by N A-B independent pairs. We look for the transition
between these two types of behavior. A schematic representa-
tion of the above multifermionic assemblies is shown in Fig. 3.

(a) (b)

(c) (d)

FIG. 3. Schematic representation of multifermionic assemblies.
(a) Free fermions if there are no interactions. (b) In the presence
of strong point interactions and weak nearest-neighbor interactions
bosonic A-B pairs emerge. (c) In the presence of strong point inter-
action and increasing nearest-neighbor interactions the system starts
to assemble into multipartite composite bosons. (d) In the presence
of strong point interaction and strong nearest-neighbor interactions a
single bosonic molecule is created.

A. Multipartite entangled states

It is natural to expect that for N fermions of type A, N
fermions of type B, and sufficiently strong nearest-neighbor
interaction the Hamiltonian (40) has the following ground
state:

q†
(M )|0〉 ≡ 1√

d

d−1∑
k=0

η
†
kη

†
k+1 . . . η

†
k+M−1|0〉. (53)

Note that for M = 1 the above state becomes the bipartite
state (18) corresponding to c†

0,0|0〉 and for M = 2 it becomes

the four-partite state (35) corresponding to q†
1,0|0〉. Therefore,

the above expectation is in accordance with the few particle
cases studied above.

B. Bosonic quality of multipartite entangled states

The state q†
(M )|0〉 can be considered a single composite

boson made of 2M fermions if d � M. We provide a detailed
proof in Appendix D. As a result, the state

q†N
(M )√

χ
(M )
N N!

|0〉 (54)

represents N such composite particles, provided d � NM,
where

χ
(M )
N = �N

i=1(d − NM + i)

dN
. (55)

The above bosonic behavior stems from the fact that state
q†

(M )|0〉 is multipartite entangled. In fact, multipartite entan-
glement is a necessary condition for a bosonic behavior of
2M fermions. First, 2M fermions in a fully separable state,
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i.e., having Slater rank 1 [25],

q†
sep|0〉 ≡ a†

k1
. . . a†

kM
b†

k′
1
. . . b†

k′
M
|0〉, (56)

cannot be considered a composite boson. The simplest proof
is that for such states there is no two-boson state. We get
c†2

sep|0〉 = 0, which is a consequence of Pauli exclusion. Next,
note that the same happens if at least one fermion is in a well
defined mode, for example,⎛

⎝a†
k1

∑
k2,...,k′

M

αk2,...,k′
M

a†
k2

. . . a†
kM

b†
k′

1
. . . b†

k′
M

⎞
⎠

2

|0〉 = 0. (57)

Therefore, each fermion needs to be entangled to prevent
q†2

(M ) = 0. This implies multipartite entanglement. However,
multipartite entanglement is not enough. In Appendix E we
show that a multifermionic state representing a single com-
posite boson needs to be genuinely multipartite entangled.
This is the only way to recover the ladder structure (10) of
composite bosonic operators.

C. Composite bosons of various sizes

Let us define the following states of 2N fermions repre-
senting k composite bosons of various sizes:

|M1 + . . . + Mk〉 ≡ Nq†
(M1 ) . . . q†

(Mk )|0〉, (58)

where we assume decreasing order, i.e., M1 � . . . � Mk .
Moreover, M1 + . . . + Mk = N and N is a normalization
factor. This normalization factor is necessary due to two
reasons. First, it may happen that in the above state there are m
composite bosons of the same size, i.e., Mi = . . . = Mi+m =
M. In this case, if there were no normalization factor the
norm of the state would be proportional to χ (M )

m m!. Second,
even if all composite bosons were of a different size, the state
q†

(M1 ) . . . q†
(Mk )|0〉 would not be normalized, despite the fact that

each of the states q†
(M1 )|0〉, . . . , q†

(Mk )|0〉 is of norm 1. This is
because of indistinguishability of fermions, Pauli exclusion,
and finiteness of d . For example, consider a state

|3 + 1〉 = N 1

d

d−1∑
k,l=0

η
†
kη

†
k+1η

†
k+2η

†
l |0〉. (59)

It is easy to find (using the already applied methods) that
N 2 = d2

d2−4d , which in the limit d → ∞ tends to 1.
Our next goal is to investigate to which state |M1 + . . . +

Mk〉 the ground state of (40) corresponds. For weak interaction
the ground state should correspond to |1 + . . . + 1〉, whereas
for strong interaction it should correspond to |N〉. In addition,
we are interested in how the one state changes into the other
as the interaction strength γ increases.

D. Numerical simulations for N = 3 and 4

Here, we discuss numerical results for N = 3 and 4, i.e.,
composite bosons made of six and eight fermions. As before,
we assume the strong point interaction limit, therefore we
consider three and four A-B pairs, respectively, to which we
apply the effective Hamiltonian (40).

We numerically found the ground state |ψ (γ )〉 and eval-
uated the fidelities |〈ψ (γ )|M1 + . . . + Mk〉|2. Due to high

FIG. 4. Fidelities corresponding to different fermionic assem-
blies for N = 3 (top) and N = 4 (bottom) as functions of γU/J2.

computational complexity we considered d = 10, which does
not imply a perfect bosonic quality but still allows us to
see some important qualitative behavior of the model. The
corresponding fidelities are plotted in Fig. 4.

In the case of N = 3 we observe that for a low value of
the ratio γU/J2 the ground state is dominated by the state
|1 + 1 + 1〉. The fidelity |〈ψ (γ )|1 + 1 + 1〉|2 reaches 1 for
γU/J2 = 4. This maximum occurs for γ 
= 0 due to the same
reason as in the case N = 2. For γU/J2 > 4 there is a small
region in which the ground state is dominated by |2 + 1〉,
although the fidelity of this state never reaches 1. After this
region the ground state is dominated by |3〉 and as γU/J2 � 4
the fidelity |〈ψ (γ )|3〉|2 → 1.

In the case of N = 4 the transition from |1 + 1 + 1 + 1〉 to
|4〉 seems to be more complex. As before, the ground state
is dominated by |1 + 1 + 1 + 1〉 for low values of γU/J2

and the corresponding fidelity reaches a maximum of 1 for
γU/J2 = 4. As the ratio increases, the state |2 + 1 + 1〉 and

032105-7



ZAKARYA LASMAR et al. PHYSICAL REVIEW A 100, 032105 (2019)

then |3 + 1〉 starts to take over, but soon the state |4〉 comes
to dominate and its fidelity approaches 1 as the ratio becomes
large. Interestingly, the state |2 + 2〉 seems to play no signif-
icant role in the above transition. The fact that it appears in
Fig. 4 is rather due to its overlap with other states, which is
caused by the relatively small value of d . Note that for high
values of γU/J2 the ground state is describable by |4〉, but
the fidelities corresponding to other states are still high. In
particular, the fidelity |〈ψ (γ )|2 + 2〉|2 does not change much
after it reaches its maximum of ≈0.3.

The above observations allow us to speculate that the
transition from N A-B pairs to a single N-partite bosonic
molecule follows the pattern

|1 + 1 + . . .〉 → |2 + 1 + . . .〉 → |3 + 1 + . . .〉
→ . . . → |N〉. (60)

This means that bipartite bosonic particles assemble into a
large bosonic molecule by adding particle by particle into a
single large compound. In this situation one does not observe
creation of two, or more, larger compounds. In the next
subsection we support this hypothesis by showing that the
transition (60) is most energetically favorable. It is worth
adding here that during the transition process (when the
strength of γ is increased) we assume that the system follows
its ground state.

E. Transition from N bipartite composite bosons to a single
bosonic molecule

Before we go into details, let us first discuss an important
property of states |M1 + . . . + Mk〉. They are superpositions
of terms

η
†
j1

. . . η
†
j1+M1−1 . . . η

†
jk

. . . η
†
jk+Mk−1|0〉. (61)

The sequence η
†
ji
. . . η

†
ji+Mi−1 represents the ith compound

made of Mi A-B pairs. There is a possibility that in this
superposition two compounds are next to each other; i.e.,
for η

†
ji
. . . η

†
ji+Mi−1 and η

†
ji+1

. . . η
†
ji+1+Mi+1−1 we have ji+1 =

ji + Mi. Nevertheless, the total number of terms in the super-
position is of the order dk , whereas the number of terms with
adjacent compounds scales as dk−1. Therefore, for d � N one
can assume that almost all terms in the superposition corre-
spond to nonadjacent compounds (nonadjacency assumption).
This leads to

〈M ′
1 + . . . + M ′

k′ |M1 + . . . + Mk〉 = 0 (62)

for two different configurations {M1, . . . , Mk} and
{M ′

1, . . . , M ′
k′ }, although the total numbers of particles in

both configurations are the same.
Let us once more consider the Hamiltonian (40) and esti-

mate its expectation value for a state |M1 + . . . + Mk〉:

〈Heff〉 = 〈Hk〉 + 〈Hp〉, (63)

where we explicitly split the kinetic- and the potential-energy
parts. First, we consider the kinetic part. Under the action of
Hk , the compounds made of more than a single A-B pair split

into smaller compounds, i.e.,

Hkη
†
ji
η

†
ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi−1|0〉

= −J̄η
†
ji−1η

†
ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi−1|0〉

− J̄η
†
ji
η

†
ji+1 . . . η

†
ji+Mi−2η

†
ji+Mi

|0〉, (64)

where J̄ = 2J2/U . Therefore, under the action of Hk the
state |M1 + . . . + Mk〉 changes into superposition of states
|M ′

1 + . . . + M ′
k′ 〉. Interestingly, if there were no single A-B

pairs (Mk > 1) in the original state, then none of the states
|M ′

1 + . . . + M ′
k′ 〉 in the effective superposition is equal to the

original one. Therefore, the nonadjacency assumption implies

〈M1 + . . . + Mk|Hk|M1 + . . . + Mk〉 = 0 if Mk > 1. (65)

Next, assume that in |M1 + . . . + Mk〉 there are r single
A-B pairs. The kinetic-energy term moves these pairs one step
to the right and one step to the left. Recall that the above
state consists of a superposition of all possible (nonadjacent)
configurations of such pairs. Therefore,

〈M1 + . . . + Mk|Hk|M1 + . . . + Mk〉 = −2rJ̄

if Mk−r+1 = . . . = Mk = 1. (66)

This is because each term in |M1 + . . . + Mk〉 can be obtained
from 2r other terms by shifting some A-B pair either one step
to the right or one step to the left.

The expectation value of the potential-energy part is much
easier to evaluate. Under the nonadjacency assumption, we
have

〈M1 + . . . + Mk|Hp|M1 + . . . + Mk〉 = −(N − k)γ̄ , (67)

where γ̄ = 2(γ − J̄ ). This value depends only on the total
number of compounds k, and not on the way the A-B pairs
are distributed between these compounds {M1, . . . , Mk}. As a
result,

〈Heff〉 = −2rJ̄ − (N − k)γ̄ . (68)

Consider two states with the same number of compounds
k, but different number of single A-B pairs, r and r′ < r
(e.g., |3 + 1 + 1〉 and |2 + 2 + 1〉). The corresponding aver-
age energies are −2rJ̄ − (N − k)γ̄ and −2r′J̄ − (N − k)γ̄ .
The average energy is lower for the state that contains more
single A-B pairs. Therefore, only the states of the form
|M + 1 + . . . + 1〉 need to be taken into account during the
transition between |1 + . . . + 1〉 and |N〉, which confirms
our previous hypothesis. For such states, the average energy
equals

〈M + 1 . . . + 1|Heff|M + 1 . . . + 1〉
= −(M − 1)γ̄ − 2(N − M + δM,1)J̄, (69)

where δM,1 is the Kronecker delta.
In Fig. 5 we plot a few of these values for N = 10. The

lowest energy corresponds either to |1 + 1 + . . . + 1〉 or to
|10〉. This observation implies the following conjecture: For
d � N (nonadjacency assumption) the state |1 + 1 + . . . + 1〉
is directly transformed into |N〉 as γ increases. The above
means that the assembly in Fig. 3(b) goes directly to that in
Fig. 3(d), and the assembly in Fig. 3(c) never occurs. Using
the formula (69) one can show that the transition should
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FIG. 5. Plot of the average energy for N = 10 and states |10〉,
|7 + 1 + · · · + 1〉, |3 + 1 + · · · + 1〉, and |1 + 1 + . . . + 1〉. In the
limit d � N for which the no-adjacency assumption is valid the
lowest energy corresponds either to |1 + 1 + . . . + 1〉 or to |10〉,
which suggests that in this case one state is directly transformed into
the other as the strength of the nearest-neighbor interaction increases.

occur for γ̄ /J̄ = 2N/(N − 1), which corresponds to γU/J2 =
2 + 2N/(N − 1). This agrees with plots in Fig. 4. From the
point of view of entanglement analysis, the conjecture implies
that the system of 2N bipartite entangled fermions is directly
transformed into a genuinely multipartite entangled state.

F. Entanglement and correlation function
between fermion pairs

In general, in the ground state |ψ (γ )〉 the N A-B pairs
are correlated. For γ = 0 an effective repulsive interaction
between them, inherent in one-dimensional fermion systems,
leads to particle antibunching (see red dot in Fig. 6). This
repulsive interaction is compensated by a nearest-neighbor
interaction of strength γ = 4J2/U (orange squares)—in this
case the pairs independently occupy the sites of the lattice.
For large interaction strength γ � 4J2/U (blue diamonds) the
pairs become maximally multipartite entangled.

Entanglement has been demonstrated to be useful for the
identification of quantum phase transitions in the extended
one-dimensional Hubbard model [39]. Here, we use the en-
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FIG. 6. Ground state |ψ (γ )〉 = ∑
i< j

√
ωi, jη

†
i η

†
j |0〉 of the effec-

tive Hamiltonian Heff, Eq. (40), for N = 2 fermion pairs and dimen-
sion d = 6. Red dots are the weights ωi, j for γ = 0, orange squares
are for γ = 4J2/U , and blue diamonds are for γ � 4J2/U .

FIG. 7. Entanglement 1 − P1(γ ) between one and N − 1 fermion
pairs as a function of the nearest-neighbor interaction γU/J2. The
simulation is performed for N = 2, 3, and 4, corresponding to the
blue dotted, red dashed, and black solid lines, respectively. The
lattice is of dimension d = 10.

tanglement between fermion pairs to identify the transition be-
tween bunching and antibunching statistics of fermion pairs.

Since fermions are strongly bounded into identical pairs,
which can be considered as hard-core bosons characterized
by their localization j, the corresponding entanglement can
be characterized by the purity

P1(γ ) = Tr
[(

ρ
(1)
i j

)2] =
d−1∑
i j=0

ρ
(1)
i j ρ

(1)
ji (70)

of the single-pair reduced density matrix

ρ
(1)
i j = 1

N
〈ψ (γ )|η†

i η j |ψ (γ )〉. (71)

As in the case of indistinguishable fermions [40], the nor-
malization factor of the reduced density matrix ρ

(1)
i j is 1/N .

Figure 7 shows the entanglement 1 − P1(γ ) between one
pair and the remaining N − 1 pairs. The correlations are
minimized for the interaction γU/J2 = 4. In this interaction
regime, the purity can be expressed analytically:

P1(4J2/U ) = 1

d
+ (d − N )2

d (d − 1)
. (72)

In the limit d → ∞, the ground state corresponds to N
independent pairs (P1(4J2/U ) = 1), where each pair is maxi-
mally entangled. On the other hand, maximal correlations are
reached for γ � 4J2/U , for which

P1(∞) = 1

d
×

⎧⎪⎪⎨
⎪⎪⎩

1 + 2/N2 if d > 2N
1 + 4/N2 if d = 2N
1 + 2/N2 if 2N > d > N + 2

1 if N + 2 � d

. (73)

The entanglement takes its maximum in the limit d → ∞,
where P1(∞) = 0, for which all particles are maximally mul-
tipartite entangled.
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FIG. 8. Second-order correlation function g(2)
γ (i, j) between

fermion pairs localized in sites i and j, as a function of the nearest-
neighbor interaction γU/J2. The system considered has N = 4
fermion pairs and d = 10 sites.

The above has observable consequences in the second-
order correlation function

g(2)
γ (i, j) = 〈ψ (γ )|η†

i η
†
jηiη j |ψ (γ )〉

〈ψ (γ )|η†
i ηi|ψ (γ )〉2

(74)

of the fermion pairs located at positions i and j. The mean
occupations of sites are constant 〈ψ (γ )|η†

i ηi|ψ (γ )〉 = N/d .
In Fig. 8, small nearest-neighbor interaction yields antibunch-
ing between nearest neighbors g(2)

γ (i, i + 1) < 1. For γ =
4J2/U the antibunching is only due to the Pauli exclusion
principle between identical pairs g(2)

4J2/U (i, j) = d (N−1)
N (d−1) ∀i, j

and in the limit d → ∞ the usual boson correlation func-
tion g(2)

bosons = (N − 1)/N is observed. Finally, in the limit of
large interaction g(2)

∞ (i, j) = d (N − |i − j|)/N if |i − j| � N
and g(2)

∞ (i, j) = 0 otherwise. Therefore, bunching dominates
the particle statistics, even for long-range particle correla-
tions since g(2)

∞ (i, j) > 1 for (|i − j|) < N − N/d . Comparing
Figs. 7 and 8, the minimal correlations clearly indicate the
transition between bunching and antibunching statistics.

V. SUMMARY

We studied multifermionic states and showed that, in order
to form a composite boson made of 2N fermions, the system
needs to exhibit genuine 2N-multipartite fermionic entangle-
ment. We tested our results in a specific physical model: In
the ground state of the extended one-dimensional Hubbard
model multipartite composite bosons emerge. In particular,
we focused on which different bosonic assemblies emerge as
the interparticle interaction increases. We solved the problem
analytically for two and four fermions. In the second case we
assumed the strong point interaction limit U � J . For higher
number of fermions, we also considered the strong point inter-
action limit and performed numerical simulations. They con-
firmed that if the nearest-neighbor interactions are strong the

system forms a single multipartite bosonic molecule, whereas
if they are weak the system consists of many bipartite bosonic
particles. Then, we analytically estimated the average energy
for different fermionic assemblies. This lead us to the follow-
ing conjecture: As the nearest-neighbor interaction increases,
it is energetically favorable that the fermions transform from
the state representing many bipartite composite bosons into
the state corresponding to a single multipartite composite
boson, without going through other possible assemblies. This
conjecture should be directly verifiable using the analytical
methods of Lieb and Wu based on the Bethe ansatz [38].
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APPENDIX A

Here we provide a solution to the set of recurrence equa-
tions (28) and (29). The typical equations (28) have a general
solution of the form

αs = Ars
0 + Br−s

0 , (A1)

where r0 and r−1
0 are roots of the following quadratic equation,

r2 + ε

2J
r + 1 = 0, (A2)

and A and B are constants. In addition,

ε = −2J
(
r0 + r−1

0

)
. (A3)

Note that the ground state should be a bound state. Such
states are normalizable, therefore we have the commonly used
constraint lims→±∞ αs = 0. Since r−1

0 is the inverse of r0, the
modulus of one of them is less than 1, whereas the modulus of
the other one is greater than 1. Say, |r0| � 1. Therefore, due
to the normalization constraint we get

αs = Ars
0 (s > 0), (A4)

αs = Br−s
0 (s < 0). (A5)

To determine α0 we plug the above and (A3) into

− ε

2J
α1 = α2 + α0, (A6)

− ε

2J
α−1 = α0 + α−2 (A7)

and obtain

A
(
r2

0 + 1
) = Ar2

0 + α0, (A8)

B
(
r2

0 + 1
) = Br2

0 + α0, (A9)

which imply A = B = α0.
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Finally, we plug the above results into the atypical equa-
tion (29) and obtain

−Ū + r0 + r−1
0 = 2r0, (A10)

where Ū = U/2J , which leads to the following quadratic
equation for r0:

r2
0 + Ū r0 − 1 = 0. (A11)

We get

r0 = − 1
2 (Ū ±

√
Ū 2 + 4). (A12)

Since we assumed |r0| � 1 we choose the solution with a
minus sign and get the final form of the ground state,

αs = A

(√
U 2 + 16J − U

4J

)|s|
, (A13)

and the corresponding energy,

ε = −
√

U 2 + 16J2. (A14)

APPENDIX B

Here we derive the effective Hamiltonian (40). We start
with the original one, (38), which is of the form

H = H0 + Hp + Hnn. (B1)

First, let us consider the Hamiltonian H(1) = JH0 + UHp.
The projector on the ground state of Hp reads

Pg =
∑

j1< j2<···< jN

(
N⊗

n=1

| jn jn〉〈 jn jn|
)

, (B2)

where | jn jn〉 = a†
nb†

n|0〉, and the unitary evolution operator
associated to Hp:

Ug = e−itHp/h̄ = Pge−itEg/h̄ + Pee−itEe/h̄

= Pge−itNU/h̄ + Pee−it (N−1)U/h̄, (B3)

where Pe is the projector on the first excited state which
consists of N − 1 bounded pairs with energy (N − 1)U and
one separated pair with zero energy. In the Master’s thesis
of Cespedes [41] it has been shown that at first order of
perturbation

PgU
(1)
I Pg = − i

h̄

∫ t

0
PgHI (t1)Pgdt1

= − i

h̄

∫ t

0
PgUg(t1)†H0Ug(t1)Pgdt1 = 0, (B4)

since PgH0Pg = 0, and that at second order

PgU
(2)
I Pg = − i

h̄

∫ t

0
PgHI (t1)dt1

∫ t1

0
HI (t2)Pgdt2

= − i

h̄

∫ t

0

∫ t1

0
dt1dt2Pg[Ug(t1)†H0Ug(t1)]

× [Ug(t2)†H0Ug(t2)]Pg

= − i

h̄

∫ t

0

∫ t1

0
dt1dt2PgH2

0Pgei(t2−t1 )U/h̄

= −
(

i

h̄

)2 h̄

iU

(
t + h̄

iU
e−itU/h̄ − 1

)
PgH2

0Pg

U�J≈ i

U h̄
PgH2

0Pg (B5)

where

PgH2
0Pg = −N4J2

d−1∑
k=0

η
†
kηk − 2J2

d−1∑
k=0

(η†
kηk+1 + H.c.)

+ 4J2
d−1∑
k=0

η
†
kηkη

†
k+1ηk+1. (B6)

The effective Hamiltonian H(1) for U � J is given by

H(1)
eff = −N

(
U + 4J2

U

) d−1∑
k=0

η
†
kηk − 2J2

U

d−1∑
k=0

(η†
kηk+1 + H.c.)

+ 4J2

U

d−1∑
k=0

η
†
kηkη

†
k+1ηk+1 (B7)

where we have used that PgHpPg = −NU .
Now let us consider the full Hamiltonian H. At first order

we have

PgHnnPg = −2γ

d−1∑
k=0

η
†
kηkη

†
k+1ηk+1. (B8)

Contributions at second order of Hnn can be neglected be-
cause they depend on γ 2/U � J2/U . Therefore the effective
Hamiltonian for U � J � γ is

Heff = −N

(
U + 4J2

U

) d−1∑
k=0

η
†
kηk − 2J2

U

d−1∑
k=0

(η†
kηk+1 + H.c.)

−
(

2γ − 4J2

U

) d−1∑
k=0

η
†
kηkη

†
k+1ηk+1. (B9)

Since for a fixed number of particles the first term is constant,
we drop it in (40).

APPENDIX C

Recurrence equations (43) and (44) can be solved in basi-
cally the same way as (28) and (29). First, note that (43) is of
the same form as (28), therefore

βs = Brs
0 + Ar−s

0 , (C1)

where A and B are constants and

ε = −2J̄
(
r0 + r−1

0

)
. (C2)

We assume r0 � 1 and since lims→∞ βs = 0 we get A = 0.
Therefore,

βs = Brs
0. (C3)

We plug the above into (44) and obtain(
r0 + r−1

0 − γ̄

2J̄

)
r0 = r2

0 , (C4)
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which leads to

r0 = 2J̄

γ̄
= J̄

γ − J̄
= 1

γU
2J2 − 1

. (C5)

APPENDIX D

Consider the following state of M fermionic A-B pairs
represented by operators η

†
k = a†

kb†
k:

q†N
(M )|0〉, (D1)

where

q†
(M ) = 1√

d

d−1∑
k=0

η
†
kη

†
k+1 . . . η

†
k+M−1. (D2)

We are looking for the parameter

χ
(M )
N = 1

N!
〈0|qN

(M )q
†N
(M )|0〉. (D3)

First, we write

�
†
k = η

†
kη

†
k+1 . . . η

†
k+M−1. (D4)

The above operators obey

�
†
k �

†
k′ = �

†
k′�

†
k , (D5)

�
†
k �

†
k′ = 0 if |k − k′| < M. (D6)

We get

q†N
(M )|0〉 = 1

dN/2

∑
k1,...,kN

�
†
k1

. . . �
†
kN

|0〉

= N!

dN/2

∗∑
k1<...<kN

�
†
k1

. . . �
†
kN

|0〉

≡ N!

dN/2

∗∑
k1<...<kN

|k1, . . . , kN 〉,

where ∗ over the sum denotes that we take into account the
relation (D6). This leads to

χ
(M )
N = N!

dN

∗∑
k1<...<kN

1 = N!

dN

(
N + d − NM

d − NM

)
. (D7)

The binomial coefficient represents the combination with
repetitions. The reason we get this value is the following.
We consider N compounds, each composed of M A-B pairs.
A single compound occupies M positions. In total there are
d positions, therefore after putting N compounds there are
d − NM unoccupied spaces left. Each unoccupied space can
be placed in one of N + 1 possible places: before the first
compound, between the first and the second compounds, . . .,
after the N th compound. Hence, we choose one of d − NM
positions from N + 1 possibilities and the choices can repeat.
In general, a choice of x positions out of y, including repeti-
tions, is given by (x + y − 1

x ).
The formula (D7) can be written as

χ
(M )
N = �N

i=1(d − NM + i)

dN
. (D8)

FIG. 9. The value of the lower bound of
χ

(M )
N+1

χ
(M )
N

for d = 10 000.

Finally, we estimate the ratio
χ

(M )
N+1

χ
(M )
N

:

χ
(M )
N+1

χ
(M )
N

= �N+1
i=1 [d − (N + 1)M + i]

d�N
i=1(d − NM + i)

=
(

1 − (N + 1)(M − 1)

d

)
�N

i=1

(
1 − M

d + i − NM

)
.

(D9)

The above value is upper bounded by 1 and lower bounded by(
1 − (N + 1)(M − 1)

d

)(
1 − M

d + 1 − NM

)N

. (D10)

In the limit d � NM this value approaches 1. In Fig. 9 we
plot the above lower bound for d = 10 000.

APPENDIX E

Let us show that a multifermionic state representing a
single composite boson needs to be genuinely multipartite en-
tangled. We analyze what happens if the state is not genuinely
multipartite entangled. This means that it is separable with
respect to some partition. In the case of fermions separability
implies that we can write it as

c†|0〉 ≡
( ∑

i1,i2,...

wi1,i2,...a
†
i1

a†
i2

. . .

)

×
⎛
⎝ ∑

j1, j2,...

v j1, j2,...a
†
j1

a†
j2

. . .

⎞
⎠|0〉, (E1)

where wi1,i2,... and v j1, j2,... are normalized antisymmetric coef-
ficients corresponding to two partitions, such that

〈0|cc†|0〉 =
∑

i1, i2, . . .
j1, j2, . . .

∣∣wi1,i2,...

∣∣2∣∣v j1, j2,...

∣∣2 = 1. (E2)

For the moment we assume that these partitions can have
an arbitrary number of fermions (here, without the loss of
generality, we drop the division of fermions into A and B).

The main point of our argumentation is the following: If
c†|0〉 represents a single composite boson, then c†2|0〉 repre-
sents two composite bosons and its norm is approximately
2. This is a necessary condition for bosonic creation and
annihilation operators to obey the ladder structure (10). We
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write explicitly

c†2|0〉 =
∑

i1, i2, . . .
i′1, i′2, . . .

(
wi1,i2,...a

†
i1

a†
i2

. . .
)(

wi′1,i
′
2,...

a†
i′1

a†
i′2

. . .
)

×
∑

j1, j2, . . .
j′1, j′2, . . .

(
v j1, j2,...a

†
j1

a†
j2

. . .
)(

v j′1, j′2,...a
†
j′1

a†
j′2

. . .
)|0〉.

For nonoverlapping terms (the ones containing different
fermionic creation operators) we have(

wi1,i2,...a
†
i1

a†
i2

. . .
)(

wi′1,i
′
2,...

a†
i′1

a†
i′2

. . .
)

= x
(
wi′1,i

′
2,...

a†
i′1

a†
i′2

. . .
)(

wi1,i2,...a
†
i1

a†
i2

. . .
)

(E3)

(the same holds for the terms in the other partition). In the
above, x = +1 (x = −1) if the number of fermions in each
partition is even (odd). If x = −1 all the terms cancel and
c†2 = 0. Therefore, we allow only for partitions with an even
number of fermions. We can write

c†2|0〉 = 4
∗∑

i1, i2, . . .
i′1, i′2, . . .
i1 < i′1

(
wi1,i2,...wi′1,i

′
2,...

a†
i1

a†
i2

. . . a†
i′1

a†
i′2

. . .
)

×
∗∑

j1, j2, . . .
j′1, j′2, . . .
j1 < j′1

(
v j1, j2,...v j′1, j′2,...a

†
j1

a†
j2

. . . a†
j′1

a†
j′2

. . .
)|0〉.

The factor of 4 stems from (E3), i.e., the terms corresponding
to products within each partition are counted twice. If there
were s partitions, the overall factor would be 2s. In addition,
the symbol ∗ above the sums indicates that we do not sum
over the terms with overlapping indices. For example, due to
Pauli exclusion we do not sum over the terms corresponding
to w1,4,7,...w2,4,9,..., etc.

We obtain

〈0|c2c†2|0〉 = 16
∗∑

i1, i2, . . .
i′1, i′2, . . .
i1 < i′1

∗∑
j1, j2, . . .
j′1, j′2, . . .
j1 < j′1

(∣∣wi1,i2,...

∣∣2

× ∣∣v j1, j2,...

∣∣2∣∣wi′1,i
′
2,...

∣∣2∣∣v j′1, j′2,...
∣∣2)

. (E4)

The above can be rewritten as

4
∑

i1, i2, . . .
i′1, i′2, . . .

∑
j1, j2, . . .
j′1, j′2, . . .

∣∣wi1,i2,...

∣∣2∣∣v j1, j2,...

∣∣2∣∣wi′1,i
′
2,...

∣∣2∣∣v j′1, j′2,...
∣∣2

− 4ω(∗) = 4[1 − ω(∗)], (E5)

where

ω(∗) =
∗∑∣∣wi1,i2,...

∣∣2∣∣v j1, j2,...

∣∣2∣∣wi′1,i
′
2,...

∣∣2∣∣v j′1, j′2,...
∣∣2

(E6)

and the sum is taken only over terms with overlapping indices.
If the number of modes that can be occupied by fermions
is arbitrarily large and the states of each partition are highly
entangled (e.g., they are the ones discussed in Appendix D),
then the parameter ω(∗) can be arbitrarily small. Therefore,
the norm of c†2|0〉 is approximately 4, not 2. If instead of
two partitions we considered s partitions, the norm would
be approximately 2s. For a proper bosonic behavior we need
s = 1, which implies a genuinely multipartite entangled state.

The norm of c†2|0〉 can be equated to 2, even for s = 2.
This requires ω(∗) = 1/2, i.e., a large number of terms with
overlapping indices (occurring for not very strongly entangled
states). However, the operator c† also needs to recover the
ladder structure for powers higher than 2. If ω(∗) = 1/2,
then 〈0|cN c†N |0〉 
= N! for N > 2. In fact, for a large number
of overlapping terms we get 〈0|cN c†N |0〉 → 0 for relatively
small N. This is the consequence of Pauli exclusion.
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