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Electro-optical sampling has been recently used to perform spectrally resolved measurements of electro-
magnetic vacuum fluctuations and it has been predicted it could be used to probe the population of virtual
photons predicted to exist in the ground state of an ultrastrongly light-matter coupled system. In order to
understand which information on the ground state of an interacting system can be acquired thanks to this
technique, in this Rapid Communication we will develop the quantum theory of electro-optical sampling
in arbitrary dispersive dielectrics. Our theory shows that a measure of the time correlations of the vacuum
fluctuations effectively implements an ellipsometry measurement on the quantum vacuum, allowing one to access
the frequency-dependent dielectric function without the need of any resonant incoming photon. We discuss
consequences of these results on the possibility to use electro-optical sampling to access the virtual photon
population.
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I. INTRODUCTION

The Heisenberg uncertainty principle constrains an oscil-
lator in its ground state to have a finite kinetic energy. In
the context of quantum electrodynamics this leads to the
picture of an empty space populated by random fluctuations of
quantum nature. The effect of quantum vacuum fluctuations
(QVFs) can be most easily recognized in any spontaneous
radiation process. Sending excited atoms flying in a photonic
cavity and using subwavelength imaging to pinpoint the lo-
cation of photon emission, the spatial distribution of QVFs
was thus directly measured [1]. A different approach relies
on the nonlinear effect QVFs can have upon light propagating
into a medium. A detection scheme based on electro-optical
sampling has been successfully used to measure both the
intensity of the electric field in the vacuum [2–5] and its time-
and space-dependent correlation function [6].

Such a technique could a priori reveal itself a useful tool to
investigate the ground state properties of interacting systems,
but to which point it can be used to probe the structure of
the quantum vacuum is presently unknown. In particular, in
Ref. [6] it is suggested that spectrally resolved electro-optical
sampling of QVFs could provide a first direct evidence of the
presence of virtual photons in the ground state of a system
in the ultrastrong light-matter coupling regime [7,8]. In this
regime the strength of the light-matter interaction is large
enough to hybridize the uncoupled electromagnetic vacuum
|0〉 with excited states, leading to a novel coupled polaritonic
ground state |P〉. The form of such a coupled ground state
was initially calculated analytically in Ref. [9], showing it
has the form of a two-mode squeezed vacuum, containing a
population of virtual photons. Those virtual photons, localized
in proximity of the quantum emitter [10,11], can become real
and be radiated when the system parameters are modulated in
time [12–17], an effect reminiscent of the dynamical Casimir
effect [18]. Notwithstanding a remarkable interest, both theo-
retical [19–23] and experimental [24–30] in the physics and

phenomenology of the ultrastrong coupling regime, for the
moment no direct evidence of the virtual photons has been
obtained.

In order to clarify which features of the quantum vac-
uum can be measured using electro-optical sampling, and
in particular if we can use it to directly measure ground-
state virtual photons, in this Rapid Communication we will
develop the quantum theory of spectrally resolved electro-
optical sampling of QVFs in dispersive linear materials. Using
such a theory we will be able to demonstrate that the time-
dependent correlation function of the QVF, once normalized
over the free-space vacuum value, provides access to the
spectrally resolved dielectric function. On the one hand, this
implies such a technique can be used to perform ellipsometry
characterization of linear optical properties without the need
of a resonant probe beam. On the other hand, the fact that
all the quantities accessible with such a measurement can
generally also be accessed by linear-optical techniques, raises
doubts on the possibility of using it as a direct test for the
presence of virtual photons.

II. ELECTRO-OPTICAL SAMPLING OF QVFs

Electro-optical sampling consists in mixing an intense,
linearly polarized, subcycle probe pulse with a weak field
perpendicular to it, allowing one to observe the rotation
induced by the weak field on the polarization of the probe.
We will consider an orthogonal axis system as in Fig. 1, in
which x is the direction of beam propagation and the probe is
polarized along z, and considering the nonlinear crystal to be
oriented such that the quantity measured is the y component
of the electric field. The operator corresponding to such a
measurement is the electro-optical operator [2].

Ŝeo(t ) =
∑

k

√
Ch̄�k

2ε0εrV
[âkR(�k )e−i�kt − H.c.], (1)
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FIG. 1. Sketch of the electro-optical sampling measurement con-
sidered in this Rapid Communication. Two linearly polarized subcy-
cle probe pulses �Ep(t ) propagate in a nonlinear crystal with a delay
τ . Due to the nonlinearity each pulse interacts with the QVF of the
field in the orthogonal polarization �Ev (t ).

where the sum is over all the y-polarized paraxial modes
of wave vector k and frequency �k = ck√

εr
, with annihilation

operator âk , and R(�) is a low-pass filter, dependent on the
phase-matching condition of the nonlinear process and pro-
portional to the spectral autocorrelation function of the probe
beam. The relative dielectric permittivity of the nonlinear
crystal is εr and H.c. stands for Hermitic conjugate. The
volume V = LS in Eq. (1) depends on the transversal surface
of the probe beam (S) and the paraxial quantization length
(L), and C is a function depending both on the probe beam
and on the electro-optical crystal used. In the ground state the
expectation value of Ŝeo(t ) vanishes, and information has thus
to be extracted by its higher order moments. If the measure is
repeated after a short delay τ , such a technique can then give
us access to the time-dependent correlation function

Ĝeo(τ ) = − 1

2C
{Ŝeo(t + τ ), Ŝeo(t )}, (2)

where {·, ·} indicates the anticommutator. Its expectation
value in the electromagnetic vacuum âk |0〉 = 0 reads

〈0| Ĝeo(τ ) |0〉 =
∑

k

h̄�k

2ε0εrV
|R(�k )|2 cos(�kτ ), (3)

and its spectral representation, supposing a macroscopic crys-
tal, can be calculated by integrating over the continuum of
paraxial modes as

〈0| Ĝeo(ω) |0〉 = h̄|ω|
4ε0

√
εrcS

|R(ω)|2, (4)

which is the quantity measured in Ref. [6], while its frequency
integral, corresponding to setting τ = 0 in Eq. (3), was ini-
tially measured in Ref. [3] using a single probe pulse.

III. QVFs IN DISPERSIVE MEDIA

We will now consider the case of a linear, local dielectric
material characterized by an arbitrary dielectric function ε(ω).
The polaritonic formalism we will use can be extended to both
lossy [31] and inhomogeneous [32] dielectrics, allowing one
to describe various resonator technologies [33], but in order
to keep the notation as simple and clear as possible, we will
focus here on a homogeneous and lossless material, with ε(ω)
symmetric and real over the whole real axis. We notice that
in Ref. [31] it was demonstrated that losses have a limited
impact on the structure of the ground state in linear dielectric
systems anyway. Although our analytical results are derived
for a generic dielectric function, for the sake of definiteness
we will use as an example the case of a single optically
active Lorentz oscillator of frequency ωx and vacuum Rabi
frequency g,

εL(ω) = εr

(
1 − 4g2

ω2 − ω2
x

)
. (5)

A linear dielectric can be described by a quadratic bosonic
Hamiltonian, and it can thus be diagonalized in terms of a set
of free polaritonic modes [34]

Ĥ =
∑
k,μ

h̄ωk,μ p†
k,μ

pk,μ, (6)

which satisfy bosonic commutation relations

[pk,μ, p†
k′,μ′ ] = δk,k′δμ,μ′ , (7)

where [·, ·] indicates the commutator. The index μ runs over
all the polaritonic branches at a fixed wave vector, whose
number depends on the exact form of ε(ω). In the case of the
Lorentz dielectric function in Eq. (5), μ = ± indexes the two
polaritonic branches, whose dispersions ωk,± are shown in
Fig. 2(a). We notice here that the coupling opens a polaritonic
gap in the system spectrum, where no propagative modes
exist.

The bare photonic operators can then be written as linear
superpositions of the polaritonic ones:

âk =
∑

μ

[X̄k,μ p̂k,μ − Zk,μ p̂†
k,μ

], (8)

where the bosonicity of the polariton and photon operators im-
poses the normalization condition on the Hopfield coefficients∑

μ

(|Xk,μ|2 − |Zk,μ|2) = 1, (9)

which also obey gauge invariance conditions

�k (Xk,μ + Zk,μ) = ωk,μ(Xk,μ − Zk,μ). (10)

The operator describing the y-polarized component of the
paraxial electromagnetic field can now be written in terms of
the polaritonic operators as

Ev (t ) =
∑
k,μ

√
−h̄�k

2ε0V
[(X̄k,μ + Z̄k,μ) p̂k,μe−iωk,μt − H.c.].

(11)
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FIG. 2. (a) Dispersion of the upper (blue) and lower (red) po-
laritonic branches obtained with the Lorentz dielectric function in
Eq. (5), for g = 0.5ωx . The diagonal dashed black line denotes the
bare photonic mode �k . (b) The green line represents the normalized
result of the electro-optical measurement at the polaritonic frequen-
cies, from Eq. (17). The vertical dotted black line represents the
uncoupled (g = 0) value. The polariton spectrum presents a gap
ωg between the bare frequency ωx and the renormalized frequency√

ω2
x + 4g2, shown as dash-dotted black lines.

From Eq. (11), performing flux quantization, we can read
directly the polaritonic group velocity [35]

v
g
k,μ

= dωk,μ

dk
= cε(ωk,μ)(Xk,μ + Zk,μ)2. (12)

As clearly shown by the theory of open quantum systems in
the ultrastrong coupling regime [36–38], polaritons probe the
electromagnetic environment at their own frequency. Plugging
Eq. (8) and Eq. (12) into Eq. (1), the electro-optical operator
can then be written in terms of polaritonic modes

Ŝeo(t ) =
∑
k,μ

√
Ch̄�kv

g
k,μ

2ε0ε(ωk,μ)cV
[ p̂k,μR(ωk,μ)e−iωk,μt − H.c.].

(13)

The time-resolved correlation function in the coupled polari-
tonic ground state p̂k,μ |P〉 = 0 thus reads

〈P| Ĝeo(τ ) |P〉 =
∑
k,μ

h̄�kv
g
k,μ

2ε0ε(ωk,μ)cV
|R(ωk,μ)|2 cos(ωk,μτ ).

(14)

We finally obtain the general expression for the spectral
components of the correlation function

〈P| Ĝeo(ω) |P〉 =
∑
k,μ

π h̄�kv
g
k,μ

2ε0ε(ωk,μ)cV
|R(ωk,μ)|2

× [δ(ω − ωk,μ) + δ(ω + ωk,μ)]. (15)

In the case of a macroscopic crystal we can transform the sum
over the paraxial modes in Eq. (15) and perform the integral,

leading to

〈P| Ĝeo(ω) |P〉 = h̄|ω|
4ε0

√
ε(ω)cS

|R(ω)|2I (ω), (16)

where I (·) is the indicator function over the polaritonic spec-
trum, equal to zero at the frequencies in which the polaritonic
spectrum is gapped. In the absence of propagative modes, the
expected intensity of the QVF vanishes. Comparing Eq. (16)
to Eq. (4) we realize they are in the same form, once the proper
dispersive dielectric function from ε(ω) is used:

〈P| Ĝeo(ω) |P〉
〈0| Ĝeo(ω) |0〉 =

√
εr

ε(ω)
I (ω). (17)

A spectrally resolved measurement of QVFs through electro-
optical sampling, once normalized over the vacuum value,
thus provides the frequency-dependent dielectric function of
the material, effectively implementing an ellipsometry mea-
surement over the quantum vacuum. Note that at the frequen-
cies ω at which polariton modes exist and thus I (ω) = 1, the
system admits propagative solutions, ε(ω) > 0, and the square
root in Eq. (17) is real. Equivalent conclusions can be drawn
in the case of a discrete spectrum, even though in this case
Eq. (17) is not well defined, due to the different frequencies of
the discrete modes in vacuum and in the dielectric. In Fig. 2(b)
we plot the quantity in the right-hand side of Eq. (17) for the
Lorentz dielectric function in Eq. (5).

Although in Ref. [6] only the second-order moment of
Ŝeo(t ) was measured, it is a priori possible to access higher-
order moments by increasing the number of delayed probe
pulses. The expectation value of Ŝeo(t ) vanishes in the ground
state. Using the Wick theorem this implies we can limit
ourselves to consider only even-order moments, whose spec-
tral components are polynomial functions of the ground-state
expectation value in Eq. (16).

IV. DISCUSSION

We have demonstrated that a measure of the time correla-
tions of QVFs, once normalized over the uncoupled free-space
vacuum result, provides us access to the same set of observ-
ables which we can measure with a linear optical characteriza-
tion of the sample. On the one hand, this result demonstrates
electro-optical sampling of QVFs is a useful spectroscopic
tool. Ellipsometric measurements of the quantum vacuum,
although model dependent as the usual ones, allows us to
measure the spectrally resolved dielectric function without
requiring any incoming photon in the probed frequency range.
This offers the possibility to characterize the optical response
of a closed cavity system, whose perfect mirrors do not allow
for resonant probing.

On the other hand though, the fact that the results of the
electro-optical QVF sampling can a priori be predicted by
having access to the dielectric function, puts into doubt the
possibility of using it as a direct experimental test of the
ground-state virtual photon population. The virtual photon
population Nk , defined as the number of photons in the bare
mode âk emitted by the system after a nonadiabatic switch-off
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of the coupling [12,39], reads

Nk = 〈P| a†
kak |P〉 =

∑
μ

|Zk,μ|2. (18)

Using Eq. (9) and Eq. (10), we can link Nk to quantities which
can be measured by electro-optical sampling of QVFs through
the formula ∑

μ

v
g
k,μ

4c

[
1 + 1

ε(ωk,μ)

]
= Nk + 1

2
, (19)

evocative of the relation between the electric and magnetic
components of the electromagnetic energy, and its expression
in terms of photonic populations.

Although it could seem that Eq. (19) indeed allows one to
measure Nk via QVF electro-optical sampling, a few remarks
are necessary. The first is that the two sides of Eq. (19) de-
scribe different physical measurements performed at different
frequencies. The left-hand side in fact relates to fluctuations
inside the coupled system, measured through electro-optical
sampling at the polaritonic frequencies ωk,μ. The right-hand
side describes instead photons emitted by the now uncoupled
system and measured with any spectrally resolved detector at
the bare frequency �k .

The second is that there is not a direct functional relation
between the measured electro-optical correlations and the
vacuum photon population. They are a priori independent.
In order to write Eq. (19) we need to rely on our theoretical
modeling, linking the two quadratures of the field through
Eq. (10). This is to be expected given that the measure of
a single field quadrature is not equivalent to a measure of
the field population. Whether the magnetic quadrature of the
QVF or equivalently their squeezing can be directly measured,
obviating to this problem, remains an open question. The
lack of a direct relation between the two quantities can also
be verified by the fact that in Ref. [31] it is shown that for
a medium described by Eq. (5), Nk does not present any
resonant behavior. This is clearly at odds with the results
describing the electro-optical measurement in Fig. 2(b), where
a resonant behavior can be observed in an interval of the order

of the vacuum Rabi frequency g around the polariton gap. A
measurement of the radiation emitted by nonadiabatic switch-
off of the coupling can instead provide a direct measurement
of the quantity in the right-hand side of Eq. (19), although
it is true that a measurement of the photon squeezing can be
useful also in this case to provide a direct proof the photons
are emitted through a parametric process [18,40].

The third remark is that the left-hand side of Eq. (19) con-
tains only quantities which can also be measured by standard
linear spectroscopy. Even though the QVF measurement can
be said to actually probe the vacuum field, once its absolute
value is fixed in empty space, further measurements provide as
much information as a linear-optical characterization, except
when such an operation is impossible (e.g., samples without
appreciable photonic losses).

V. CONCLUSIONS

In this Rapid Communication we developed the theory
of spectrally resolved electro-optical sampling of QVFs in
arbitrary linear, local dielectric materials. We demonstrated
that such an approach allows us to implement a full linear
optical characterization of a closed-cavity system, measuring
the frequency-dependent dielectric function without requiring
any incoming resonant photon. This proves its usefulness as
an alternative spectroscopic tool for the characterization of
linear dielectrics. Its ability to perform investigations on the
properties of the interacting quantum vacuum fundamentally
different from those implementable with linear optical tech-
niques remains nevertheless unclear.
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