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Topological states in a non-Hermitian two-dimensional Su-Schrieffer-Heeger model
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A non-Hermitian topological insulator with a real spectrum is interesting in the theory of non-Hermitian
extension of topological systems. We find an experimentally realizable example of a two-dimensional non-
Hermitian topological insulator with a real spectrum. We consider the two-dimensional Su-Schrieffer-Heeger
(SSH) model with gain and loss. We introduce a non-Hermitian polarization vector to explore topological phase
and show that topological edge states in the band gap exist in the system.
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I. INTRODUCTION

The past few years have witnessed a growing amount of
interest in the theory of non-Hermitian extension of topolog-
ical insulators [1,2]. A combination of long-lived quantum
states immune to decoherence and the unique features of non-
Hermitian systems make non-Hermitian topological systems
a promising platform for future applications in quantum tech-
nology. One cannot directly generalize the standard theory of
topological insulators to non-Hermitian systems since they do
not always have real eigenvalues and orthogonal eigenstates.
Furthermore, exceptional points (EPs), where at least two
eigenstates coalesce, can appear only in non-Hermitian sys-
tems [3] and can lead to new topological features. This field
of study is still in its infancy and non-Hermitian topological
phases have been mainly investigated in one-dimensional
(1D) topological systems such as Su-Schrieffer-Heeger (SSH)
lattices [4–18], Aubry-Andre chain [19], and Kitaev model
[20–24], in which non-Hermiticity is obtained by introducing
asymmetric tunneling amplitudes and/or gain-loss.

The standard bulk-boundary correspondence does not
work in non-Hermitian systems [25–32]. The so-called non-
Hermitian skin effect arises when the topological lattice has
asymmetric tunneling amplitudes. In this case, bulk states as
well as topological states are localized near edges. In contrast
to Hermitian systems, topological phase transition points can-
not be determined by the translationally invariant form of the
non-Hermitian Hamiltonian. We stress that topological phase
transition can also be induced solely by gain and loss [33].
Recently, the idea of pseudotopological insulators has been
introduced to explain topological edge states for massive SSH
Hamiltonian [34].

There is a fundamental difference between the Hermitian
and non-Hermitian one-dimensional (1D) topological insulat-
ing systems. In topologically nontrivial Hermitian systems,
edge states disappear when the band gap is closed. However,
edge states may acquire an imaginary energy gap in non-
Hermitian systems. The complex topological state can be used
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to generate spontaneous topological pumping [35] and topo-
logical lasing [36,37]. The existence of complex topological
states in non-Hermitian systems has applications in lasing and
is of special importance, yet it is a nontrivial task is to find
topological edge states with real eigenvalues in non-Hermitian
systems. It was theoretically shown in Ref. [19] that such
states exist in a complex extension of the Aubry-Andre model.
Topological zero-energy edge state in a 1D photonic lattice
was experimentally realized [38]. However, no non-Hermitian
topological system with real spectrum has been found in the
literature in two dimensions (2D) [39–51]. It is tempting to
find topological systems with real eigenvalues in 2D. In this
paper, we consider the two-dimensional Su-Schrieffer-Heeger
(SSH) model with gain and loss, which can be experimentally
realized with current technology in photonics. In the absence
of gain and loss, a nontrivial topological phase was shown
to exist even if the Berry curvature is zero [52,53]. In the
presence of gain and loss, we show that the system can have
real valued energy eigenvalues for all bulk and topological
states. We introduce complex polarization vector and discuss
topological invariant in our non-Hermitian system.

II. THE 2D SSH MODEL

Consider the 2D Su-Schrieffer-Heeger model with gain
and loss, which describes a non-Hermitian square lattice
with alternating tunneling amplitudes in each direction. The
tunneling amplitudes in horizontal and vertical directions are
assumed to be alternating between ω and ν, as shown in Fig. 1.
There are four sites in the unit cell and one can add gain
and loss in the unit cell. The non-Hermitian Hamiltonian we
consider is given by

H =
∑
i, j

�i a†
i+1, j ai, j + � j a†

i, j+1 ai, j

+ i
∑
i, j

γi j a†
i, j ai, j + H.c., (1)

where a†
i, j and ai, j are the creation and annihilation operators

at the site (i, j), respectively, �i, j = t + (−1)i, j δ, t > 0 is the
reference tunneling amplitude, and δ < t is a constant, which
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FIG. 1. A square lattice with alternating tunneling amplitudes ω

and ν in each direction. Black circles have gain while unfilled circles
have loss. The corresponding non-Hermitian Hamiltonians are given
by (3). The gain and loss impurities alternate only in the horizontal
(x) direction in panel (a) while they alternate in both horizontal and
vertical (y) directions in panel (b). The corresponding energy bands
can be real for panel (a) unless the non-Hermitian degree does not
exceed a critical number. However, they are complex for panel (b) for
any nonzero value of the non-Hermitian degree.

are related to the tunneling amplitudes through ω = t − δ

and ν = t + δ and the real valued parameters γi j describe
gain-loss strengths at the lattice sites i, j. We consider that
the system is periodic and hence the gain-loss strengths in the
unit cell are given by {γ1, γ2, γ3, γ4}. Here, we assume that
the gain and loss in the system is balanced, which implies
γ1 + γ2 + γ3 + γ4 = 0.

The gain and loss can be arranged in various ways in
the unit lattice. Figure 1 depicts two such configurations
where black and white circles denote gain and loss impuri-
ties. The non-Hermitian strengths in the unit cell are given
by {γ ,−γ , γ ,−γ } and {−γ , γ , γ ,−γ } for 1(a) and 1(b),
respectively, where γ is a constant. In both cases, the systems
have balanced gain and loss. We stress that the reality of the
spectrum depends sensitively on the gain and loss arrange-
ments in the system.

Applying the Fourier transformation, we get the matrix
form of the Hamiltonian in the k-space

H =

⎛
⎜⎜⎜⎜⎝

iγ1 ω + νe−ikx ω + νe−iky 0

ω + νeikx iγ2 0 ω + νe−iky

ω + νeiky 0 iγ3 ω + νe−ikx

0 ω + νeiky ω + νeikx iγ4

⎞
⎟⎟⎟⎟⎠.

(2)

To study symmetry properties of the two choices in Fig. 1, we
rewrite the corresponding Hamiltonians using the Pauli spin
matrices. If we specify the gain and loss strengths in the unit
cell, we get

H1 = H0 + i γ I ⊗ σz,

H2 = H0 − i γ τz ⊗ σz, (3)

where I is the identity matrix and their Hermitian part H0

reads

H0 = (ω + ν cos kx ) I ⊗ σx − ν sin kx I ⊗ σy

+ (ω + ν cos ky) τx ⊗ I + ν sin ky τy ⊗ I. (4)

FIG. 2. Imaginary part of energy eigenvalue for the system de-
picted in Fig. 1(a) at γ = 1 (a) and Fig. 1(b) at γ = 0.2 (b). The
tunneling amplitudes are given by ν = 1 and ω = 0.5. The system in
panel (a) has a real spectrum unless γ > |ν − ω| while the system in
panel (b) has a complex spectrum whenever γ �= 0.

The Hermitian Hamiltonian H0 has both inversion and time-
reversal symmetries, which lead to zero Berry curvature ev-
erywhere in the Brillouin zone, except at band-gap closing
points. Note that the inversion operator inverts momenta
k → −k and is given by τx ⊗ σx. The time-reversal operator
reads T = I ⊗ I K, where K is the complex conjugation
operator. The inversion symmetry remains intact only for the
non-Hermitian Hamiltonian H2. However, the time-reversal
symmetry is lost for both H1 and H2. It is interesting
to see that only H1 has combined parity-time symmetry
PT = τx ⊗ σx K. Therefore, energy bands for H1 are real-
valued unless the PT symmetry is spontaneously broken.
To this end, we note that both H1 and H2 have particle-
hole symmetry C = τz ⊗ σz K. This implies that energy
eigenvalues are symmetric with respect to the zero energy
line.

Let us now study their spectra. There are four energy bands
since there are four sites in the unit cell. In the absence of
gain and loss, the lowest and highest bands are isolated while
the middle two bands touch each other at momenta (0,0),
(∓π,∓π ) and (±π,∓π ). The band gap between the lowest
(highest) two bands decreases with decreasing |ω − ν| and
closes at ω = ν, where all four bands touch at the edges of
the Brillouin zone. This is a signature of topological phase
transition. In the non-Hermitian case, the gain and loss ar-
rangements in the lattice plays a vital role on the reality of the
spectrum. The non-Hermitian Hamiltonian H1 has complex
eigenvalues when |γ | > γc = |ν − ω| while H2 has complex
eigenvalues for any nonzero value of γ . In Figs. 2(a) and 2(b),
we plot the imaginary parts of energy eigenvalues for H1 at
γ = 1 > γc and H2 at γ = 0.2, respectively. Below, we will
focus on H1 as we are interested in finding topological states
with real eigenvalues. In this case, increasing γ at fixed ω

and ν decreases the band gap between the lowest (highest)
two bands and close them at the edges of the Brillouin zone
at γ = γc. Beyond this value, complex eigenvalues appear
around the band edges. We see that the imaginary part of the
eigenvalues in k-space has the shape of half-elliptic cylinder
identically centered at kx = ∓π , as can be seen from Fig. 2(a).
Its length is fixed to 2π in the ky direction but its semiaxis in
the kx direction increases with increasing γ . For large values
of γ , these two shapes merge and then the spectrum becomes
complex valued in the whole k-space. To understand band
gap opening and closing better, let us now vary ω at fixed
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ν and γ . The system is gapped and has real eigenvalues for
large values of ω. The band gap is decreased with decreasing
ω and the two bands are closed at ω = ν + γ . In this case,
exceptional points occur at the band edges. If we decrease
ω further, the band gap does not reopen. Instead, exceptional
points (which separate the region of complex and real-valued
eigenvalues in k-space) move in the k-space until ω = ν −
γ , at which a pair of exceptional points annihilate each
other and the spectrum becomes real valued again. Generally
speaking, one cannot explore topological phase transition in
a non-Hermitian system just by studying band-gap closing
and reopening. To study topological features in the system,
we need to find the corresponding topological invariant. In
the absence of gain and loss, the Berry curvature vanishes
due to inversion and time-reversal symmetries. In the presence
of gain and loss, time-reversal symmetry is broken for both
H1 and H2. However, this does not necessarily mean that
the Chern number is quantized to be an integer multiple.
Generally speaking, the standard definition of Chern number
does not work in non-Hermitian systems. So, we need to
introduce a new topological number. Below, we study this
issue.

III. COMPLEX POLARIZATION VECTOR

The polarization (electric dipole moment per unit volume)
in a periodical potential such as a solid is not uniquely de-
fined, which leads to ambiguity for the value of the dielectric
displacement field. Fortunately, not the absolute value but the
change in polarization can be measured in a real experiment.
In 1993 [54], King-Smith and Vanderbilt formulated the po-
larization vector. The polarization vector is also of special
importance in the theory of topological insulators [55]. In
Refs. [52,53], the authors used a polarization vector to discuss
the topological phase in a 2D Hermitian SSH system, where
the Berry curvature is zero. Unfortunately, the standard polar-
ization vector is not quantized in our non-Hermitian system,
where inversion and time-reversal symmetries are broken. In
fact, one cannot directly apply the Hermitian polarization vec-
tor to a non-Hermitian system because of the nonorthogonal
character of eigenstates in non-Hermitian systems. Our aim is
to find its complex generalization.

Let us introduce the left-right and right-left non-Hermitian
polarization vectors. The contributions from the nth band
read

PLR
n = e

(2π )2

∫
dkxdky

〈
ψL

n

∣∣ i∂k|ψR
n

〉
,

PRL
n = e

(2π )2

∫
dkxdky

〈
ψR

n

∣∣ i∂k
∣∣ψL

n 〉, (5)

where the integral is taken over the 2D Brillouin zone, n labels
the band index, and |ψR

n 〉, |ψL
n 〉 are the normalized right and

left eigenvectors of the Hamiltonian, which form a biorthog-
onal basis 〈ψL

n |ψR
m〉 = δnm. Below, we set the charge e = 1.

Note that inversion and time-reversal symmetries are not
required in the calculation of the non-Hermitian polarization
vector. We assume that the band is gapped. The non-Hermitian
polarization vector is not well defined at the EP since 〈ψL

n |ψR
n 〉

vanishes at the EP.

FIG. 3. The spectra for the Hermitian system periodic along the
x direction has Ny = 52 sites in the y direction. The parameters
are ω = 1, ν = 2 (a) and ω = 2 ν = 1 (b). Topological edge states
appear in the band gap in panel (a).

Using the condition 〈ψL
n |ψR

n 〉 = 1, one can see that
〈ψL

n |i∂kψ
R
n 〉 = −〈i∂kψ

L
n |ψR

n 〉 = (〈ψR
n |i∂kψ

L
n 〉)�. This implies

that PLR
n = (PRL

n )�. As a result, we define the real-valued
total non-Hermitian polarization vector in a two-dimensional
non-Hermitian gapped system as

P =
occ∑
n

PLR
n + PRL

n

2
, (6)

where the summation is over the occupied states.
We calculate the non-Hermitian polarization vector for the

lowest-lying eigenstate of the Hamiltonian H1. It is quantized
and equal to P1 = (1/2, 1/2) for ν > ω + |γ | and (0,0) for
otherwise. We can define the two-dimensional complex Berry
(Zak) phase for the nth band as 2πPn. It is quantized and a
topological invariant. In other words, adiabatic deformations
of the Hamiltonian H1 do not change it as long as the band
gap is preserved. To this end, we note that the imaginary
parts of PRL

n cancel each other for the first (and last) two
bands in pairs and their sum is also quantized. We get
PLR

1 + PLR
2 = (1, 1) and PLR

3 + PLR
4 = 1 for ν > ω + |γ |. In

Ref. [44], four different gauge-invariant Berry curvatures are
constructed using the combination of right and left eigenstates
and the corresponding four Chern numbers are shown to be
equal to each other. The above complex polarization vector
is different from the complex Chern number introduced in
Ref. [44].

Having discussed the topological invariant, we are now in
position to study topological edge states. To see them, we plot
the energy spectra for a ribbon periodic along the x direction
and N = 52 sites in the y direction. Consider first the Hermi-
tian case γ = 0. The energy spectra of the Hermitian system
for the nontrivial (ω = 1, ν = 2) and trivial (ω = 2, ν = 1)
phases are displayed in Figs. 3(a) and 3(b), respectively. As
can be seen from the figure, there is a distinguishing difference
between them. The two energy curves within the band gaps
appear in the topologically nontrivial case [Fig. 3(a)], while
no such curves exist in the trivial case [Fig. 3(b)]. They are, in
fact, for the topological edge states. The edge states are doubly
degenerate, so there are four topological edge states.

Suppose next that γ �= 0. The complex polarization vector
predicts the appearance of topological edge states. We per-
form a numerical computation to plot the spectrum for the
same nontrivial system described above but with γ = 0.5,
γ = 1, and γ = 1.5 in Fig. 4. One can see the topological
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FIG. 4. The non-Hermitian system H1 periodic along the x
direction has Ny = 52 sites in the y direction for ω = 1 ν = 2.
The real part of the energy band for γ = 0.5 (a), γ = 1 (b), and
γ = 1.5 (c) and the corresponding imaginary part for γ = 1.5 (d).
The spectrum becomes complex when γ > 1.

edge states in the band gap for all three cases. These are
doubly degenerate real-valued topological states. Generally
speaking, periodical and open boundary conditions do not
predict the same critical point γc for the transition from real
to complex spectrum in a non-Hermitian topological system.
Fortunately, this is not the case here. Therefore, the spectra
are real in Figs. 4(a) and 4(b) while it is complex around
band edges in Fig. 4(c). One can also see that the spectra are

symmetric with respect to the E = 0 line. This is because of
the particle-hole symmetry of the system.

There is a fundamental difference between the Hermitian
and non-Hermitian systems. In the Hermitian SSH, topolog-
ical edge states disappear whenever the band gap is zero,
which occurs at ν = ω. However, this is not the case in the
non-Hermitian system. At γ = γc = |ν − ω|, the gap vanishes
at kx = ∓π , as can be seen from Fig. 4(b). In other words,
exceptional points occur at γ = γc and kx = ∓π . Topological
edge states still exist even if γ > γc, as can be seen from
Fig. 4(c). They have purely imaginary eigenvalues in between
kx ∈ [∓π,∓kc], where kc increases with γ . For very large
values of the non-Hermitian strength, γ > ν + ω, the eigen-
values become purely imaginary in the whole kx-space. The
complex Zak phase based on the non-Hermitian polarization
vector predicts the appearance of topological edge states
correctly as long as γ � γc. However, it does not work if
γ > γc since the band gap is closed in this case. Note that
the non-Hermitian polarization vector works only for gapped
Hamiltonian. To this end, we say that topological edge states
appear also for the other Hamiltonian H2, but they have purely
imaginary eigenvalues. This means that it can be used as a
prototype for topological laser in 2D.

To sum up, we have studied a non-Hermitian square
lattice, which can be experimentally realized in photon-
ics using waveguides. The corresponding Hamiltonian is a
complex extension of the 2D SSH Hamiltonian. We have
shown that topological edge states with real eigenvalues ap-
pear in the system as long as the non-Hermitian strength
is below than a critical value. We have introduced a non-
Hermitian polarization vector, which predicts the topological
edge states when the spectrum is real. We have shown that
topological edge states survive even when the Hamiltonian is
gapless.

[1] A. Ghatak and T. Das, J. Phys.: Condens. Matter 31, 263001
(2019).

[2] V. M. Martinez Alvarez, J. E. Barrios Vargas, M. Berdakin,
and L. E. F. Foa Torres, Eur. Phys. J. Special Topics 227, 1295
(2018).

[3] T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1966).

[4] L. Jin, Phys. Rev. A 96, 032103 (2017).
[5] C. Yin, H. Jiang, L. Li, R. Lu, and S. Chen, Phys. Rev. A 97,

052115 (2018).
[6] C. Yuce, Phys. Rev. A 98, 012111 (2018).
[7] C. Yuce and Z. Oztas, Sci. Rep. 8, 17416 (2018).
[8] S. K. Gupta et al., arXiv:1803.00794.
[9] L. Jin, P. Wang, and Z. Song, Sci. Rep. 7, 5903 (2017).

[10] K. Ding, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 92, 235310
(2015).

[11] C. W. Ling, K. H. Choi, T. C. Mok, Z. Q. Zhang, and K. H.
Fung, Sci. Rep. 6, 38049 (2016).

[12] L.-J. Lang, Y. Wang, H. Wang, and Y. D. Chong, Phys. Rev. B
98, 094307 (2018).

[13] M. Pan, H. Zhao, P. Miao, S. Longhi, and L. Feng, Nat.
Commun. 9, 1308 (2018).

[14] X. Z. Zhang and Z. Song, Phys. Rev. A 99, 012113 (2019).

[15] B. X. Wang and C. Y. Zhao, Phys. Rev. B 98, 165435 (2018).
[16] S. Lieu, Phys. Rev. B 97, 045106 (2018).
[17] Z.-Z. Li, X.-S. Li, L.-L. Zhang, and W.-J. Gong,

arXiv:1901.10688.
[18] B. Midya and L. Feng, Phys. Rev. A 98, 043838 (2018).
[19] C. Yuce, Phys. Lett. A 379, 1213 (2015).
[20] C. Yuce, Phys. Rev. A 93, 062130 (2016).
[21] C. Li, X. Z. Zhang, G. Zhang, and Z. Song, Phys. Rev. B 97,

115436 (2018).
[22] M. Klett, H. Cartarius, D. Dast, J. Main, and G. Wunner, Phys.

Rev. A 95, 053626 (2017).
[23] K. Kawabata, Y. Ashida, H. Katsura, and M. Ueda, Phys.

Rev. B 98, 085116 (2018).
[24] H. Menke and M. M. Hirschmann, Phys. Rev. B 95, 174506

(2017).
[25] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa

Torres, Phys. Rev. B 97, 121401(R) (2018).
[26] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,

Phys. Rev. Lett. 121, 026808 (2018).
[27] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[28] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[29] C. Yuce, Phys. Rev. A 97, 042118 (2018).

032102-4

https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevA.96.032103
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.97.052115
https://doi.org/10.1103/PhysRevA.98.012111
https://doi.org/10.1103/PhysRevA.98.012111
https://doi.org/10.1103/PhysRevA.98.012111
https://doi.org/10.1103/PhysRevA.98.012111
https://doi.org/10.1038/s41598-018-35795-5
https://doi.org/10.1038/s41598-018-35795-5
https://doi.org/10.1038/s41598-018-35795-5
https://doi.org/10.1038/s41598-018-35795-5
http://arxiv.org/abs/arXiv:1803.00794
https://doi.org/10.1038/s41598-017-06198-9
https://doi.org/10.1038/s41598-017-06198-9
https://doi.org/10.1038/s41598-017-06198-9
https://doi.org/10.1038/s41598-017-06198-9
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1038/srep38049
https://doi.org/10.1038/srep38049
https://doi.org/10.1038/srep38049
https://doi.org/10.1038/srep38049
https://doi.org/10.1103/PhysRevB.98.094307
https://doi.org/10.1103/PhysRevB.98.094307
https://doi.org/10.1103/PhysRevB.98.094307
https://doi.org/10.1103/PhysRevB.98.094307
https://doi.org/10.1038/s41467-018-03822-8
https://doi.org/10.1038/s41467-018-03822-8
https://doi.org/10.1038/s41467-018-03822-8
https://doi.org/10.1038/s41467-018-03822-8
https://doi.org/10.1103/PhysRevA.99.012113
https://doi.org/10.1103/PhysRevA.99.012113
https://doi.org/10.1103/PhysRevA.99.012113
https://doi.org/10.1103/PhysRevA.99.012113
https://doi.org/10.1103/PhysRevB.98.165435
https://doi.org/10.1103/PhysRevB.98.165435
https://doi.org/10.1103/PhysRevB.98.165435
https://doi.org/10.1103/PhysRevB.98.165435
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevB.97.045106
https://doi.org/10.1103/PhysRevB.97.045106
http://arxiv.org/abs/arXiv:1901.10688
https://doi.org/10.1103/PhysRevA.98.043838
https://doi.org/10.1103/PhysRevA.98.043838
https://doi.org/10.1103/PhysRevA.98.043838
https://doi.org/10.1103/PhysRevA.98.043838
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1103/PhysRevA.93.062130
https://doi.org/10.1103/PhysRevA.93.062130
https://doi.org/10.1103/PhysRevA.93.062130
https://doi.org/10.1103/PhysRevA.93.062130
https://doi.org/10.1103/PhysRevB.97.115436
https://doi.org/10.1103/PhysRevB.97.115436
https://doi.org/10.1103/PhysRevB.97.115436
https://doi.org/10.1103/PhysRevB.97.115436
https://doi.org/10.1103/PhysRevA.95.053626
https://doi.org/10.1103/PhysRevA.95.053626
https://doi.org/10.1103/PhysRevA.95.053626
https://doi.org/10.1103/PhysRevA.95.053626
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevB.98.085116
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevB.97.121401
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevA.97.042118
https://doi.org/10.1103/PhysRevA.97.042118
https://doi.org/10.1103/PhysRevA.97.042118
https://doi.org/10.1103/PhysRevA.97.042118


TOPOLOGICAL STATES IN A NON-HERMITIAN … PHYSICAL REVIEW A 100, 032102 (2019)

[30] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,
Phys. Rev. Lett. 118, 040401 (2017).

[31] L. Jin and Z. Song, Phys. Rev. B 99, 081103(R) (2019).
[32] K. Yokomizo and S. Murakami, Phys. Rev. Lett. 123, 066404

(2019).
[33] K. Takata and M. Notomi, Phys. Rev. Lett. 121, 213902 (2018).
[34] C. Yuce, Phys. Let. A 383, 248 (2019).
[35] C. Yuce, Phys. Rev. A 99, 032109 (2019).
[36] G. Harari et al., Science 359, eaar4003 (2018).
[37] Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa,

Commun. Phys. 1, 86 (2018).
[38] S. Weiman et al., Nat. Mater. 16, 433 (2017).
[39] Z. Oztas and C. Yuce, Phys. Rev. A 98, 042104 (2018).
[40] M. Kremer, T. Biesenthal, L. J. Maczewsky, M. Heinrich, R.

Thomale, and A. Szameit, Nat. Commun. 10, 435 (2019).
[41] X.-Y. Zhu, S. K. Gupta, X.-C. Sun, C. He, G.-X. Li, J.-H. Jiang,

X.-P. Liu, M.-H. Lu, and Y.-F. Chen, Opt. Express 26, 24307
(2018).

[42] K. Kawabata, K. Shiozaki, and M. Ueda, Phys. Rev. B 98,
165148 (2018).

[43] R. Wang, X. Z. Zhang, and Z. Song, Phys. Rev. A 98, 042120
(2018).

[44] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402
(2018).

[45] Z. Ozcakmakli Turker and C. Yuce, Phys. Rev. A 99, 022127
(2019).

[46] H. Wang, J. Ruan, and H. Zhang, Phys. Rev. B 99, 075130
(2019).

[47] J. C. Budich, J. Carlstrom, F. K. Kunst, and E. J. Bergholtz,
Phys. Rev. B 99, 041406(R) (2019).

[48] K. Moors, A. A. Zyuzin, A. Y. Zyuzin, R. P. Tiwari, and T. L.
Schmidt, Phys. Rev. B 99, 041116(R) (2019).

[49] K. Luo, J. Feng, Y. X. Zhao, and R. Yu, arXiv:1810.09231.
[50] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Phys.

Rev. B 99, 121101(R) (2019).
[51] Z. Yang and J. Hu, Phys. Rev. B 99, 081102(R) (2019).
[52] F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803

(2017).
[53] F. Liu, H. Y. Deng, and K. Wakabayashi, Phys. Rev. B 97,

035442 (2018).
[54] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651(R)

(1993).
[55] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).

032102-5

https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevB.99.081103
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1103/PhysRevLett.121.213902
https://doi.org/10.1016/j.physleta.2018.10.024
https://doi.org/10.1016/j.physleta.2018.10.024
https://doi.org/10.1016/j.physleta.2018.10.024
https://doi.org/10.1016/j.physleta.2018.10.024
https://doi.org/10.1103/PhysRevA.99.032109
https://doi.org/10.1103/PhysRevA.99.032109
https://doi.org/10.1103/PhysRevA.99.032109
https://doi.org/10.1103/PhysRevA.99.032109
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1103/PhysRevA.98.042104
https://doi.org/10.1103/PhysRevA.98.042104
https://doi.org/10.1103/PhysRevA.98.042104
https://doi.org/10.1103/PhysRevA.98.042104
https://doi.org/10.1038/s41467-018-08104-x
https://doi.org/10.1038/s41467-018-08104-x
https://doi.org/10.1038/s41467-018-08104-x
https://doi.org/10.1038/s41467-018-08104-x
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevB.98.165148
https://doi.org/10.1103/PhysRevA.98.042120
https://doi.org/10.1103/PhysRevA.98.042120
https://doi.org/10.1103/PhysRevA.98.042120
https://doi.org/10.1103/PhysRevA.98.042120
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevA.99.022127
https://doi.org/10.1103/PhysRevA.99.022127
https://doi.org/10.1103/PhysRevA.99.022127
https://doi.org/10.1103/PhysRevA.99.022127
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
http://arxiv.org/abs/arXiv:1810.09231
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442

