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Frequency and phase relations of entangled photons observed by a two-photon
interference experiment
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An entangled photon experiment has been performed with a large variation of the temperature of the nonlinear
crystal generating the entangled pair by spontaneous downconversion. The photon pairs are separated by a
nonpolarizing beamsplitter, and the polarization modes are mixed by half-wave plates. The correlation function
of the coincidences is studied as a function of the temperature. In the presence of a narrow interference filter,
we observe that the correlation changes between −1 and +1 about seven times within a temperature interval
of about 30 ◦C. We show that the common simplified single-mode pair representation of entangled photons is
insufficient to describe the results, but that the biphoton description that includes frequency and phase details
gives a close to perfect fit with experimental data for two different choices of interference filters. We explain the
main ideas of the underlying physics, and we give an interpretation of the two-photon amplitude, which provides
an intuitive understanding of the effect of changing the temperature and inserting interference filters.
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I. INTRODUCTION

One of the central experiments in quantum optics is the
Hong-Ou-Mandel (HOM) two-photon interference experi-
ment [1]. In the original version, two entangled photons with
the same polarization were generated by downconversion and
directed on a beamsplitter from opposite sides. With the tim-
ing adjusted so that the two photons came to the beamsplitter
at the same time, it was observed that the two photons always
exited in the same direction. This could then be interpreted
as the interference of two independent photons, where the
coalescence of the two photons was seen as a consequence of
the bosonic nature of photons. However, similar experiments
were soon devised in which the two photons reached the
beamsplitter at different times [2], where they were distin-
guishable by different polarizations [3], or they did not even
have to meet in a beamsplitter [4]. It became clear that the
proper way of interpreting these experiments had to be in
terms of interference between two different two-photon states.
For a more complete discussion of the different experiments
and a review of the literature, see Ref. [5].

The state of the field after the downconversion process
is well known [6–12] and consists of a superposition of
many frequency modes; a brief derivation is given below.
However, in many situations (see, for instance, [6–12]) one
can simplify the description to a single frequency mode and
two orthogonal polarizations. Nevertheless, there are cases
in which this is insufficient, and the spread in frequencies is
important for the understanding of experiments [13,14]. As
demonstrated by Fedrizzi et al. [13], one can reveal what
they call “hidden entanglement,” that is, the state is indeed
frequency-entangled. This is done by changing the tempera-
ture of the nonlinear crystal where the photon downconversion
takes place. The efficiency of the downconversion process

*joakim.bergli@fys.uio.no

is roughly identical over a rather broad temperature range.
However, the mean energies of the two photons are in general
different from each other for most of this range. Only in
a rather narrow optimal temperature range are the energies
of the two outgoing photons equal (on average). We present
an experimental setup that allows essentially all possible
correlation measurements to be performed in a two-photon
interference setup. With this we study how the correlations
between the two photons vary when the temperature of the
nonlinear crystal is varied. We can then observe the fre-
quency entanglement as demonstrated in Ref. [13] but in a
much more dramatic way. Using an interference filter, we
restrict the number of frequency modes available, and we
investigate to what extent we can recover the predictions of
the simplified, single-frequency mode description. We find
that at the optimal temperature of the nonlinear crystal, the
single frequency mode is always applicable, and we identify
“difficult” temperatures, where extremely narrow filters would
have to be used in order to restore the single frequency
picture (or alternatively, where the frequency entanglement
produces pronounced effects, even if only a narrow range of
frequencies is involved). We provide a theoretical description
that reproduces all experimental results, and we show how
it can be used to understand why frequency entanglement is
irrelevant at the optimal temperature, and why it becomes
relevant at other temperatures. A preliminary report of our
experiments is available in [15], where more experimental
results are given. Here we reproduce only those results that are
directly relevant to our discussion, and we provide a detailed
theoretical analysis of the results.

II. EXPERIMENTAL SETUP

Our source of polarization-entangled photons (see Fig. 1) is
directly inspired by the setup implemented by Kuklewicz et al.
[16]. The pairs of photons are obtained by type-II spontaneous
parametric downconversion in a periodically poled crystal
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FIG. 1. Experimental setup. The pairs of orthogonally polarized
photons are downconverted from the 405 nm pump in the ppKTP
crystal. They are time-compensated (in a KTP crystal), frequency-
filtered (IF), and spatially filtered (iris) before being dispatched to Al-
ice and Bob by a nonpolarizing beamsplitter (NPBS). At each mea-
suring station, a half-wave plate (HWP) rotates the polarization of the
photons, and a PBS projects them to a fixed basis. The output of the
PBS feeds four detectors: A+ and A− for Alice, B+ and B− for Bob.

of potassium-titanyl-phosphate (ppKTP), under quasi-phase-
matching (QPM) condition. The pump, a continuous-wave
laser at 405 nm, and the downconverted photons are all
collinear. The temperature of the ppKTP crystal is controlled
by a thermoelectric Peltier temperature controller.

After filtering out the pump with a series of dichroic and
interference filters (IFs) (in particular one with a bandwidth
of 1 nm), the collinear downconverted photons are dispatched
by a 50:50 nonpolarizing beamsplitter (NPBS) to two polar-
ization analyzers. We label the polarization analyzer in the
transmitted beam as “Alice,” and the one in the reflected beam
as “Bob.” Each consists of a half-wave plate that rotates the
polarization of the field, with an angle α for Alice and β for
Bob, followed by a polarizing beamsplitter (PBS) that projects
it in a fixed basis {|H〉, |V 〉}.

The outputs of each PBS are feeding two detectors, labeled
A+ and A− for Alice (respectively located at the transmitted
and reflected output of Alice’s PBS) and B+ and B− for Bob
(respectively located at the transmitted and reflected output
of Bob’s PBS). The detectors are four avalanche photodiodes
SPCM-AQRH-16, from Perkin-Elmer, with a detection effi-
ciency specified at 60% by the manufacturer with 25 dark
counts per second. The detection events (clicks) are time-
tagged with nominal picosecond precision by a Multichannel
Picosecond Event Timer (Hydraharp 400, from Picoquant),
and saved to disk for on-the-fly analysis (when the data flow
is not too important), and also for subsequent analysis.

The flexibility of this acquisition setup based on the record-
ing of the detection time of the photons is of course largely
inspired by the landmark Innsbruck experiment performed by
Weihs et al. [17].

Unless specified otherwise, the acquisition duration for
each measured point lasted precisely one second, so that the
number of counts recorded during this interval can be used as
an estimate of the rate of the corresponding counts.

All detected events are recorded with the name of the
detector that fired and the time associated with the detection
event. No detected events are discarded, so that the coinci-
dence analysis can be performed after the fact with adjustable

20 25 30 35 40 45 50

0

500

1000

1500
R−+

ab

R+−
ab

R++
ab

R−−
ab

Temperature of the ppKTP crystal (◦C)

R
at

e
of

co
in

ci
de

nc
es

(s
−

1
)

FIG. 2. Rates of coincidences in the diagonal bases (α = β =
π/8) as a function of the temperature of the ppKTP crystal. The rate
of coincidences drops quickly away from the optimal temperature be-
cause the distribution of the wavelengths of the idler and signal is no
longer centered on the 810 nm of our narrow bandwidth interference
filter. The rapid oscillations in the coincidence rates arise from the
reflections of the pump beam from the ends of the ppKTP crystal,
which gives alternatingly constructive and destructive interference
between the direct and reflected beams, and an effective oscillation in
the pump amplitude. These oscillations are not interesting to us, and
they are absent from the correlations as described by Eq. (1) since an
overall intensity is normalized out in calculations of correlations.

parameters (size of the coincidence window and timing-
offset). Having a complete record of all the detected events
allows us to be thorough in the coincidence analysis: we can
naturally measure several type of rates, including the rate of
single counts, of course, but also the rate of coincidences, the
rate of double-counts, or even the triple-counts.

A rate of coincidences denotes the number of times one
of Alice’s detectors triggers within the same time window
(of arbitrary width) as one of Bob’s detectors, during an
acquisition of 1 s. The four possible rates of coincidences
between Alice’s and Bob’s detectors are denoted R++

ab , R+−
ab ,

R−+
ab , and R−−

ab , where the first superscript index indicates
which of Alice’s detectors is considered, and the second which
of Bob’s detectors is considered.

A rate of double-counts denotes the number of times the
two detectors located on the same side (Alice’s side or Bob’s
side) are both triggered within the same time window, during
an acquisition of 1 s. The rate of double-counts measured by
Alice is denoted R±

aa; that measured by Bob is denoted R±
bb.

III. EXPERIMENTAL RESULTS

For the downconversion process, there is an optimal tem-
perature of the ppKTP crystal (in our case 35.1 ◦C), where the
frequencies of the two downconverted photons are the same.
We study the properties of our entangled photons when the
temperature of the ppKTP crystal is brought away from this
optimal temperature.

In Fig. 2 we show the coincidence rates as functions of
the ppKTP temperature for the case in which the axes of
the HWPs are set to α = β = π/8, which means that both
horizontally and vertically polarized photons are rotated into
equal superpositions of horizontal and vertical polarization, as
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described by Eq. (13) below. We refer to this as a measurement
in the diagonal bases.

The first noticeable effect of bringing the temperature of
the ppKTP crystal away from the optimal temperature is that
the rate of detected singles and coincidences quickly drops,
as can be seen for the coincidences in Fig. 2. The reason
for this behavior is that the spectrum of the downconverted
photons depends on the temperature of the ppKTP crystal.
Indeed, all the terms in the quasi-phase-matching condition
of Eq. (4) depend on the temperature of the ppKTP crystal
[18,19]. At the optimal temperature, both outgoing beams
have the same frequency, corresponding to a wavelength
λ = 810 nm, exactly twice that of the pump beam. As the
temperature deviates from the optimal, the center frequencies
of the two beams start to differ, while keeping the sum
constant in accordance with the energy conservation condition
[Eq. (3) below]. Now, because of the interference filter with a
narrow bandwidth of 1 nm in our setup (see Fig. 1), we are
nevertheless selecting those pairs of photons that happen to
have the same wavelength of 810 nm. As the temperature is
changed away from the optimum temperature, the pairs of
photons that match this strict wavelength criterion are less
and less frequent, so that the number of coincidences drops
quickly.

Even though the number of pairs that passes through
diminishes away from the optimal temperature, we can still
measure their coincidences and their correlation. The correla-
tion

Eab(α, β ) = R++
ab − R+−

ab − R−+
ab + R−−

ab

R++
ab + R+−

ab + R−+
ab + R−−

ab

(1)

is a linear combination of the coincidence rates normalized by
the sum of coincidences rates. It is therefore quite insensitive
to fluctuations in the total rate of detected pairs. Reducing
the number of detected pairs decreases the statistical accuracy
of the measured correlation, but it does not change this cor-
relation per se. It can be compensated simply by increasing
the power of the pump accordingly, which we have done in
some of the experimental runs reported below when the rate
of detected pairs was too low.

Quite generally, a direct way to assess and fine-tune the
quality of the produced polarization-entanglement is to mea-
sure the correlation when Alice and Bob have their settings
set at diagonal in polarization space, which corresponds to
α = β = π/8 for the half-wave plates located in front of their
respective PBS. Indeed, it is in the diagonal bases that the
visibility of the correlation is naturally the lowest, and any
departure from the optimal conditions reduces the absolute
value of this correlation, whereas in the horizontal or vertical
basis it is much less sensitive to imperfections. We have
therefore measured the correlation in the diagonal bases while
varying the temperature of the ppKTP crystal. The result is
displayed in Fig. 3 (blue points).

At optimum temperature (35.1 ◦C), the correlation in the
diagonal bases α = β = π/8 is close to −1. For small tem-
perature variation of the ppKTP crystal away from the opti-
mal temperature, the absolute value of the correlation in the
diagonal bases decreases, which could be tempting to interpret
as being caused by a loss of indistinguishability between
the photons, as the centers of the spectral distributions of
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FIG. 3. Correlation in the diagonal bases (α = β = π/8) as a
function of temperature of the ppKTP crystal. Blue points are data
acquired with a 1 nm IF while red points are acquired with a
10 nm IF. The corresponding curves are theoretical predictions.
Although the rate of coincidences drops quickly away from the
optimum temperature of 35.1 ◦C, the correlation does not in any way
disappear, but oscillates with increasing amplitudes. The occurrences
of positive correlation close to 1, indicating that the photons share
the same polarization in the diagonal basis, are particularly worth
investigating, given that we are operating in type II spontaneous para-
metric downconversion conditions, i.e., with orthogonally polarized
photons.

the signal and idler photons start to differ more and more.
However, the surprising feature revealed in Fig. 3 is that
when departing further away from the optimum temperature,
the correlation does not remain close to zero—as would be
expected from distinguishable H and V photons observed
in the diagonal bases—but oscillates instead with increasing
amplitude, until the correlation reaches again absolute values
close to unity.

Of particular interest are the temperature values for which
the correlation becomes positive and close to 1, which hap-
pens below the optimum temperature at 28.6, 25.0, and
21.8 ◦C. Indeed, it then means that the photons measured
in the diagonal bases (α = β = π/8) share the same po-
larization, which is surprising given that the downconverted
photons are of type-II, that is, orthogonally polarized. We have
observed that the orthogonality can actually still be seen quite
clearly when Alice’s and Bob’s fix the orientation of their
half-wave plates at α = β = 0 instead. The correlation is then
very close to −1.

It should be noted that these experimental features depend
strongly on the use of the 1 nm bandwidth interference filter.
When we instead used an interference filter with 10 nm
bandwidth (Fig. 3, red points), the minima and maxima were
shifted in temperature, and the amplitudes of the oscillations
were greatly reduced, except at the optimum temperature
where the correlation was still quite close to −1. Indeed,
the results are then very similar to those observed in [13]
without any filter. Even if the experiment of Fedrizzi et al.
is different in the setup relative to ours (separating the two
polarization states and recombining them in a beamsplitter
as in the original HOM experiment), it is closely related to
our experiment in the analysis. In [13], positive correlation
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indicates that both photons exit the beamsplitter at different
output ports. That is, it indicates photon antibunching, which
implies a state that is antisymmetric in polarization.

The situation is different in our case because the photons
are collinear and incident on the same input port |in〉 of
the beamsplitter. The spatial modes of the idler and signal
photons are also not distinguished in our experimental setup,
so that it is a priori the same for both photons, and therefore
symmetric by particle exchange. The compensation of the
antisymmetry of the polarization degree of freedom is then
not immediately obvious. As discussed in Ref. [13], one
possible explanation comes from the fact that the photon state
is frequency entangled. That is, each outgoing beam has a
certain frequency spread, but the frequencies of the photons
are not independently distributed over the frequency width of
the beam. Rather, if one photon has a frequency higher than
the center frequency of that beam, the other photon will have
a frequency below the center frequency of the other beam,
so that the energy conservation condition (3) is satisfied for
each photon pair. As will be seen from the analysis below, our
experiment, while different in setup, is logically completely
equivalent to that in Ref. [13], except that we have used an
additional interference filter to reduce the frequency spread
of the two beams. Comparing the results with and without
this filter, we make two interesting and initially surprising
observations:

(i) The appearance of positive correlation, indicating an-
tisymmetry of the polarization state, is explained by the
presence of a corresponding antisymmetry in the frequencies,
rendering the full state symmetric as expected for photons.
That is, the observations are only explained if there is a certain
frequency spread of the downconverted beams. Inserting a
filter that limits this spread, one would expect the observed
positive correlation to be reduced, whereas we observe the
opposite. The correlation increases, reaching almost the max-
imum of +1.

(ii) The perfect negative correlation at the optimal temper-
ature is insensitive to the filter width. It appears to be the same
for all possible frequency spreads.

In the following, we will address these issues and give
detailed explanations of the observations.

IV. THEORETICAL DESCRIPTION

A. Spontaneous parametric downconversion

The theoretical description of polarization entanglement
from collinear type-II spontaneous parametric downconver-
sion is well known (see, for instance, [6–12]). In a nonlinear
crystal, the interaction Hamiltonian is [12]

Ĥ = ε0

∫
V

dr3 χ (2)Ê+
p Ê−

1 Ê−
2 + H.c., (2)

where the index p stands for pump, while 1 and 2 refer to
the two output modes (signal and idler). A photon from the
pump can be spontaneously downconverted to two daughter
photons. In a periodically poled crystal, this process must
fulfill the quasi-phase-matching (QPM) conditions for the
angular frequencies,

ωp = ω1 + ω2, (3)

and for the wave numbers,

kp = k1 + k2 + 2π

	
, (4)

where 	 is the period of the poling in the ppKTP crystal.
For a crystal of finite length, Eq. (4) only has to be satisfied
approximately, which results in a certain finite width of the
spectral peak for the downconverted photons.

For collinear spontaneous parametric downconversion con-
fined to a single spatial mode, the calculation to first-order
perturbation theory for the quantum state of the pairs of
downconverted photons at the output of the nonlinear crystal
is [20,21]

|ψ〉 = W
∫

dν f (ν)a†
in,H (ω1)a†

in,V (ω2)|0〉, (5)

where a†
in,H (ω) and a†

in,V (ω) are the creation operators for sig-
nal and idler photons in the input port |in〉 of the beamsplitter
with horizontal and vertical polarization in frequency mode ω,
and where the integral is taken from −∞ to +∞. The function

f (ν) =
∫ 0

−L
dz eiDzν (6)

describes the spectral distribution of the downconverted pho-
tons. Here L is the length of the ppKTP crystal, and we have
assumed that it is oriented along the z-direction from z = −L
to z = 0. We have defined

D = 1

c2
− 1

c1
, (7)

where c1 and c2 are the light speeds for the two output
beams within the crystal. We let ω0

1 and ω0
2 be the output

frequencies that satisfy both Eqs. (3) and (4), which means
that they can be interpreted as the central frequencies of the
spectral distributions of the two photon beams. The frequency
deviation ν is then given by

ω1 = ω0
1 + ν, ω2 = ω0

2 − ν. (8)

B. Simplified single-mode pair representation

We start off with the theoretical description that can be
found rather ubiquitously in the literature (see, for instance,
[6–12]). As we will see, although this description will give the
correct predictions at the optimal temperature of the ppKTP
crystal, it will be insufficient at other temperatures.

Since we are selecting only the pairs that have a wavelength
of 810 nm (with an interference filter with 1 nm bandwidth in
our case), we can replace Eq. (5) by a single frequency mode,
with two orthogonal polarizations [6,7,12]

|ψ〉 ∝ a†
in,H (ωp/2) a†

in,V (ωp/2)|0〉 = |H〉|V 〉. (9)

To dispatch the photons to Alice and Bob, the pairs of
collinear photons produced in the ppKTP crystal are sent to a
nonpolarizing beamsplitter (NPBS). For a photon impinging
with a spatial mode |in〉 on an ideal 50:50 NPBS, the output
state in terms of the transmitted mode |a〉 and the reflected
mode |b〉 (sent, respectively, to Alice and Bob; see Fig. 1)
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depends on the initial polarization of the photon [6]:

|H〉|in〉 NPBS−−−→ 1√
2

(|H〉|a〉 + i|H〉|b〉),

|V 〉|in〉 NPBS−−−→ 1√
2

(|V 〉|a〉 − i|V 〉|b〉), (10)

where the origin of the minus sign is due to the phase
shift π for a reflected wave with horizontal polarization at a
beamsplitter.

If we now consider two orthogonally polarized photons
impinging on the beamsplitter with the same input spatial
mode, we can write, using the spatial mode as a shorthand
index for the polarization mode,

|H〉in|V 〉in
NPBS−−−→ 1

2 (|H〉a|V 〉a − i|H〉a|V 〉b

+ i|H〉b|V 〉a + |H〉b|V 〉b). (11)

The usual argument at this point [6–12] is that the cases
in which the two photons exit through the same port (that
is, |H〉a|V 〉a and |H〉b|V 〉b) can be discarded because of the
postselection of the photons. Only those pairs with one photon
for Alice and one photon for Bob are of interest for the
experimental results.

After making the substitution |H〉b|V 〉a → |V 〉a|H〉b, and
renormalizing, the state of the pairs of photons detected in
coincidence by Alice and Bob can be written as the singlet
state:

|�−〉ab = 1√
2

[|H〉a|V 〉b − |V 〉a|H〉b], (12)

which is a polarization-entangled state.
Starting from this postselected state, we want to calculate

the predictions for the coincidence counting rates. The rota-
tion imparted to the polarization of a photon by a half-wave
plate oriented with an angle θ with respect to the horizontal
can be written as

|H〉 HWP θ−−−→ cos 2θ |H〉 + sin 2θ |V 〉,
|V 〉 HWP θ−−−→ − sin 2θ |H〉 + cos 2θ |V 〉. (13)

Using the transformations for the half-wave plate of Eqs. (13),
with θ = α for the photon going to Alice and θ = β for
the photon going to Bob, the rates of coincidences measured
by Alice and Bob take the simple and well-known form
associated with the singlet state:

R++
ab = R−−

ab ∝ 1
2 sin2 2(α − β ),

R+−
ab = R−+

ab ∝ 1
2 cos2 2(α − β ). (14)

With good approximation, the rate of coincidences that we
have measured at the optimal temperature are indeed of this
form (see Fig. 4). The visibility (or contrast) of the coinci-
dences was indeed slightly less than ideal, with a visibility of
99.6% in the rectilinear basis and of 98.5% in the diagonal
basis (without subtraction of accidental coincidences).

In the above theory, the coincidence rates depend on the
polarizers angles, but they are independent of the temperature.
In particular, in the diagonal basis, α = β = π/8, we predict
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FIG. 4. Rates of coincidences in fixed bases while the temper-
ature of the crystal is maintained at the optimum temperature of
35.1 ◦C. Alice keeps her measurement setting fixed, at α = 0 (recti-
linear basis) or α = π/8 (diagonal basis), while Bob’s HWP setting
β is varied from 0◦ to 90◦. The coincidences exhibit a visibility
of 99.6% in the rectilinear basis and of 98.5% in the diagonal
basis (without subtraction of accidental coincidences), which would
amount to a CHSH function S � 2.80.

Eab( π
8 , π

8 ) = −1 at all temperatures. As we see in Fig. 3, this
is true only for the optimal temperature, and approximately
true for a few other temperatures. Of particular interest are the
temperature values for which the correlation becomes positive
and close to 1, as pointed out in detail above. We conclude
that the single-mode pair representation fails at temperatures
different from the optimal, and we proceed to give a more
detailed analysis.

C. Full theory using the frequency-entangled state

We apply the conventional description (see, for example,
Ref. [5]) for the propagation of the downconverted state,
Eq. (5), through the optical elements. The details are given
in Appendix. Here we only describe how to account for the
effect of the interference filter, and we give the results for the
two-photon amplitude.

When placing the interference filter in the beam, we have
to modify the two-photon state of Eq. (5),

|ψ〉 = W
∫

dν f (ν)F (ν)a†
in,H (ω1)a†

in,V (ω2)|0〉, (15)

with the filter function F (ν) = Ḡ(ω1)Ḡ(ω2). The function
Ḡ(ω) describes the amplitude for a photon of frequency ω

passing the filter. We assume that the function Ḡ has a peak
centered on ωp/2, so that we can write Ḡ(ω) = G(ω − ωp/2)
with the function G(ω) having a peak centered at zero. Defin-
ing μ = ω0

1 − ω0
2, Eq. (8) gives

ω1 = ωp

2
+ μ

2
+ ν, ω2 = ωp

2
− μ

2
− ν, (16)

and we get

F (ν) = G
(μ

2
+ ν

)
G

(−μ

2
− ν

)
. (17)

We will restrict ourselves to symmetric filter functions,
G(−ν) = G(ν), and we have that

F (ν) = G
(
ν + μ

2

)2
. (18)
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To calculate the coincidence rates, we define the amplitude
ψ++(tA, tB) for the detection of one photon in detector A+ at
time tA and one in B+ at time tB:

ψ++(tA, tB) = 〈0|E (+)
A+ E (+)

B+ |ψ〉 (19)

with similar definitions for ψ+−, ψ−+, and ψ−−. Here E (+)
A+

is the annihilation part of the field operator for the electric
field at detector A+, and similar for the other detectors. The
exact form of these operators is given in Appendix, where it
is shown that when α = β = π/8,

ψ++(tB, tA) = −W

4

∫
dν f (ν)F (ν)

× [
e−iω1τ

H
A+−iω2τ

V
B+ − e−iω2τ

V
A+−iω1τ

H
B+

]
, (20)

where

τH
M± = tM± − zM±/c − τc,

τV
M± = tM± − zM±/c

(21)

is the time a photon exits the ppKTP if it is detected at the
detector M± at time tM± (M = A, B labels the detectors). zM±
is the distance from the end of the ppKTP crystal to detector
M±, and the time delay τc = LcD (where Lc is the length of
the compensating crystal) is the difference in the time taken by
photons with different polarizations to pass the compensating
crystal.

The coincidence rate is then given by the standard expres-
sion (see, e.g., [5])

R++
ab = 1

2T

∫ 2T

0
dt+

∫
dt−|ψ++|2, (22)

where t± = tA ± tB. In the Appendix, we show that when α =
β = π/8, this gives

R++
ab = R−−

ab = R0[I1 − I2], (23)

R+−
ab = R−+

ab = R0[I1 + I2], (24)

with

I1 = 4
∫

dζ
G(ζ + m/2)4

ζ 2
sin2 ζ

2
,

I2 = 4
∫

dζ
G(ζ + m/2)4

ζ (ζ + m)
sin

ζ

2
sin

ζ + m

2
, (25)

where we use the dimensionless variables

ζ = νDL, m = μDL, (26)

where we write G(ω) instead of G(ω/DL), and where we took
the length Lc of the compensating crystal to be half the length
L of the ppKTP crystal, as is the case in the experiment.

According to Eq. (1), the correlation in the diagonal
basis is

Eab(π/8, π/8) = − I2

I1
. (27)

The integrals I1 and I2 are probably difficult to calculate for
most filter functions, and we are satisfied with numerical
solutions of these integrals.

D. Comparing with the experimental data

To compare the theory with experiments, we need two
things: the bandwidth of the interference filter and the scaling
of the frequency difference between the two photons μ(T )
with the temperature T .

We assume a Gaussian filter

G(ζ ) = e−(ζ/Z )2
. (28)

In the experiments, we used filters with nominal bandwidths
of 1 and 10 nm. For the 1 nm filter we measured the ab-
sorption of the filter spectroscopically and fitted a Gaussian

of the form e−( λ−λ0
W )

2

with λ0 = 810 nm. The average of two
measurements gave a best fit W = 0.64 nm, which is not far
from the nominal specification. This has to be translated to
the frequency-domain filter function (28). Since G(ζ ) is the
amplitude for the photon to pass the filter, the probability

is G(ζ )2. Thus we set 2(ζ/Z )2 = ( λ−λ0
W )

2
. Recalling that

ζ = �ωDL, where �ω is the difference between the photon
frequency and the center frequency of the filter, we have that

ζ = 2πDLc

(
1

λ0
− 1

λ

)
≈ 2πDLc

λ − λ0

λ2
0

, (29)

where the approximation is valid as long as λ − λ0 � λ0,
which is appropriate for a narrow filter. Using that D =
1/c2 − 1/c1 = (n2 − n1)/c, where n1 = 1.75 and n2 = 1.84
are the indices of refraction of the two beams at the optimal
temperature, we get

Z = 2
√

2π (n2 − n1)L

λ2
0

W = 7.8, (30)

where L = 10 mm is the length of the ppKTP crystal. For the
10 nm filter, we do not have similar data but we can assume
that it has an A = 80, about 10 times as large as the 1 nm
filter. In any case, it is so large that there will be no significant
difference between the predicted result with this filter and with
no filter at all.

To fully predict the experimental results, we also have to
know the temperature dependence μ(T ) of the difference in
the center frequencies of the two downconverted beams. This
can in principle be found from the phase-matching conditions
(3) and (4), using the temperature dependence of the indices of
refraction and the thermal expansion of the poling period. We
tried several sets of published Sellmeier coefficients for KTP
[18,22,23], and they give substantially different results. None
of them predict exactly the correct optimal temperature or a
μ(T ) that fits the results accurately. The optimal temperature
is known from the data of Fig. 2, and it differs from the
predicted value by a few degrees for the best sets of Sellmeier
coefficients. The value of μ(T ) is typically off by 10–50 %.
We note that a similar situation is reported in Ref. [13]. It
seems likely that the exact temperature dependence of the
refraction indices is slightly different for different crystals,
depending on the purity of the crystal and the growth and pol-
ing conditions. We have therefore used the measured value of
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the optimal temperature, and we assumed a linear dependence
μ(T ) = a(T − Topt ) with the proportionality constant a as a
fitting parameter.

The results of the numerical evaluation of the integrals
I1 and I2 with the corresponding filter functions give the
correlation functions shown as lines in Fig. 3. The only fitting
parameter is the proportionality constant a, and the same
scaling is used for both filters. We see that the theory fully
accounts for the experimental result. Observe that even with
a 1 nm filter, the predictions are different from the simple
single-frequency two-mode description discussed above. This
means that the bandwidth of this filter is still too large for
the simplified single-frequency two-mode description to be
sufficient. It seems that the simplified description gives a
satisfactory description only at the optimal temperature. We
will now investigate why it works at this temperature, and how
narrow the filters must be so that the results are the same as
with a single-frequency mode.

V. WHY THE TWO-MODE DESCRIPTION WORKS
AT THE OPTIMAL TEMPERATURE

A. Without the interference filter

Let us go back to Eq. (20) and insert the definition of
f (ν). If we consider the case in which there is no interference
filter, so that F (ν) = 1, we get (for simplicity, we write τH

A
instead of τH

A+ and similarly for all other quantities, it being
understood that we consider the ++ correlation in these
formulas)

ψ (tB, tA) ∼
∫ 0

−L
dz

∫
dν eiDzν

× [
e−iω1τ

H
A −iω2τ

V
B − e−iω2τ

V
A −iω1τ

H
B
]
. (31)

Here, e−iω1τ
H
A is the phase change of a horizontally polarized

wave with frequency ω1 and wave velocity c propagating from
the origin (end of the ppKTP) to detector A+, and similarly for
the other phases. The factor eiDzν is due to the phase changes
of two waves with frequencies ω1 and ω2 and wave velocities
c1 and c2 from the point z to the origin, multiplied by the
phase eikpz of the pump field at point z. The interpretation of
Eq. (31) is then that it is a sum of waves starting at all points
−L < z < 0 inside the ppKTP crystal and with all possible
frequencies of the two outgoing waves, while keeping the
energy conversion equation ω1 + ω2 = ωp. This is in the spirit
of Feynman’s path integral approach to quantum mechanics,
where the total amplitude of a process is a sum over the
amplitudes for all possible ways in which the process can take
place.

We can give a more detailed geometric interpretation of
this expression. Consider the first term in Eq. (31), which, as
is well known [5,12], gives∫ 0

−L
dz

∫
dν eiDzνe−iω1τ

H
A −iω2τ

V
B = �(τ−/D)e−iω0

1τ
H
A −iω0

2τ
V
B ,

(32)

where �(x) = 1 if −L � x � 0 and zero otherwise.
Recalling Eq. (21), we see that if we consider a fixed

time, which we can choose as t = 0, then τP
M (for detector

δ = 0

τA

τB δ = −DL/2

τA

τB δ = −DL

τA

τB

δ = −3DL/2

τA

τB δ = −2DL

τA

τB

FIG. 5. Lines of equal phase for different thickness of the com-
pensating crystal, represented by the different values of δ − 2τc. The
compensating crystal used in the experiment corresponds to δ =
−DL, which leads to maximal overlap of the wave bands. The lines
of equal phase for the first term in Eq. (31) are shown in red, while
those for the second term are green. To clarify the phase relations, we
have shown a set of solid lines where the phase difference between
each solid line is 2π . The dashed lines interspersed between the solid
lines represent a phase shift of π with respect to the solid lines.
Outside of the two bands, the wave function is zero, as seen from
Eq. (32), and two-photon interference only occurs when the two
bands overlap.

M = A, B and polarization P = H,V ) describes the changing
phase of the wave in space along the given path. To get
a full picture, we can plot the waves along the two paths
along two orthogonal axes using the times τP

M as coordinates,
and Eq. (32) describes a set of plane waves in this abstract
space. As seen on the right-hand side of Eq. (32), the waves
will interfere destructively outside of a certain band in the
(τA, τB) plane. Inside this band, we have a plane wave with the
direction of the lines of equal phase (wavefronts) determined
by the center frequencies ω0

1 and ω0
2. In the second term of

Eq. (31), the detectors A and B are exchanged, so the image
is reflected in the diagonal of the (τA, τB) plane. In addition,
there is a shift for finite δ = −2τc (where τc = LcD is the
difference between the times that the beams with orthogo-
nal polarization use in passing the compensating crystal of
length Lc):

τV
A = τH

A − δ/2,

τH
B = τV

B + δ/2, (33)

which gives the picture shown in Fig. 5, where the lines of
equal phase from the first term of Eq. (31) are shown in red,
while the lines of equal phase from the second term are green.
Our experiments were performed with a compensating crystal
whose length was half of the ppKTP crystal, which gives δ =
−DL, corresponding to maximal overlap of the wave bands,
and therefore maximal interference between the two-photon
wave packets. From now on, we will only consider this value
of δ.

Consider now how this picture changes at different tem-
peratures. As the temperature deviates from the optimal, the
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m = 0

τA

τB m = 5

τA

τB m = 10

τA

τB

m = 15

τA

τB m = 20

τA

τB

FIG. 6. Lines of equal phase for different temperatures, as repre-
sented by the value of m = μ(T )DL, where μ(T ) = ω0

1 − ω0
2 is the

temperature-dependent difference between the center frequencies of
the two beams. The case m = 0 corresponds to the optimal temper-
ature, while larger values of m correspond to increasing deviations
from the optimal temperature. All figures are for a compensating
crystal with a length half that of the ppKTP as used in the exper-
iments, which means that δ = −DL and that the bands from the
two terms of Eq. (31) overlap fully, giving maximal two-photon
interference. Colors are the same as in Fig. 5. As we see, for m = 0,
the two waves always meet in phase opposition, resulting in complete
destructive interference at the center of the HOM dip.

center frequencies of the two outcoming beams start to differ,
and the slope of the lines of equal phase changes. This is
shown in Fig. 6 in terms of the dimensionless frequency
difference m as defined in Eq. (26). For m = 0 the lines
of equal phase for the two terms are parallel, and since there
is a relative minus between the two terms, we get complete
destructive interference, corresponding to the center of the
HOM dip. This is the origin of the perfect anticorrelation, E =
−1, observed at the optimal temperature. As the temperature
deviates from the optimal, the lines of equal phase get tilted,
and we get the oscillations in the correlation observed in Fig. 3
with the 10 nm IF (red points), which we check numerically is
virtually indistinguishable from no IF. To understand how the
oscillations of the correlation arise from the tilting of the lines
of equal phase, we go back to Eq. (22), which gives the
coincidence counting rate as an integral over the square of the
two-photon amplitude (where we can change the integration
variables to τ± = τA ± τB). The integrand will be independent
of τ+, so that we can fix τ+ at any value when considering the
integral over τ−, which means integrating along a line crossing
the wave band of Fig. 6. For m = 0, the lines of equal phase
for the two terms always meet in phase opposition, while if
we look at m = 5 we see that at the band edges the two terms
meet in phase. However, to get the full picture, we have to
remember that the wave function is a complex number, with
real and imaginary parts. The coincidence rate is given by
the integral in Eq. (22), and it is not so easy to visualize this
complex behavior using the diagrams of Fig. 6. We will now
see how this wave pattern is changed by the insertion of the IF,
which limits the frequencies to a band around half the pump
frequency.

Z = 80 Z = 7.8 Z = 1

FIG. 7. Contour plots of the real part of the first term of Eq. (34)
for different filter widths. The plots for Z = 80 and 7.8 correspond
to the experimental filters of 10 and 1 nm, respectively. The plot
for Z = 1 corresponds to an even narrower filter than those used
experimentally, and it is added to show the effect of the interference
filter more clearly. As without the filter, the graphs for the second
term of Eq. (34) are similar, just reflected in the diagonal and shifted
according to the value of δ.

B. The effect of the interference filter

With a filter in the setup, we have to go back to
(15) and modify (31) accordingly (letting α = β = π/8 as
before):

ψ (tB, tA) ∼
∫ 0

−L
dz

∫
dν F (ν)eiDzν

× [
e−iω1τ

H
A −iω2τ

V
B − e−iω2τ

V
A −iω1τ

H
B
]
. (34)

As in (28), we choose a Gaussian filter function. The two-
photon amplitude ψ (tB, tA) is complex, so to visualize it
we use contour plots of the real part as functions over the
(τA, τB) plane. In Fig. 7 we show the first term of Eq. (34)
for different values of Z and with m = 5. As we decrease
the filter bandwidth Z , two changes take place. First, the
band where coincidences can occur widens and becomes
less sharply defined. This is natural since all frequencies are
needed to provide the sharp edges of the coincidence band
(since a sharp step in a function only can be represented by a
Fourier transform when all frequencies are included). Second,
the lines of equal phase become more aligned 45◦ to the axes.

We can now understand why the simple and popular single-
frequency two-mode description works at the optimal tem-
perature, while it fails at other temperatures. At the optimal
temperature, the lines of equal phase are parallel even without
a filter. Adding a filter will smear out the band where the
amplitude is nonzero, but it will not change the orientation of
the lines of equal phase. So the interference effects between
the two terms in Eq. (34) are unchanged as the filter width
is changed. Only the overall amplitude, which is normalized
away in the correlation function, is sensitive to the filter.
Therefore, the results of the experiments are the same as if
only one frequency was present, even if in the real experiment
a superposition of frequencies occurs also at the optimal
temperature. At temperatures different from the optimal tem-
perature, the lines of equal phase are not parallel without the
filter, and they are gradually made more parallel as the filter
width is decreased. The experiments are then sensitive to the
frequency spread of the downconverted photon beam, and the
result depends on the filter width.
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C. How narrow a filter do we need to have a single-frequency
description?

In the limit of a very narrow filter, we would still expect
to recover the results of the one-frequency description. We
can estimate how narrow a filter is needed at different tem-
peratures using Eq. (25). If G(ζ ) is a sharply peaked function
around zero, we see that we will have contributions only for ζ

close to −m
2 . Then ζ

2 = ζ+m
2 = m

4 , and both integrals will be
close to zero when m = 4πn. We are interested in m close to
these points. We let ζ = −m/2 + ξ and expand for small ξ :

f1 = sin2 ζ

2

ζ 2
= 4 sin2 m/2

m2
− (· · · )ξ

+ m2 cos m/2 + 48 sin2 m/4 − 8m sin m/2

m4
ξ 2,

f2 = sin ζ

2 sin ζ+m
2

ζ (ζ + m)
= 4 sin2 m/2

m2
− m2 − 16 sin2 m/4

m4
ξ 2,

(35)

where the linear term in f1 is unimportant since it will
disappear when integrated over a symmetric filter function
G(ζ ). When m is close to 4πn (and n 
= 0) we can ignore
the variations of the quadratic coefficients with m and set
m = 4πn in the trigonometric functions to get

f1 = 4 sin2 �m/2

m2
+ ξ 2

m2
,

f2 = 4 sin2 �m/2

m2
− ξ 2

m2
, (36)

where �m = m − 4πn. For simplicity, assume a sharp filter
function G(ζ ) = 1 when |ζ | < Z and G(ζ ) = 0 when |ζ | >

Z . Then

I1,2 = 8Z

3�m2

(
12 sin2 �m

4
± Z2

)
, (37)

where the upper sign is for I1 and the lower sign is for
I2. We see that if Z > 3

√
2 sin �m

4 ≈ �m, the second term
dominates, and I2 = −I1, which gives a correlation EAB =
− I2

I1
= +1, meaning that the outcome at Alice’s arm is equal

to that at Bob’s arm. If Z < �m, we have I2 = I1, which
gives a correlation EAB = −1, meaning that the outcome at
Alice’s arm is opposite to that at Bob’s arm. Looking back
to the experiments in Sec. III we see that the introduction of
a narrower filter increased the amplitude of the oscillations
of the correlation, and made the correlation closer to +1. At
the same time, we now see that a certain spread in frequency
is necessary for the change between a correlation −1 and
+1, and that with a sufficiently narrow filter, we expect the
correlation to go back to −1. For m close to 4πn we then
expect the correlation to depend nonmonotonically on the
filter width Z .

VI. SUMMARY AND DISCUSSION

We have shown the results of a two-photon interference
experiment in which entangled pairs of photons are cre-
ated by parametric downconversion in a ppKTP crystal. The
downconversion process is most efficient at a certain optimal

temperature, and we have shown the effect of changing the
temperature away from this optimum. In previous experiments
[13] it had been shown that the temperature dependence of the
results reveals the frequency entanglement of the two-photon
state, as described by Eq. (5). This had been observed through
the presence of a slightly positive value of the correlation
function (1) between the two-photon detections.

We have demonstrated the same effect in a different setup,
and we have found dramatic oscillations of the correlation
between −1 and +1 as the temperature was changed. This
happened in an experimental system where the two photon
beams are never recombined in a beamsplitter (after the
primary nonpolarizing beamsplitter), but where the two polar-
ization states are mixed using half-wave plates. In addition, we
have investigated the effect of inserting an interference filter
before the two beams are separated by a beamsplitter to reduce
the frequency window over which the photons are spread.

The most natural expectation is then that the presence of a
filter will reduce the effect of the frequency entanglement, and
thereby also the positive value of Eq. (1). This is also the result
of a simplified theoretical description that ignores the fre-
quency spread and includes only a single frequency mode. We
observe the opposite, in the sense that the correlation comes
close to the maximal value of +1 at certain temperatures, as
seen in Fig. 3.

We have provided a detailed theoretical analysis, which
shows excellent agreement with the experiments. We have
also given an interpretation of the analytical formulas in terms
of the representation of the two-photon amplitude in the space
spanned by the detection times of the two photons.

Our work demonstrates that the simplified single-mode
pair representation is insufficient to describe our experimental
results. The biphoton description involves a much more com-
plicated interplay between the two original photons created
“simultaneously” in the nonlinear crystal. The interplay in-
volves in a very detailed manner both frequency relations be-
tween the two original photons and timing differences (phase
shifts) on their way from where they are created until the
horizontal and vertically polarized contributions have passed
through the rest of the nonlinear crystal, as well as through
the compensating crystal, the filters, and the mixing NPBS.
All these details are contained in the biphoton state.

APPENDIX: DETAILS OF THE CALCULATION OF THE
TWO-PHOTON AMPLITUDE AND COINCIDENCE RATE

We let operators aa,H and similar represent the field after
the NPBS but before the HWP, and aA,+ and similar after
the HWP. The effect of the HWP is then described by the
transformation

aA,+ = cos 2α aa,H + sin 2α aa,V ,

aA,− = − sin 2α aa,H + cos 2α aa,V ,

aB,+ = cos 2β ab,H + sin 2β ab,V ,

aB,− = − sin 2β ab,H + cos 2β ab,V . (A1)

The effect of the PBS is to send the two different polarizations
to the two different detectors, so that the field at one of the
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detectors is

E (+)
A,+ = i

∫
dωAA(ωA)e−iωAτP

A+aA,+(ωA) (A2)

and similarly for the others. Here the time τP
A+ depends on the

initial polarization P of the photon hitting the detector, as will
be specified below. The action of the NPBS is to split each
photon into the two arms, with extra phase factors in some

cases according to

ain,H
NPBS−→ 1√

2
(aa,H + iab,H ),

ain,V
NPBS−→ 1√

2
(aa,V − iab,V ). (A3)

This gives the field operators at the detectors in terms of
the operators at the exit of the ppKTP:

E (+)
A+ = i√

2

∫
dωAA(ωA)

[
e−iωAτH

A+ cos 2α ain,H + e−iωAτV
A+ sin 2α ain,V

]
,

E (+)
A− = i√

2

∫
dωAA(ωA)

[ − e−iωAτH
A− sin 2α ain,H + e−iωAτV

A− cos 2α ain,V
]
,

E (+)
B+ = 1√

2

∫
dωBA(ωB)

[
e−iωBτH

B+ cos 2β ain,H − e−iωBτV
B+ sin 2β ain,V

]
,

E (+)
B− = 1√

2

∫
dωBA(ωB)

[ − e−iωBτH
B− sin 2β ain,H − e−iωBτV

B− cos 2β ain,V
]
. (A4)

Here

τH
M± = tM± − zM±/c − τc, τV

M± = tM± − zM±/c (A5)

is the relative time a photon exited the ppKTP if it is detected at the detector M± at time tM± (M = A, B labels the detectors).
The time delay τc = LcD (where Lc is the length of the compensating crystal) is the difference in the time it takes for photons
with different polarizations to pass the compensating crystal.

Using this [and referring to Eqs. (6) and (15)], we get

ψ++(tA, tB) = 〈0|E (+)
A+ E (+)

B+ |ψ〉

= −W

2

∫
dωAdωBdν f (ν)F (ν)〈0|[e−iωAτH

A+ cos 2αain,H (ωA) + ie−iωAτV
A+ sin 2αain,V (ωA)

]

× [
ie−iωBτH

B+ cos 2βain,H (ωB) + e−iωBτV
B+ sin 2βain,V (ωB)

]
a†

in,H (ω1)a†
in,V (ω2)|0〉

= −W

2

∫
dωAdωBdν f (ν)F (ν)

[
e−iωAτH

A+−iωBτV
B+ cos 2α sin 2βδ(ωA − ω1)δ(ωB − ω2)

− e−iωAτV
A+−iωBτH

B+ sin 2α cos 2βδ(ωA − ω2)δ(ωB − ω1)
]

= −W

2

∫
dν f (ν)F (ν)

[
e−iω1τ

H
A −iω2τ

V
B cos 2α sin 2β − e−iω2τ

V
A −iω1τ

H
B sin 2α cos 2β

]
. (A6)

Similarly, we find that

ψ+−(tA, tB) = −W

2

∫
dν f (ν)F (ν)

[
e−iω1τ

H
A −iω2τ

V
B cos 2α cos 2β + e−iω2τ

V
A −iω1τ

H
B sin 2α sin 2β

]
, (A7)

which for α = β = π/8 (and we write the following equations only in this case) is the same as ψ++ except for the sign of the
second term. The remaining ψ−− and ψ−+ are related to the ones given by simple symmetry relations.

Defining τ± = τH
A − τV

B , we can rewrite Eq. (A6) for α = β = π/8 as [see also Eqs. (16)–(18) and (33)]

ψ++(tA, tB) = −W

2

∫
dν f (ν)F (ν)e−i

ωp
2 τ+

[
e−i( μ

2 +ν)τ− − ei( μ

2 +ν)(τ−−δ)]. (A8)

For the coincidence rate, we then find

R++
ab = D2R0

2

∫
dτ−

∫
dν1dν2

∫ 0

−L
dz1dz2eiD(z2ν2−z1ν1 )

× [
ei(ν1−ν2 )τ− + ei(ν2−ν1 )(τ−−δ) − ei(μ+ν1+ν2 )τ−− i

2 μδ−iν2δ − e−i(μ+ν1+ν2 )τ−+ i
2 μδ+iν1δ

]
F (ν1)F (ν2)

= D2R0

2

∫
dν1dν2

∫ 0

−L
dz1dz2eiD(z2ν2−z1ν1 )

× [
2δ(ν1 − ν2) − δ(μ + ν1 + ν2)

(
e− i

2 μδ−iν2δ + e
i
2 μδ+iν1δ

)]
F (ν1)F (ν2)
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= D2R0

∫
dν

∫ 0

−L
dz1dz2

[
F (ν)2eiD(z2−z1 )ν − F (ν)F (−μ − ν)eiD(z1+z2 )ν+iDz1μ e− i

2 μδ−iνδ
]

= R0

∫
dν

[
F (ν)2

ν2
[1 − e−iDLν][1 − eiDLν] + F (ν)F (−μ − ν)

ν(μ + ν)
[1 − e−iDL(ν+μ)][1 − e−iDLν]e− i

2 μδ−iνδ

]
, (A9)

which gives Eqs. (23)–(25) of the main text when the length Lc of the compensating crystal is half the length L of the ppKTP
crystal.
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