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Relativistic quantum-mechanical description of twisted paraxial electron and photon beams
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The analysis of twisted (vortex) paraxial photons and electrons is fulfilled in the framework of relativistic
quantum mechanics. The use of the Foldy-Wouthuysen representation radically simplifies the description of
relativistic electrons and clarifies the fundamental properties of twisted particles. It is demonstrated that the
twisted and other structured photons are luminal. Their subluminality apparently takes place because the photon
energy is also contributed by a hidden motion. This motion is vanished by averaging and disappears in the
semiclassical description based on expectation values of the momentum and velocity operators. It is proven that
semiclassical quanta of structured light are subluminal and massive. The quantum-mechanical and semiclassical
descriptions of twisted and other structured electrons lead to similar results. The effect of a quantization of the
velocity and the effective mass of the structured photon and electron is predicted. This effect is observable for the
photon. The twisted and untwisted semiclassical photons and electrons modeled by the centroids are considered
in the accelerated and rotating noninertial frame. The coincidence of their inertial masses with kinematic ones
is shown. The orbital magnetic moment of the Laguerre-Gauss electron does not depend on the radial quantum
number.
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The prediction and discovery of twisted (vortex) states of
photons [1,2] and electrons [3,4] has opened new horizons in
contemporary physics. In these states, photons and electrons
have orbital angular momenta (OAMs). At present, twisted
photon and electron beams are objects of intensive studies
and have many practical applications (see Refs. [5–20] and
references therein). The most important kind of such beams is
a paraxial (Laguerre-Gauss) wave beam [1,18,21] satisfying
the paraxial approximation (p⊥ � p). This beam is unlo-
calized in the longitudinal direction z and transversely two-
dimensionally (2D) localized. It is described by the paraxial
equation(

∇2
⊥ + 2ik

∂

∂z

)
� = 0, ∇2

⊥ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
.

(1)

The known solutions in cylindrical coordinates are the
Laguerre-Gauss beams [1,22,23],
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where the real functions A and � define the amplitude and
phase of the beam, k is the beam wave number, w0 is the
minimum beamwidth, L|l|

n is the generalized Laguerre poly-
nomial, and n = 0, 1, 2, . . . is the radial quantum number. A
frequently encountered inexactness [18–20] is the superfluous
factor exp (ikz). Other quantum-mechanical solutions are 3D-
localized particle wave packets [18,24–29]. Quantum num-
bers of twisted photons have been determined in Ref. [30].

We assume that h̄ = 1, c = 1 but include h̄ and c into some
formulas when this inclusion clarifies the problem.

One of the most mysterious physical phenomena is the
recently discovered subluminality of free twisted photons for
Bessel [31] (see also Ref. [32]) and Laguerre-Gauss [33,34]
beams. Special relativity asserts that massless particles in vac-
uum should be luminal. Therefore, a definite solution of this
puzzle should be based on a description of single photons. In
the present Rapid Communication, we make this description
in the framework of relativistic quantum mechanics (QM). We
investigate the properties of twisted particles and untwisted
but structured ones, changing the usual perception of such
particles.

The possibility to use a quantum-mechanical approach
for a description of light quanta is nontrivial and should be
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substantiated. For the photon in optics, � is not a wave
function in the same sense as for the electron and is simply a
function that determines the relative amplitude of the electric
field [1,21,35]. The full description of an electromagnetic field
including its interaction with matter is based on the quantum
field theory (see Refs. [36,37]). However, the propagation of
light in a free space can be adequately described with the
Riemann-Silberstein vector

F = 1√
2

(E + iB).

It allows one to reduce the Maxwell equations and to present
them in the form [30,38]

ih̄∂t F = c(τ · p)F, (4)

where τ is a vector in which the components are conven-
tional spin-1 matrices acting on three components of F. This
equation is similar to the Weyl equation for a massless spin-
1/2 neutrino [38]. When the six-component wave function is
defined by [39]

ψ = 1√
2

(
φ

χ

)
, φ =

⎛
⎝Ex
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⎞
⎠, χ =

⎛
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iBz

⎞
⎠, (5)

a Dirac-like equation for the free electromagnetic field can be
obtained,

ih̄
∂ψ

∂t
= α · pψ, α =

(
0 τ

τ 0

)
. (6)

In this connection, we can mention the existence of bosonic
symmetries of the standard Dirac equation [40–45]. For
twisted paraxial photons and electrons, we use the Foldy-
Wouthuysen (FW) representation [46] in relativistic QM
obtained by appropriate unitary transformations of initial
Hamiltonians and wave functions. Excellent advantages of
this representation are restoring the Schrödinger form of
relativistic QM and unifying relativistic QM for particles
with different spins [46–49]. In the FW representation, the
Hamiltonian and all fundamental operators are block-diagonal
(diagonal in two spinors or spinorlike parts of wave func-
tions). The passage to the classical limit usually reduces
to a replacement of the operators in quantum-mechanical
Hamiltonians and equations of motion with the correspond-
ing classical quantities [50]. The FW wave function being
a generalization of the Schrödinger wave function on the
relativistic case permits the probabilistic interpretation [51].
Owing to these properties, the FW representation provides
the best possibility to obtain a meaningful classical limit of
relativistic QM not only for the stationary case [46,50,52,53]
but also for the nonstationary one [54].

We use the results obtained in Ref. [39]. The FW transfor-
mation of the Dirac-like Hamiltonian α · p is straightforward
and the FW Hamiltonian for a free photon is defined by [39]

HFW�FW = β|p|�FW, β = diag(1, 1, 1,−1,−1,−1).

(7)

While the wave functions � and �FW have different defini-
tions, a connection between E and B provides for their simi-
larity. Nevertheless, �FW is proportional to a field amplitude.

For a plane electromagnetic wave, B = p × E/p. Importantly,
the quantum-mechanical approach allows one to introduce
operators and to calculate their expectation values.

The corresponding FW Hamiltonian for a free electron [46]
is similar to that for the free photon,

HFW = β
√

m2 + p2, β = diag(1, 1,−1,−1). (8)

FW Hamiltonians describing free massive spin-1 particles
[55,56] and massive and massless scalar ones [47] are also
similar. The number of components of the corresponding
wave functions depends on the spin and is equal to 2(2s + 1).

Despite the similarity of the FW Hamiltonians, the wave
functions for the photon and electron substantially differ from
each other. The photon wave function �FW characterizes the
relative amplitude of the electromagnetic field [39] and cannot
be regarded as the probability amplitude of the spatial local-
ization of the photon (see Ref. [57], p. 12). On the other hand,
the corresponding wave function for the electron enables the
probabilistic interpretation [51]. However, the photon wave
function defines eigenvalues or expectation values of all oper-
ators. Its squared magnitude |�FW|2 is proportional to the light
energy density. The physical reality of the wave functions of
twisted photons has been confirmed in Ref. [58].

Lower spinors or spinorlike parts of FW wave functions
vanish [59]. Hereinafter, they will be eliminated and β ma-
trices will be removed. The simple form of Eqs. (7) and (8)
clearly shows preferences for the approach based on the FW
transformation.

The standard quantum-mechanical approach based on the
Proca equations brings a result which is in accordance with
Eq. (7). For massive and massless free spin-1 particles, these
equations lead to the following second-order equation [see
Ref. [57], Eq. (14.4)],

(
p2

0 − p2 − m2
)
ψμ = 0, p0 ≡ i

∂

∂t
, (9)

where ψμ (μ = 0, 1, 2, 3) has three independent components.
For the photon, m = 0 and Eqs. (7) and (9) agree.

Optical and quantum-mechanical approaches significantly
differ. Optics studies the light field and determines its local
velocities. Certainly, the phase and group velocities are dif-
ferent. A local phase velocity (LPV) is defined by the phase
front �(r), vp = ω/|∇�(r)|, where ω = ck is the angular
frequency [33,60]. Another frequently used formula for the
LPV has been obtained in Ref. [61] (see also Ref. [62]),

vp = c

[
1 + ∇2A(r)

k2A(r)

]−1/2

.

The local group velocity is given by vg = |∂ω∇�(r)|−1

[33,60] (see also Ref. [63] for details). The analysis shows
[33,62–72] that both velocities can be subluminal and superlu-
minal depending on the region. Certainly, both the local phase
and group velocities characterize the important properties of
twisted light beams. For example, the LPV defines an electron
acceleration in a laser beam [65,67,73]. The distribution of the
LPV has been measured in Ref. [74].

However, any free photon at any time extends over the
whole 3D space and thus the optical approach based on the
local phase and group velocities may fail to determine its
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fundamental properties (quantum numbers [30] and eigenval-
ues and expectation values of operators). On the other hand,
the quantum-mechanical approach providing for a single-
particle description perfectly solves this problem.

For stationary states (HFW�FW = E�FW), squaring Eq. (8)
for the upper spinor and applying the paraxial approximation
for pz > 0 results in (cf. Ref. [39])

p =
√

p2
⊥ + p2

z ≈ pz + p2
⊥

2p
, p = h̄k =

√
E2 − m2. (10)

The operator form of Eq. (10) reads(
∇2

⊥ + 2ik
∂

∂z

)
�FW = −2k2�FW. (11)

The substitution �FW = exp (ikz)� brings the paraxial equa-
tion (1). Within the paraxial approximation, it exactly de-
scribes photons and electrons of arbitrary energies. Therefore,
the FW transformation radically simplifies a description of
relativistic electrons (cf. Ref. [75]). We underline the differ-
ence between �FW and �.

The subluminality of twisted (and untwisted) light finds
a straightforward explanation and description in relativistic
QM which is a part of quantum optics. All beam parameters
are defined by expectation values or eigenvalues of related
operators. QM shows that the twisted photon is luminal and its
subluminality is apparent. The group velocity operator, v ≡√

v2
r + v2

φ + v2
z , depends on a hidden motion in the horizontal

plane [76]. As follows from Eq. (8),

v = ∂HFW

∂ p
= cp

p
, v = c. (12)

We use the term “hidden motion” for a motion which does
not contribute to the expectation values of operators defining
some components of the velocity and momentum but affects
both expectation values of squares of these operators and
eigenvalues of the energy operator. In the considered case, the
expectation values of two Cartesian velocity components are
zero (〈vi〉 = 0, i = x, y). However, 〈v2

x + v2
y 〉 = 〈v2

r + v2
φ〉 
=

0. Importantly, just the expectation values of the main opera-
tors define measurable beam parameters. For the electron, the
velocity operator reads

v = cp√
m2c2 + p2

. (13)

Certainly, only the z component of the group velocity v can
be directly measured. For the photon, it is less than c. This fact
creates the impression that the twisted photon is subluminal.

QM is a foundation of contemporary physics and mea-
surable quantities are expectation values of the velocity and
momentum operators. Therefore, the classical model of light
quanta (Einstein quanta) which velocity, energy, and momen-
tum are defined by expectation values or eigenvalues of the
corresponding operators remains very important. For twisted
and any other structured light, the result is nontrivial.

The calculation of expectation values of vz is straightfor-
ward. It follows from Eqs. (1), (10), and (12) that

vz

c
=

√
1 − p2

⊥
p2

=
√

1 − 2i

k

∂

∂z
≈ 1 − i

k

∂

∂z
. (14)

As A† = A, A2 = |�|2,∫
�† ∂�

∂z
rdrdφ =

∫
A∂A
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rdrdφ + i

∫
|�|2 ∂�

∂z
rdrdφ.

(15)
The first integral in the right-hand side vanishes,∫

A∂A
∂z

rdrdφ = 1

2

d

dz

∫
|�|2rdrdφ = 0.

The second integral can be calculated exactly. Since
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= 2

kw2(z)

{
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0

[
1 − 8z2

k2w2
0w

2(z)

]
− ζ

}
,

ζ = 2n + |l| + 1, (16)

averaging (see Ref. [77]) results in

〈r2〉 = ζw2(z)

2
,

〈
∂�
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〉
= − ζ

kw2
0

,
〈
p2

⊥
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w2
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, (17)

〈vz〉 = c

(
1 + 1

k

〈
∂�

∂z

〉)
= c

(
1 − 2n + |l| + 1

k2w2
0

)
. (18)

A comparison of Eqs. (16) and (18) shows that the contribu-
tions from regions with small and large values of r to vz are
subluminal and superluminal, respectively.

Equation (18) has been previously derived in Ref. [78].
However, the correct interpretation of this equation can be
based only on relativistic QM. Our approach connects the
result (18) with initial quantum-mechanical equations (7)
and (9) and, therefore, attributes it to a single photon. All
twisted and untwisted Laguerre-Gauss modes, including the
fundamental mode n = l = 0, are subluminal. Our results do
not support the formula obtained in Ref. [79] by averaging
the local field velocity which does not characterize the single
photon. For the electron, Eq. (17) remains unchanged and the
longitudinal velocity is given by

〈vz〉 = ck√
k2 + K2

(
1 − 2n + |l| + 1

k2w2
0

)
, K = mc

h̄
. (19)

We predict another property of twisted particles consisting
in a quantization of the group velocity and following from
Eqs. (18) and (19). We suppose that this quantization can
be observed because the modes n and l are measurable [80].
Experimental data [33] obtained for mixtures of modes with
different n agree with our prediction but cannot prove it.

Some properties of twisted particles characterize a local
field while other properties are attributed to the photon or
electron extending over the whole spacetime. In particular,
〈r2〉 depends on z and depicts local field properties. On the
other hand, 〈p2

⊥〉 and 〈vz〉 are independent of z and define the
general quantum-mechanical parameters of the twisted photon
and electron.

Since the wave properties of twisted particles are defined
by 〈pz〉 and 〈vz〉 and a detailed analysis of the hidden transver-
sal motion can often be avoided, it is convenient to consider
such particles as extended objects (the so-called centroids
[16,18]) moving in the z direction. This model remains ap-
plicable for twisted particles in external fields [16,18,81–84].
The transition to the semiclassical approximation allows us to
determine the mechanical properties of the centroids. In this
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case, angular brackets can be omitted and we can consider a
twisted photon such as a centroid with the constant laboratory
frame energy E =

√
p2

z + p2
⊥ . The velocity of the centroid is

defined by vx = vy = 0, vz = pz/E , and the origin of an inter-
nal motion defined by p2

⊥ can be disregarded. Certainly, such
a quasiparticle satisfies the requirements of special relativity
only if it possesses the mass M =

√
E2 − p2

z .
The validity of the introduction of the light mass was

previously studied only for groups of photons. It is known [85]
that two photons with equal frequencies and with the angle
2θ between the directions of their wave vectors acquire the
Lorentz-invariant mass m = (2h̄ω/c2) sin θ . In Refs. [86,87],
this property has been applied to groups of nonidentical and
noncollinear photons containing Gaussian pulses. It has been
underlined [86,87] that such an approach is inapplicable for
single photons or groups of identical photons being the objects
of our study. We can add that the Gaussian pulses describe
neither twisted states nor untwisted states with a nonzero
radial quantum number. In particular, the average velocity
obtained in Refs. [86–88] reads 〈vz〉 = c[1 − (2k2w2

0 )−1] [cf.
Eq. (18)].

To verify a possibility to model the Laguerre-Gauss photon
by a massive centroid, we need to pass to an arbitrary inertial
frame. Let us make the Lorentz boost to the centroid rest
frame (v(0)

z = 0). In this frame, E (0) =
√

p2
⊥ , p(0)

x = px = 0,
p(0)

y = py = 0, p(0)
z = 0. We can now consider the second

boost to the frame denoted by primes and moving with the
arbitrary velocity −V relative to the centroid rest frame. If we
change the coordinates and direct the X axis along the vector
V , the Lorentz transformation results in

p′
X = V E ′

c2
, p′

Y = p′
Z = 0, E ′ = E (0)√

1 − V 2

c2

. (20)

It is easy to check that arbitrary Lorentz transformations for
the centroid are equivalent to those for a massive particle with
the mass M = E (0)/c2. When h̄, c are included, the effective
mass of the twisted photon (centroid mass) reads

M =
√

2(2n + |l| + 1)h̄

cw0
. (21)

Its relation to the centroid velocity is defined by

M = h̄k

c

√
2

(
1 − 〈vz〉

c

)
= h̄k

c

√
1 − 〈vz〉2

c2
. (22)

This result shows a nontrivial possibility of conversion of
the Lorentz-noninvariant hidden momentum into the Lorentz-
invariant mass. The mass-energy ratio is given by

Mc2

E
=

√
2(2n + |l| + 1)λ

2πw0
, λ = 2π

k
. (23)

The second boost, unlike the first one, changes the OAM
[81].

We can easily extend our analysis to the other forms of
structured light. Equations (7) and (9) remain valid in the
general case. Our derivation covers Gaussian beams because
the presence or absence of the OAM is not important in this
case. The other forms of structured light are also characterized
by the hidden motion. For the 3D-localized particle wave

packets (light bullets) [25,27,89], wave functions are 3D nor-
malized (

∫
�†�d3x = 1) and this motion takes place in three

directions. The Lorentz boost from the wave-packet rest frame
to the laboratory frame also satisfies Eq. (20) for any chosen

direction X . In this case, E (0) =
√

(p(0)
x )2 + (p(0)

y )2 + (p(0)
z )2 .

Thus, arbitrary Lorentz transformations for the light wave
packet are equivalent to those for a massive particle with
mass M = E (0)/c2. Relation (22) also remains unchanged.
Equations (7) and (9) demonstrate that the velocity operator
is equal to c for any form of light. For wave packets, one can
also determine the parameters of semiclassical light quanta
(Einstein quanta) by averaging the momentum and velocity
operators. Evidently, such semiclassical quanta are sublumi-
nal and massive.

To complete the analysis, we need only to consider
Laguerre-Gauss and other structured particles in noninertial
frames. This consideration allows us to determine an inertial
mass which is important in the processes of beam accel-
eration and rotation. Light beam acceleration and rotation
are largely investigated (see Refs. [90,91] and references
therein). The problem is rather nontrivial. In particular, the
kinematic (“Lorentz-invariant” [86–88]) mass of the group of
noncollinear photons may not manifest itself in inertial and
gravitational interactions [85–88]. The practical importance
of the related problem of Laguerre-Gauss photons in gravita-
tional fields is poor.

For spinning and spinless single particles in noninertial
frames, relativistic FW Hamiltonians and equations of motion
as well as their classical counterparts have been derived in
Refs. [49,92–95]. We may disregard spin effects because the
corresponding terms in the Hamiltonians are relatively small.
In the semiclassical approximation, the Hamiltonian of a par-
ticle in a noninertial frame accelerated with the acceleration a
and rotating with the angular velocity ω has the form [93]

H = (1 + a · r)
√

m2 + p2 − ω · l . (24)

Here, a and ω are independent of the spatial coordinates but
may arbitrarily depend on time [93] and l is the total angular
momentum. The particle motion is affected by the accelerator,
Coriolis, and centrifugal forces. If the sizes of the light beam
are negligible as compared with those of the beam trajectory
in the inertial field, l = r × p + L, where L is the intrinsic
OAM. For the Laguerre-Gauss light beam (m = 0) formed by
identical photons, the semiclassical approximation consists in
p2 → p2

z + p2
⊥, l → (r × ez )pz + L. The z axis is longitudi-

nal. Evidently, the paraxial photon should be modeled by the
massive centroid with the inertial mass M defined by Eq. (21).
Twisted and untwisted photons with the same energy have
different momenta, velocities, and Lorentz factors, and can
be distinguished. These conclusions remain valid for other
structured photons (in particular, for light wave packets).

The nonzero mass as well as the subluminal velocity are
extraordinary properties of the Laguerre-Gauss photon. The
longitudinal beam shape depends on z/zR, where zR = kw2

0/2
is the Rayleigh diffraction length. The last quantity, in particu-
lar, does not satisfy the Lorentz transformations for a segment
length. Therefore, the independence of centroid parameters
from z is necessary to use the model of the centroid.
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Despite the paraxial approximation (〈p2
⊥〉 � p2), the

Laguerre-Gauss photon mass is not very small. Under the
experimental conditions used in Ref. [33], Mc2/E ≈ 0.02
when ζ = 100 and E = 1.56 eV.

The presented consideration remains valid for the twisted
electron. When the hidden transversal motion is taken into
account, the electron velocity v satisfies Eq. (13). However,
the twisted electron can also be regarded as a centroid with
velocity vz given by Eq. (19) and with mass equal to

M =
√

m2 + 〈p2
⊥〉 =

√
m2 + 2(2n + |l| + 1)

w2
0

. (25)

Amazingly, the relation between the mass and velocity of the
Laguerre-Gauss electron almost coincides with Eq. (22),

M = E

c2

√
1 − 〈vz〉2

c2
. (26)

The centroid momentum is equal to

〈pz〉 =
√

E2 − m2

[
1 − 2n + |l| + 1

(E2 − m2)w2
0

]
.

For the paraxial electron in noninertial frames, the only
difference from the paraxial photon is the nonzero mass m.
The inertial mass of the corresponding centroid is defined by
M =

√
m2 + p2

⊥ and coincides with the kinematic mass (25).
A similar effect of an increase of the kinematic (Lorentz-

invariant) mass of 3D-localized wave packets of free twisted
electrons as compared with m has been found in Ref. [29].

Importantly, the effective masses of the twisted paraxial
photon and electron (i.e., the corresponding centroid masses)
are quantized. The twisted wave packets also possess this
property. The quantization of the mass and the group velocity
can be discovered simultaneously in view of Eqs. (22) and
(26).

We underline that all Laguerre-Gauss beams, even the
mode n = l = 0, and all twisted and untwisted wave packets
move slower than the plane wave and have mass M > m
(vg < c and M > 0 for light).

Since the Laguerre-Gauss electron is charged, it possesses
a magnetic moment. Due to the connection between the FW
operators of the OAM and the orbital magnetic moment, μL =
eL/(2E ) [81,82,96–98], the latter is not influenced by the
radial quantum number. The total magnetic moment contains
also a spin part (see Refs. [99–101]).

In this Rapid Communication, we have performed a gen-
eral description of twisted paraxial photons and electrons
in the framework of relativistic QM. The use of the FW
representation has allowed us to find and investigate their

properties, changing the usual perception of such particles.
In this representation, twisted paraxial photons and electrons
of arbitrary energies are characterized by the well-known
wave function (2) and, therefore, a description of relativis-
tic electrons is radically simplified. Moreover, the quantum-
mechanical approach clarifies the fundamental properties of
single photons and electrons. We have checked that twisted
and other structured photons are luminal. Their subluminal-
ity is apparent and appears because the photon energy is
contributed by the hidden motion. For Laguerre-Gauss light
beams, this motion is transversal and the average transversal
momentum vanishes. For light wave packets, the hidden mo-
tion occurs in three directions. We have presented quantum-
mechanical and semiclassical descriptions of the structured
photon. In QM, such a photon is a massless particle moving
with velocity c. The semiclassical description applies expec-
tation values of the momentum and velocity operators and
disregards the hidden motion. As a result, Einstein quanta of
structured light are subluminal and massive. In the semiclas-
sical case, one should use the model of the centroid with a
nonzero kinematic (Lorentz-invariant) mass. The analysis ful-
filled unambiguously shows that the semiclassical description
is self-consistent as well as the quantum-mechanical one. For
Laguerre-Gauss light beams, the applicability of the model of
a massive centroid is a nontrivial consequence of the inde-
pendence of centroid parameters from the longitudinal coor-
dinate. The properties of the Laguerre-Gauss electron are very
similar. We predict the effect of a quantization of the velocity
and mass of the structured photon and electron. This effect
is observable for the photon. We have considered the twisted
and untwisted semiclassical photons and electrons (modeled
by the centroids) in the accelerated and rotating noninertial
frame and have determined their inertial masses. Amazingly,
the kinematic and inertial masses of these particles coincide.
The orbital magnetic moment of the Laguerre-Gauss electron
does not depend on the radial quantum number.

A deep similarity between the fundamental properties of
the structured photon and electron illustrates the validity of the
statement that the results for the photon can be well applied to
all paraxial beams [35].
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