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Spin-exchange-induced exotic superfluids in a Bose-Fermi spinor mixture
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We consider a mixture of spin-1/2 bosons and fermions, where only the bosons are subjected to the spin-orbit
coupling induced by Raman beams. The fermions, although not directly coupled to the Raman lasers, acquire
an effective spin-orbit coupling through the spin-exchange interaction between the two species. Our calculation
shows that this is a promising way of obtaining spin-orbit coupled Fermi gas without Raman-induced heating,
where the long-sought topological Fermi superfluids and topological bands can be realized. Conversely, we find
that the presence of fermions not only provides a new way to create the supersolid stripe phase of the bosons,
but more strikingly it can also greatly increase the spatial period of the bosonic density stripes, and hence makes
this phase directly observable in the experiment. This system provides a new and practical platform to explore
the physics of spin-orbit coupling, which possesses a dynamic nature through the interaction between the two
species.
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I. INTRODUCTION

In recent years, spin-orbit (SO) coupling in cold atoms
[1–4] has received tremendous attention. Experimental real-
ization of SO-coupled bosons [5–9] and fermions [10–15] has
been reported around the world. The interest in such systems
is mainly due to the exotic phases induced by SO coupling
in quantum gases. For example, SO-coupled Bose-Einstein
condensates (BEC) can host a stripe phase featuring spatially
modulated density profiles [16–22], which can be regarded
as a supersolid [9,23]; whereas SO-coupled attractive Fermi
gas can become a topological superfluid, supporting Majorana
edge states [24–35]. However, the spatial period of the stripe
phase is on the order of the optical wavelength, making its
direct observation extremely challenging, although indirect
evidences for the stripe phase have been reported in two sem-
inal experiments [8,9]. Another serious experimental problem
for realizing SO coupling in quantum gas concerns the heating
due to the Raman beams. The Raman-induced heating is
particularly severe for atomic species with small fine-structure
splitting [36]. Wei and Mueller carefully analyzed the heating
problems for all alkali-metal atoms [36]. According to their
analysis, 40K and 6Li (the two most commonly used fermionic
species in cold atom experiments) suffer greatly from such
heating. This could explain why an SO-coupled fermionic
superfluid, despite its tremendous theoretical interest, has yet
to be realized in experiments.

Here we consider a mixture of bosonic and fermionic
superfluids, each of which is a spin-1/2 system. In addition
to the density-density interactions, there exists an interspecies
spin-exchange interaction. We assume that the condensate is
subjected to the Raman-induced SO coupling, whereas the
Fermi gas is not coupled by the Raman beams and hence is im-
mune from the Raman-induced heating. The key observation

of this rapid communication is that, through the spin-exchange
interaction, the Fermi gas experiences a significant effective
SO coupling. The interplay between the bosons and fermions
leads to a variety of interesting quantum states, including
a stripe phase in condensate with the spatial period much
larger than the optical wavelength, and various topological
phases for fermions. Note that a Bose-Bose spinor mixture
has been realized in a recent experiment, and the associated
effects of a spin-exchange interaction were observed [37] and
theoretically analyzed [38]. In addition, several groups have
created Bose-Fermi superfluid mixtures with scalar conden-
sates [39–42].

II. HAMILTONIAN

The total Hamiltonian of the system takes the form (we
take h̄ = 1)

H =
∫

dx(�†
BhB�B + �

†
F hF �F ) + GB + GF + GBF , (1)

where �B(x) = [ψB↑(x), ψB↓(x)]T represents the mean-field
wave function of the BEC, and �F (x) = [ψF↑(x), ψF↓(x)]T

denotes the field operator of the Fermi gas. Both species have
two internal spin states, which are labeled as ↑ and ↓. The
single-particle Hamiltonians hB and hF are given by

hB =
(
k − krσ

z
B

)2

2mB
+ �B

2
σ x

B + δB

2
σ z

B, (2)

hF =
(
k − krσ

z
F

)2

2mF
+ δF

2
σ z

F , (3)

with �B the Raman coupling strength, kr the Raman re-
coil momentum, and σ x

B,F and σ z
B,F the Pauli matrices. We

set the two-photon detuning δB = δF = 0 in our discussion.
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For simplicity, we assume a quasi-one-dimensional system
with strong transverse confinement. The key result that the
fermions experience an effective SO coupling is insensitive to
the dimensionality.

The last three terms in Eq. (1) describe three types of two-
body interactions, where the Bose-Bose interactions read as

GB =
∫

dx
[
gB

(
ρ2

B↑ + ρ2
B↓

) + 2gB
↑↓ρB↑ρB↓

]
, (4)

with ρBσ = |ψBσ (x)|2 the spin-σ density of the BEC, the
Fermi-Fermi interaction takes the form

GF = gF
∫

dx ψ
†
F↑ψ

†
F↓ψF↓ψF↑, (5)

and the Bose-Fermi interactions are given by

GBF =
∫

dx[γ ρBρ̂F + β(ψ∗
B↓ψB↑ψ

†
F↑ψF↓ + H.c.)], (6)

where ρB = ρB↑ + ρB↓ is the density of bosons, and ρ̂F =
ψ

†
F↑ψF↑ + ψ

†
F↓ψF↓ is the density operator for fermions. Here

we assumed that the inte-species density-density interactions
are spin independent, with a single interaction strength γ ,
to avoid the proliferation of parameters. The last term in
Eq. (6) describes the interspecies spin-exchange interaction
characterized by the strength β. We take L to be the length of
the system with periodic boundary condition. The number of
bosons and fermions are NB,F , with the corresponding average
densities nB,F = NB,F /L, respectively.

III. NONINTERACTING FERMIONS

Let us first consider the case with noninteracting fermions,
i.e., gF = 0. Previous studies of SO-coupled BEC have shown
that, in the absence of the fermions, the mean-field wave
function of the condensate �B can be accurately described by
the following ansatz:

�B√
nB

=
[
C1

(
cos θ

− sin θ

)
eikBx + C2

(
sin θ

− cos θ

)
e−ikBx

]
, (7)

where kB, θ , C1, and C2 are variational parameters. We can
restrict kB � 0 and θ ∈ [0, π ] without loss of generality, and
restrict C1 and C2 to be real positive numbers, with normal-
ization condition C2

1 + C2
2 = 1, as the relative phase between

them will not affect the total energy. Based on the values of the
parameters, three phases of the SO-coupled BEC can be iden-
tified: the stripe phase (ST) with B ≡ C1C2 �= 0 and kB �= 0
where the condensate density profile shows the stripe pattern;
the plane-wave phase (PW) with B = 0 and kB �= 0 where
the BEC condenses into a plane-wave state with finite spin
polarization; and the zero-momentum phase (ZM) with B = 0
and kB = 0 where the BEC features a smooth density profile
with zero spin polarization. Given the variational ansatz (7),
the BEC energy functional EB(kB, θ, B), corresponding to∫

dx�∗
BhB�B + GB, is given by

EB(kB, θ, B)

NB
= k2

B + k2
r − 2krkB cos(2θ )

2mB
− �B

2
sin(2θ )

− F (B) cos2(2θ ) + G1(1 + 2B2), (8)

where we defined F (B) = (2G1 + 4G2)B2 − G2 and G1,2 =
nB(gB ± gB

↑↓)/2.
The interplay between the condensate and the fermions is

reflected in the GBF term in Eq. (6). We include its effect in an
effective fermionic single-particle Hamiltonian heff

F defined as∫
dx �

†
F heff

F �F =
∫

dx�†
F hF �F + GBF . (9)

Since Eq. (7) is quite general, we assume that the condensate
wave function in the presence of fermions can still be faith-
fully represented by Eq. (7). It follows that

heff
F (kB, θ, B) =

(
k − krσ

z
F

)2

2mF
+ nB

(
γV −βM

−βM∗ γV

)
, (10)

where

M ≡ sin (2θ )

2
+ B sin2 θe−2ikBx + B cos2 θe2ikBx; (11)

V ≡ 2B sin (2θ ) cos (2kBx) + 1. (12)

The form of heff
F in Eq. (10) clearly shows that there is an

effective SO coupling in the Fermi gas, which emerges from
its interaction with the condensate. Since the two species
influence each other, the SO coupling in both components
possesses a dynamic nature. The dynamic synthetic gauge
field has recently received much attention [43–46]. The spinor
mixture system thus provides another platform where dy-
namic SO coupling emerges naturally.

Diagonalizing heff
F gives a set of fermionic single-particle

states. Then the total energy of fermions EF (kB, θ, B) is ob-
tained by summing up the lowest NF eigenenergies of heff

F . The
ground state of the mixture is then obtained by minimizing
the total energy functional EB(kB, θ, B) + EF (kB, θ, B) with
respect to the variational parameters. In our result, the final
values of θ and kB roughly keep the relation cos(2θ ) ≈ kB/kr .

This procedure allows us to present the phase diagram
of condensate in the �B-β parameter space as shown in
Fig. 1(a), where we take nB = 10nF and NF = 2000. To
isolate the effect of the interspecies interactions, we take
the density-density interaction strength β = 0. In the absence
of fermions, the condensate only possesses two phases, PW
and ZM, for gB

↑↓ > gB. The transition between them occurs
around �B = 4k2

r /(2mB). A notable feature of Fig. 1(a) is
that the region with large β is dominated by the ST phase.
This feature is clearly induced by the fermions. Specifically,
the spin-exchange interaction induces an attractive interaction
between the two spin components of the condensate, leading
to a reduced effective gB

↑↓, which favors the ST phase. The
background color in Fig. 1(a) displays the value of kB. In the
ST phase, the condensate density profile is given by

ρB(x) = nB[1 + sin (2θ ) cos (2kBx)], (13)

with a density modulation whose spatial period is determined
by 1/kB. One can see that, for a given β, kB decreases as �B

increases. Figures 1(b) and 1(c) show two condensate density
profiles corresponding to the black dot and yellow solid star in
Fig. 1(a), respectively. For realistic parameters, the ST phase
can possess a spatial period of several microns and a large
modulation depth. Such a state can be readily observed using
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FIG. 1. (a) Phase diagram of the BEC characterizing the stripe
(ST), plane-wave (PW), and zero-momentum (ZM) phases in the
�B-β plane with γ = 0, where the Fermi-Fermi interaction gF = 0,
the density of bosons nB = 10nF , and the background color displays
the value of kB/kr . (b) The boson density profiles for the black
dot in (a). (c) and (d) are, respectively, the boson and fermion
density profiles for the yellow star in (a). The fermion number is
set as NF = 2000. The mass ratio is taken to be mB/mF = 4. We
define the Fermi momentum kF = πnF /2 where nF = NF /L is the
total fermion density, and β0 = E0/kF where E0 = k2

F /(2mF ). The
Raman recoil momentum is taken to be kr = 5kF /4. The condensate
interaction strengths are taken to be gB = 6.48 ∗ 10−3kr/(2mB ) and
gB

↑↓ = 2gB. In (b)–(d), we set kr = √
2π/(804.1 nm) [7] to convert

the length unit to μm.

in situ imaging with today’s technology. The density profile
for the Fermi gas, corresponding to the yellow solid star, is
shown in Fig. 1(d). The two density profiles in Figs. 1(c) and
1(d) exhibit in-phase modulations.

Let us now turn to a more in-depth discussion of the
properties of fermions in the mixture. When the condensate is
in the PW or the ZM phase, we have B = 0, and the effective
single-particle Hamiltonian for fermions heff

F in Eq. (10) is
reduced to (after neglecting a term proportional to the constant
nB)

heff
F,PW =

(
k − krσ

z
F

)2

2mF
+ �eff

F

2
σ x

F , (14)

which has the same form as the Hamiltonian of an SO-coupled
Fermi gas, only that here the SO coupling is not due directly
to the Raman lasers, but to the interspecies spin-exchange
interaction with an effective Raman coupling strength
given by

�eff
F = −βnB sin (2θ ). (15)

When the condensate is in the ST phase, we have B =
1/2, both V and M in Eq. (10) exhibit spatial modulations,
originated from the density modulation of the condensate.
The V term, arising from the interspecies density-density
interaction, serves as a lattice potential for the fermions,
while the M term, from the spin-exchange interaction, can
be regarded as a periodic Raman coupling for the two spin
components of the fermions. This situation is analogous to
the optical Raman lattice proposed by Liu et al. [31,47], and
realized in recent experiments [24,48]. In the Raman lattice
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FIG. 2. The lowest four energy bands of the noninteracting
fermions with gF = 0, when the condensate is in the ST phase. Here
β = 0.6β0 in all plots. In (a), �B = 0 and γ = 0. For the rest of
the plots, �B = E0, and (b) γ = 0, (c) γ = 0.23γ0, and (d) γ =
0.4γ0. The Zak phase for each band is indicated in (b) and (d). The
color of the curve denotes the spin polarization P = 〈σ z

F 〉. The other
parameters are the same as those in Fig. 1.

setup, the atom experiences an optical lattice potential and
a periodic Raman coupling, both originating from the same
laser beams. It is shown that the system parameters can be
adjusted and induce topological phase transitions. Drawing
from this analogy, we also expect topological phases in our
system. Figure 2 displays the lowest four energy bands Es

of the effective fermionic single-particle Hamiltonian heff
F in

Eq. (10), when the condensate is in the ST phase. In all the
plots in Fig. 2, we fix the value of β. Figure 2(a) is a reference
plot where �B = 0, hence there is no SO coupling in the
system. Here different bands cross each other. The remaining
three plots correspond to the same finite value of �B, with
varying γ . In these cases, gaps open up at band crossing
points in Fig. 2(a). The color of each band represents the spin
polarization P = 〈σ z

F 〉, which can be seen to be momentum-
dependent: a manifestation of the SO coupling. The values of
Zj , indicated in Figs. 2(b) and 2(d), are the Zak phase for each
band, defined as [49]

eiZ j =
d∏

a=−d

w∗
j (ka)w j (ka+1), (16)

where w j (ka) is the eigenstate of band j and discretized
momentum ka, restricted in the first Brillouin zone in the range
ka ∈ [−kB, kB), with the additional constraint w j (kd+1) =
w j (k−d ) to form a loop in the calculation of the Zak phase.
At a critical value of γ shown in Fig. 2(c), the lowest two
bands cross each other. When the band reopens at a larger
value of γ , the Zak phase of some of the bands changes its
value. Thus the closing and the reopening of the band gap
signals a topological transition. Note that the Zak phase in
topological Bloch bands has been measured in recent cold
atom experiments [50].

IV. INTERACTING FERMIONS

Now let us turn to the situation where the fermions are self-
interacting with an attractive s-wave interaction strength gF =
−6kF /(πmF ) in Eq. (5), which can lead to superfluid pair-
ing. Including Fermi-Fermi interaction greatly complicates
the physics in the ST phase [51]. To keep things relatively
simple, we take a large boson density nB = 500nF , such that
in the parameter space we will explore, the bosons are nearly
unaffected by the fermions and remain in either the PW or
the ZM phase. Under this situation, the effective fermionic
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single-particle Hamiltonian is given by heff
F,PW in Eq. (14).

We thus have a system of attractive Fermi gas subjected to
SO coupling with an effective Raman coupling strength �eff

F
defined in Eq. (15). The corresponding fermionic system has
been studied before [29] and is known to support topologi-
cal the superfluid phase. This can be intuitively understood
as follows. The SO coupling mixes spin singlet and triplet
pairings. The Raman term, which can be regarded as an
effective Zeeman field, tends to weaken the singlet pairing.
For sufficiently large �eff

F , the singlet pairing is suppressed,
and the Fermi gas becomes a topological superfluid with
effective p-wave pairing. This picture is indeed confirmed by
our calculation.

Our calculation proceeds as follows. The bosonic contribu-
tion to the total energy functional EB(kB, θ, B) still takes the
form of Eq. (8), only that the parameter B vanishes for the PW
and the ZM phase. For the fermionic part, the thermodynamic
grand potential can be written as

PF (μ, θ ) =
∫

dx�†
F

(
heff

F,PW − μ
)
�F + GF , (17)

where μ is the chemical potential, and heff
F,PW and GF are

defined by Eqs. (14) and (5), respectively. Note that heff
F,PW is a

function of the variational parameter θ . In our treatment of the
fermionic part, we follow the standard mean-field approach
introduced for the single-species interacting fermions as re-
ported in, e.g., Refs [29,34]. In the mean-field approximation,
the Fermi-Fermi interaction term becomes

GF = −�[ψ†
F↑(x)ψ†

F↓(x) + H.c.] − �2/gF , (18)

where the superfluid order parameter is defined as

� = −gF 〈ψF↓(x)ψF↑(x)〉.
In momentum space, the grand potential can be rewritten as

PF (μ, θ,�) = 1

2

∑
k

C†
k MkCk +

∑
k

ξk − L�2

gF
, (19)

where C†
k = [c†

k↑ c†
k↓ c−k↑ c−k↓] and

Mk =

⎡
⎢⎢⎢⎣

ξk + λk �eff
F /2 0 −�

�eff
F /2 ξk − λk � 0

0 � −ξk + λk −�eff
F /2

−� 0 −�eff
F /2 −ξk − λk

⎤
⎥⎥⎥⎦, (20)

with ξk = k2/(2mF ) − μ and λ = −kr/mF . Diagonalizing the
matrix Mk , we can further transform the grand potential to the
following form:

PF (μ, θ,�) = 1

2

∑
k

(Ek1α
†
k1αk1 + Ek2α

†
k2αk2

+ Ek3αk3α
†
k3 + Ek4αk4α

†
k4) +

∑
k

ξk − L�2

gF
,

(21)

where αk1, αk2, αk3, and αk4 are quasiparticle elemen-
tary excitation operators with the symmetry Ek4 = −E−k1

and Ek3 = −E−k2. The two positive excitation branches are

FIG. 3. (a1) The phase diagram of the fermions identifying the
superfluid (SF), topological superfluid (TSF), and normal phases in
the �B-β parameter space with attractive Fermi-Fermi interaction
strength gF = −6kF /(πmF ) and nB = 500nF . In the same parameter
space, we also plot (a2) the quasiparticle excitation gap Eg; (a3)
the winding number Z; (a4) the Fermi superfluid order parameter
�; and (a5) the variational momentum kB of the condensate. The
four excitation spectra Ek corresponding to the four red dots in (a2),
from bottom to top, are plotted in (b1)–(b4), respectively. We take
NF = 800. The other parameters are the same as those in Fig. 1.

given by

Ek1,2 = (
ξ 2

k + ηk + �2 ±
√

4ηkξ
2
k + (

�eff
F

)2
�2

) 1
2 , (22)

with ηk = (krk/mF )2 + (�eff
F )2

/4. The ground state of the
fermions is considered to be the quasiparticle vacuum, with
the corresponding ground-state grand potential given by

PF (μ, θ,�) = −1

2

∑
k

(Ek1 + Ek2) +
∑

k

ξk − L�2

gF
, (23)

where the anticommutation relations of αk1, αk2, αk3, and αk4

have been considered. Note that PF (μ, θ,�) is a functional
of three undetermined variational parameters μ, θ , and �.

The ground state of the whole mixture is obtained through
the minimization of EB(kB, θ, 0) + PF (μ, θ,�) with respect
to the variational parameters kB, θ , and �, where the con-
straint NF = −∂PF (μ, θ,�)/∂μ is imposed to fix the number
of fermions. Actually, the minimization of EB(kB, θ, 0) with
respect to kB leads to the rigorous relation cos (2θ ) = kB/kr ,
and hence we only need to deal with θ and � in the numerical
minimization. The converged results of kB, θ , �, and μ are
obtained in the thermodynamic limit with NB, NF , L → ∞
while keeping nB = NB/L and nF = NF /L finite.

Our results are summarized as follows. Figure 3(a1) rep-
resents the zero-temperature phase diagram of the Fermi gas
in the �B-β space. It shows three phases: the nontopological
superfluid (SF), the topological superfluid (TSF), and the
normal phase. The first two phases feature finite superfluid
order parameter �, whereas � vanishes in the normal phase,
as shown in Fig. 3(a4). The quasiparticle excitation gap Eg is
finite in the SF and the TSP phases, except at the boundary of

031602-4



SPIN-EXCHANGE-INDUCED EXOTIC SUPERFLUIDS IN A … PHYSICAL REVIEW A 100, 031602(R) (2019)

these two phases, as shown in Fig. 3(a2), where Eg vanishes
as expected for topological phase transition. Several examples
of the quasiparticle excitation spectra Ek at various phases are
displayed in Figs. 3(b1) to 3(b4).

The topological phase transition can be further confirmed
by the winding number Z , which is defined through a loop
connecting the two positive excitation branches at infinitely
large k, and can be calculated as [34]

eiZ =
b∏

a=−b

[w∗
1 (ka)w1(ka+1)][w∗

2 (ka)w2(ka+1)], (24)

where w1(ka) and w2(ka) are the quasiparticle eigenstates
corresponding to the two positive excitation branches Ek1 and
Ek2 in Eq. (22), with the quasimomentum defined as ka =
2πa/L with the integer a ∈ [−b, b] where b is a sufficiently
large numerical cutoff. We define w1(kb+1) = w2(k−b) and
w2(kb+1) = w1(k−b) to connect the two positive excitation
branches and form the loop in calculating the winding number.
Note that here ka in Eq. (24) is no longer restricted in the first
Brillouin zone. As shown in Fig. 3(a3), Z jumps from π to 0
when entering from SF to TSF. Finally, through combining the
result of kB in Fig. 3(a5), the definition of �eff

F in Eq. (15), and
the relation cos(2θ ) = kB/kr , we can see that the TSF phase
does correspond to the larger �eff

F , and hence our result agrees
with our previous picture.

V. SUMMARY

In summary, we investigate a system of Bose-Fermi spinor
mixtures. The bosons form a condensate that are subjected
to the Raman-induced SO coupling, while the fermions are
not coupled to the Raman lasers, but interact with the bosons
via the density-density and/or spin-exchange interaction. We
show that the spin-exchange interaction makes the fermions
experiencing an effective SO coupling, without suffering

Raman-induced heating. This could pave a new way towards
the first realization of SO-coupled fermionic superfluids,
which can be made to be topological with a proper choice of
parameters. The interplay between the bosons and fermions
also has an interesting effect on the former: the Bose-Fermi
interaction favors the condensate to be in the ST phase, with
an interaction-dependent spatial modulation period. With real-
istic parameters, the spatial modulation period can be as large
as several microns, making the ST phase readily observable
with the in situ imaging technique. This provides a significant
advantage in both the realization and the observation of the
ST phase. The phenomena described above arise due to the
emergent and dynamic nature of the SO coupling in spinor
mixtures.

Our proposal does not require any new experimental tech-
niques beyond those that have already been demonstrated
in the laboratory. In particular, both the Bose-Bose spinor
mixtures [37] and the Bose-Fermi superfluid mixtures [39–42]
have been realized. The density-density interaction strengths
have been routinely tuned via Feshbach resonance [52,53].
Recent works also showed that the spin-exchange interaction
can be tuned to some extent [54–58]. We therefore expect that
our proposal will inspire more works, both theoretical and
experimental, on SO-coupled quantum gas spinor mixture,
providing a new and unique platform to explore the physics
of SO coupling.
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[2] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.

Prog. Phys. 77, 126401 (2014).
[3] H. Zhai, Rep. Prog. Phys. 78, 026001 (2015).
[4] Synthetic Spin-Orbit Coupling in Cold Atoms, edited by W.

Zhang, W. Yi, and C. A. R. Sá Melo (World Scientific, Sin-
gapore, 2018).

[5] Y.-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips,
J. V. Porto, and I. B. Spielman, Nat. Phys. 7, 531 (2011).

[6] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S.
Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Phys.
Rev. Lett. 109, 115301 (2012).

[7] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[8] S.-C. Ji, J.-Y. Zhang, L. Zhang, Z.-D. Du, W. Zheng, Y.-J. Deng,
H. Zhai, S. Chen, and J.-W. Pan, Nat. Phys. 10, 314 (2014).

[9] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Çağrı
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