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In this paper, we first consider the generation of mechanical squeezing in a dispersively or dissipatively
coupled optomechanical system by continuously homodyning the output field of the optomechanical cavity.
It is found that strong steady-state mechanical squeezing beyond the 3 dB limit can be achieved in both of
the optomechanical systems. The properties of the squeezing are quite different for the two types of systems
and the reasons for the differences are analyzed. We next consider the achievement of optomechanical steering
in the dispersive or dissipative optomechanical system via continuously monitoring the position of the mechan-
ical oscillator. It is revealed that the monitoring can lead the steady-state optomechanical entanglement to be
enhanced considerably such that strong steerable correlations can be achieved between the mechanical oscillator
and the cavity field. The effects of thermal phonons are studied and it is shown that the generated squeezing and
steering are quite robust against the thermal fluctuations.
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I. INTRODUCTION

The generation of squeezed states of a macroscopic me-
chanical resonator has always attracted a lot of attention due
to its usefulness for, e.g., demonstrating macroscopic quantum
effects, ultraprecision measurements [1], and quantum infor-
matics of continuous variables [2]. Generically, in analogy
to the squeezed-light generation in quantum optics, one can
use a mechanical parametric downconvertor (via, e.g., modu-
lating mechanical spring at twice the mechanical resonance)
to achieve mechanical squeezed states [3,4]. However, the
squeezing in the steady-state regime via this process is limited
by the so-called 3 dB limit (i.e., the maximal squeezing
in the steady-state regime is about fifty percent of vacuum
fluctuations). To surpass the limit, a variety of schemes has
been put forward recently. These include injecting broad-
band squeezed light into an optomechanical system [5], con-
structing a detuned mechanical parametric downconvertor
which is subject to weak time-continuous measurements [6],
putting an optical parametric downconvertor inside an op-
tomechanical cavity combined with quantum feedback [7,8],
exploring strong mechanical nonlinearity [9], and applying
two-color driving on an optomechanical cavity and quantum
reservoir engineering [10,11], which has been experimentally
realized [12].

Quantum steering, originally termed by Schrödinger in his
response to the well-known Einstein-Podolsky-Rosen (EPR)
paradox [13,14], characterizes the ability to nonlocally steer
quantum states of a particle entangled with another remote
particle via local measurements. It is an intrinsic quantum
nonlocality, distinct from Bell nonlocality (the violation of
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Bell inequality) [15,16], as shown recently by Wiseman et al.
and Jones et al. in Refs. [17,18]. They verified that the
states exhibiting Bell nonlocality are a subset of steerable
states which are, in turn, a subset of entangled (inseparable)
states, i.e., steering is intermediate between entanglement
and Bell nonlocality. Distinct from entanglement and Bell
nonlocality, steering is intrinsically asymmetric with respect
to the two particles and thus directional. There may exist
one-way steering which allows us to steer the states of one
particle by measuring the other, but not vice versa [19–24].
Besides being of fundamental interest, EPR steering also
has potential applications, e.g., one-sided device-independent
quantum cryptography [25,26], subchannel discrimination
[27], and secure quantum teleportation [28]. Additionally,
by utilizing steerable correlations, desirable quantum states
can be achieved via local measurements [29–32]. Nowadays,
quantum steering has been experimentally realized in a variety
of systems [21–24,33–40].

Over the past decade, quantum optomechanics, which in-
volves the hybrid coupling between a mechanical resonator
and an electromagnetic field, has emerged as a new research
field [41]. Optomechanical systems hold great potential to
test quantum physics on a macroscopic scale, apart from
possible applications in, e.g., quantum information processing
[42–46] and ultrahigh-precision measurements [47–49]. Re-
cent experiments have achieved a few of the quantum effects
in optomechanical systems, such as optical and mechanical
squeezed states [50–52], light-mechanical entangled states of
continuous and discrete variables [53,54], Gaussian entangle-
ment between two mechanical resonators [55], nonclassical
correlations between single photons and phonons from a me-
chanical oscillator [56], heralded single-phonon Fock states of
a mechanical oscillator [57], and optomechanical Bell nonlo-
cality involving a macroscopic massive mechanical resonator
[58]. Theoretically, the scheme for achieving optomechanical
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Bell nonlocality of Gaussian states has also been proposed
[59].

In this paper, we consider the generation of strong me-
chanical squeezing and optomechanical steering—anther kind
of quantum nonlocality—in the regime of steady states, re-
spectively, by continuously monitoring the cavity field and
the position of the mechanical oscillator in dispersively or
dissipatively coupled optomechanical systems. We note that
quantum control of optomechanical systems via continuous
measurements to realize, e.g., ground-state cooling and non-
classical mechanical states has been investigated [6,60–65].
Meanwhile, the control of the mechanical oscillators via
individual measurements in pulsed optomechanics has also
been investigated [66–68]. We first consider the generation of
mechanical squeezing in a dispersively or dissipatively cou-
pled optomechanical system by continuously homodyning the
output of the cavity field. It is found that strong steady-state
mechanical squeezing beyond the 3 dB limit can be achieved
for the two types of coupling, but the properties of the
mechanical squeezing are quite different. The reasons for the
differences are analyzed. We next consider the achievement
of steady-state optomechanical steering in the optomechani-
cal systems via continuously monitoring the position of the
mechanical oscillator. It is revealed that the monitoring of the
mechanical position can lead the steady-state optomechanical
entanglement to be considerably enhanced such that strong
steerable correlations can be achieved between the mechanical
oscillator and the cavity field in both of the coupled systems.
We also study the effects of thermal phonons and it is shown
that the generated squeezing and steering are robust against
the thermal fluctuations.

The remainder of this paper is organized as follows. In
Sec. II, the system is introduced and the working equations
are presented. In Sec. III, the properties of the mechani-
cal squeezing and optomechanical steering in a dispersive
or dissipative optomechanical system under time-continuous
measurements are investigated in detail. In Sec. IV, we give
the main summary.

II. SYSTEM AND EQUATIONS

A. System

As schematically shown in Fig. 1(a), we consider a generic
optomechanical system in which a mechanical resonator (de-
scribed by the operator b̂m) of frequency ωm is dispersively or
dissipatively coupled to a laser-driven cavity field (denoted
by the operator âc). This means that the cavity resonance
ω̃c or the dissipation rate κ̃c is modulated by the position
X̂m of the mechanical oscillator, leading to dispersive or
dissipative optomechanical coupling, respectively. To achieve
mechanical squeezing, the cavity output is subject to time-
continuous homodyne detection. As depicted in Fig. 1(b), we
also consider the establishment of optomechanical steering
between the cavity field âc and the mechanical oscillator b̂m by
continuous monitoring of the position of the mechanical oscil-
lator. To this end, we consider the coupling of the mechanical
oscillator to anther cavity of resonance ω̃t . The cavity field is
called the transducer field and denoted by the operator ât . This
two-cavity optomechanical system can be realized with two
microwave cavities mediated by a mechanical oscillator

FIG. 1. (a) Generating strong mechanical squeezing in a disper-
sive or dissipative optomechanical system (ac, bm) by continuously
homodyning the output field of the cavity. (b) Achieving strong
optomechanical steerable correlations in a dispersive or dissipative
optomechanical system (ac, bm) by continuously monitoring the
position Xm of the mechanical oscillator. The position monitoring
can be realized by dispersively coupling the mechanical oscillator
weakly to a bad cavity at whose output field is subject to continuous
homodyne detection. The parameters Ij and η j ( j = c, t ) denote the
detection currents and efficiencies, respectively.

[69,70] or optoelectromechanical systems composed of a mi-
crowave and optical cavities sharing a mechanical resonator
[71]. We will later show that in the bad cavity limit, the
homodyne detection of the transducer field can approximately
give the mechanical position. In the rotating frame, with
respect to the driving frequencies ωd j ( j = s, t ) of the two
cavities, the effective Hamiltonian of the system (h̄ = 1) can
be written as

Ĥ =
∑
j=c,t

[ω̃ j (X̂m) − ωd j]â
†
j â j + ωmb̂†

mb̂m

+ i
√

κ̃c(X̂m)
(
âin†

c âc − â†
c âin

c

)
+ i

√
κt

(
âin†

t ât − â†
t âin

t

)
, (1)

where X̂m ≡ 1√
2
(b̂m + b̂†

m) is the dimensionless displacement

operator of the mechanical oscillator, âin
j denote the cavity

input fields consisting of coherent driving and vacuum noise
components, and κt is the dissipation rate of the transducer
cavity.

By taking into account the damping of the mechanical
oscillator, the Langevin equations of motion for the operators
â j and b̂m are found to be

d

dt
âc = −

{
κ̃c(X̂m)

2
+ i[ω̃c(X̂m) − ωdc]

}
âc −

√
κ̃c(X̂m)âin

c (t ),

(2a)

d

dt
ât = −

{κt

2
+ i[ω̃t (X̂m) − ωdt ]

}
ât − √

κt â
in
t (t ), (2b)

d

dt
b̂m = −

[γm

2
+ iωm

]
b̂m + i

∑
j

[ω̃ j (X̂m), b̂m]â†
j â j

− [
√

κ̃c(X̂m), b̂m]
(
âin†

c âc − â†
c âin

c

) − √
γmb̂in(t ), (2c)

where γm denotes the mechanical damping rate and the
mechanical noise operator b̂in(t ) has the nonzero correla-
tions 〈b̂in(t )b̂†

in(t ′)〉 = (n̄th + 1)δ(t − t ′) and 〈b̂†
in(t )b̂in(t ′)〉 =

n̄thδ(t − t ′), with n̄th ≡ (eh̄ωm/kBT − 1)−1 denoting the mean
number of thermal phonons of the thermal environment of the
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mechanical oscillator at temperature T , with kB the Boltzmann
constant.

We consider the situation that the position-dependent fre-
quencies ω̃ j (X̂m) and linewidth κ̃c(X̂m) are expanded to the
first order in the position operator X̂m, i.e., ω̃ j (X̂m) � ω j −√

2g jωX̂m and κ̃c(X̂m) � κc + √
2gcκ X̂m, where the dispersive

and dissipative couplings are g jω = − ∂ω̃ j√
2∂Xm

and gcκ = ∂κ̃c√
2∂Xm

,

respectively. We then have
√

κ̃c(X̂m) � √
κc(1 + gcκ X̂m√

2κc
). In this

way, the Langevin equations of Eq. (2) reduce to

d

dt
âc = −

[
κc

2

(
1 +

√
2gcκ

κc
X̂m

)
+ iδc − i

√
2gcωX̂m

]
âc

−√
κc

(
1 + gcκ√

2κc

X̂m

)
âin

c (t ), (3a)

d

dt
ât = −

[κt

2
+ iδt − i

√
2gtωX̂m

]
ât − √

κt â
in
t (t ), (3b)

d

dt
b̂m = −

[γm

2
+ iωm

]
b̂m + i

∑
j

g jωâ†
j â j (3c)

+ gcκ

2
√

κc

(
âin†

c âc − â†
c âin

c

) − √
γmb̂in(t ), (3d)

where the detuning δ j = ω j − ωd j .
The above nonlinear equations of Eq. (3) can be lin-

earized around the steady-state amplitudes of the oper-
ators â j , b̂m, and âin

j as â j = āss
j + δâ j , b̂m = b̄ss

m + δb̂m,

and âin
j = āin,ss

j + δâin
j when |Ōss|2 � 〈δÔδÔ†〉 for opera-

tor Ô = {â j, b̂m}. Here the steady-state amplitudes āss
j ≈

− 2
√

κcāin,ss
j

κ j+2i� j
, with the detuning � j = δ j − √

2g jωRe[X̄ ss
m ], and

b̄ss
m ≈

∑
j g jω |āss

j |2+gck Im[āin,ss∗
j āss

j ]/2
√

κc

ωm
. The operators δâ j and δb̂m

describe the quantum fluctuations of the cavity and mechani-
cal modes, and δâin

j describe the vacuum inputs of the cavities.
In the following, the script δ is omitted for simplicity. Then,
the linearized Langevin equations can be derived as (see the
Appendix)

d

dt
âc = −

(κc

2
+ i�c

)
âc −

[
Gκ

4
− i

(
Gω + Gκ�c

2κc

)]

× (b̂m + b̂†
m) − √

κcâin
c (t ), (4a)

d

dt
ât = −

(κt

2
+ i�t

)
ât + iGt (b̂m + b̂†

m) − √
κt â

in
t (t ), (4b)

d

dt
b̂m = −

[γm

2
+ iωm

]
b̂m −

[
Gκ

4
− i

(
Gω + Gκ�c

2κc

)]
âc

+
[

Gκ

4
+ i

(
Gω + Gκ�c

2κc

)]
â†

c + iGt (âc + â†
c )

− Gk

2
√

κc
âin

c (t ) + Gk

2
√

κc
âin†

c (t ) − √
γmb̂in(t ), (4c)

where Gω = gcωāss
c , Gt = gtωāss

t , and Gκ = gcκ āss
c are, respec-

tively, the enhanced dispersive and dissipative optomechanical
coupling strengths.

From Eq. (4), the effective linearized Hamiltonian can be
found to be

Ĥeff =
∑

j

� j â
†
j â j + ωmb̂†

mb̂m − Gt (ât + â†
t )(b̂m + b̂†

m)

−
(

Gω + �c

2κc
Gκ

)
(âc + â†

c )(b̂m + b̂†
m), (5)

which shows that the dissipative coupling can also lead to
the same optomechanical interaction (the terms related to
Gκ ) as the dispersive coupling, but it disappears for resonant
driving �c = 0. From Eq. (4), we see that the cavity field âc

and the mechanical oscillator are simultaneously coupled to
a common vacuum reservoir (denoted by âin

c ), giving rise to
the dissipative coupling between the mechanical oscillator and
the cavity field. This can be explicitly seen from the master
equation for the density operator ρ̂ of the whole system, which
is equivalent to the Langevin equation of Eq. (4) and given by

d

dt
ρ̂ = −i[Ĥeff , ρ̂] +

∑
j

κ jL[â j]ρ̂

+ γm(n̄th + 1)L[b̂m]ρ̂ + γmn̄thL[b̂†
m]ρ̂

+ G2
κ

8κc
L[b̂m + b̂†

m]ρ̂ + Gκ

4
[2âsρ̂(b̂m + b̂†

m)

− (b̂m + b̂†
m)âsρ̂ − ρ̂(b̂m + b̂†

m)âs + H.c.], (6)

where L[ô]ρ̂ = ôρ̂ô† − 1
2 (ô†ôρ̂ + ρ̂ô†ô). Different from

purely dispersive optomechanical coupling, purely dissipative
optomechanical coupling can lead to phonon heating (the
first term in the third line) and dissipative optomechanical
coupling (the terms related to Gκ in the third and last lines).

B. Under time-continuous measurements

We consider that the outputs of the cavity field âc and the
transducer field ât are subject to time-continuous homodyne
detection. For the cavity outputs

âout
c (t ) = √

κcâc + Gκ√
2κc

X̂m + âin
c (t ), (7a)

âout
t (t ) = √

κt ât + âin
t (t ), (7b)

the generalized quadratures X̂
φ j

j = 1√
2
(Ôout

j eiφ j + Ôout†
j e−iφ j )

are subject to homodyne detection, where the phases φ j are
controllable via adjusting the local fields in the detection. The
corresponding detection currents are

Iφc
c dt = √

ηcκc〈âceiφc + â†
ce−iφc〉dt

+
√

2ηcGκ cos φc√
κc

X̂mdt + dWs, (8a)

Iφt
t dt = √

ηtκt 〈ât e
iφt + â†

t e−iφt 〉dt + dWt , (8b)

where η j are the detection efficiencies and dWj are the
Wiener increments satisfying dWjdWj′ = dtδ j j′ . From the
above equations, we see that for the dissipative coupling, the
detection current Iφc

c explicitly depends on the position X̂m

of the mechanical oscillator, different from the current Iφt
t

for dispersive coupling. This is because the motion of the
mechanical oscillator is directly coupled to the input field
âin

c (t ) in dissipatively coupled optomechanical systems and
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therefore monitoring the environment (output field) of the
cavity field âc is mechanically dependent.

Depending on the detection results, the stochastic master
equation for the unnormalized conditional state ˆ̄ρc is given by
[72]

d ˆ̄ρc = − i[Ĥeff , ˆ̄ρc]dt +
∑

j

κ jL[â j]ρ̂cdt

+ γm(n̄th + 1)L[b̂m] ˆ̄ρcdt + γmn̄thL[b̂†
m] ˆ̄ρcdt

+ G2
κ

8κc
L[b̂m + b̂†

m] ˆ̄ρcdt + Gκ

4
[2âc ˆ̄ρc(b̂m + b̂†

m)

− (b̂m + b̂†
m)âc ˆ̄ρc − ˆ̄ρc(b̂m + b̂†

m)âc + H.c.]dt

+
[(√

ηcκcâc +
√

ηsGκ√
2κc

X̂m

)
eiφc ˆ̄ρc + H.c.

]
Iφc
c dt

+ √
ηtκt (ât e

iφt ˆ̄ρc + H.c.)Iφt
t dt, (9)

where the parameters η j account for the detection efficiencies.
The master equation for the normalized state ρ̂c can be found
to be

d ρ̂c = − i[Ĥeff , ρ̂c]dt +
∑

j

κ jL[â j]ρ̂cdt

+ γm(n̄th + 1)L[b̂m]ρ̂cdt + γmn̄thL[b̂†
m]ρ̂cdt

+ G2
κ

8κs
L[b̂m + b̂†

m]ρ̂cdt + Gκ

4
[2âsρ̂c(b̂m + b̂†

m)

− (b̂m + b̂†
m)âcρ̂c − ρ̂c(b̂m + b̂†

m)âc + H.c.]dt

+ H
[(√

ηcκcâs +
√

ηcGκ√
2κc

X̂m

)
eiφc

]
ρ̂cdWc

+ √
ηtκtH[ât e

iφt ]ρ̂cdWt , (10)

where the nonlinear terms H[Ô]ρ̂ = (Ô − 〈Ô〉)ρ̂ + ρ̂(Ô −
〈Ô〉), describing the nonlinear effects due to the time-
continuous measurements.

We further assume that the dynamics of the transducer
cavity field ât is much faster on the timescale than the
dynamics of the mechanical system on the condition κt �
{Gt , ωm, n̄thγm}. That is to say, the minimum time required
for achieving steady states for the transducer field is much
shorter than that for the mechanical system, and thus the trans-
ducer field can be adiabatically eliminated. In this way, we
have ât ≈ − 2iGt

κt
(b̂m + b̂†

m) + 2√
κt

âin
t (t ), when κt � �t ∼ ωm.

Therefore, we can see that the measurement of the quadratures
of the output field âout

t can allow us to infer the position of
the mechanical oscillator, merely introducing extra vacuum
fluctuations. The conditional master equation for the density
matrix ˆ̃ρc of the subsystem of the cavity field âc and the
mechanical oscillator after the adiabatical elimination can be
found to be

d ˆ̃ρc = − i[ ˆ̃Heff , ˆ̃ρc]dt + κcL[âc] ˆ̃ρcdt + �mL[X̂m] ˆ̃ρcdt

+ γm(n̄th + 1)L[b̂m] ˆ̃ρcdt + γmn̄thL[b̂†
m] ˆ̃ρcdt

+ H
[(√

ηcκcâc +
√

ηcGκ√
2κc

X̂m

)
eiφc

]
ˆ̃ρcdWc

+
√

ηt�mH[X̂m] ˆ̃ρcdWt , (11)

where we have chosen the phase φt = π
2 by adjusting the local

field, the Hamiltonian

ˆ̃Heff ≈ �câ†
c âc + ωmb̂†

mb̂m

−
(

Gω + �c

2κc
Gκ

)
(âc + â†

c )(b̂m + b̂†
m), (12)

and �m = 8G2
t

κt
. From the above equation, we see that the

weak coupling of the mechanical oscillator to the overdamped
transducer field brings about a decohering environment to
the mechanical oscillator (the third term), while the last
term describes the direct measurement of the position of
the mechanical oscillator which results from the continuous
monitoring of the effective mechanical environment.

C. Correlation matrix

The above master equation of Eq. (11) determines the
properties of the dispersively or dissipatively optomechan-
ical system subject to continuous monitoring of the cavity
output or the position of the mechanical oscillator. When
the system starts from a Gaussian state, it remains Gaussian
and its properties are determined by the correlation matrix
σ , defined as σii′ = 〈μiμi′ + μi′μi〉/2 − 〈μi〉〈μi′ 〉, with μ =
(X̂c, Ŷc, X̂m, Ŷm), where X̂c and Ŷc are the quadrature operators
of the cavity field âc. From Eq. (11), the first moments μ̄ ≡
〈μT 〉 and the covariance matrix σ are determined by

d

dt
μ̄ = Aμ̄ +

∑
j

(σCj + � j )dWj, (13a)

d

dt
σ = Aσ + σAT + D −

∑
j

(σCj + � j )(σCj + � j )
T ,

(13b)

where

A =

⎛
⎜⎜⎜⎝

− κc
2 �c −Gc

2 0

�c − κc
2 2Gω + Gκ�c

κc
0

0 0 − γm

2 ωm

2Gω + Gκ�c
κc

−Gc
2 −ωm − γm

2

⎞
⎟⎟⎟⎠,

D =

⎛
⎜⎜⎜⎝

κc
2 0 0 0

0 κc
2 0 Gκ

2

0 0 γ̃m 0

0 Gκ

2 0 γ̃m + G2
κ

2κc
+ �m

⎞
⎟⎟⎟⎠,

CT
1 =

√
2ηcκc

(
cos φc,− sin φc,

Gκ

κc
cos φc, 0

)
,

�T
1 =

√
ηcκc

2

(
− cos φc, sin φc, 0,

Gκ

κc
sin φc

)
,

CT
2 = 2

√
ηt�m(0, 0, 1, 0),

�2 = 0, and γ̃m = γm(n̄th + 1
2 ). In the above, Cj and � j are

determined, respectively, by the detection outcomes and the
correlations between the input noises of the system and the
detection noises. When the detection efficiencies η j = 1, per-
fect correlations between the two noises are generated and
optimal detection is achieved. It can be seen that Eq. (13a) for
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the first moments is stochastic and dependent on the results
of the time-continuous measurements, while the equation for
the correlation matrix is deterministic and independent of the
measurement results. The stochastic first-order moments can
be removed by introducing a linear Markovian feedback to
drive the system. The time-continuous measurements not only
modify the drift and diffusion matrices of the system, but also
induce nonlinear terms embodied by the terms

∑
j σCjCT

j σ .
In the absence of the measurements η j = 0, Eq. (13a) for
the first-order terms disappears and the nonlinear equation of
Eq. (13b) reduces to the linear one with drift and diffusion
matrices A and D.

D. Stability

When interested in the regime of steady states, we can set
the time deviation equal to zero. In the absence of the con-
tinuous measurements, the linear equation is stable when the
real parts of all eigenvalues of the matrix A are negative. It can
be found that without the transducer field, the stable condition
for the linearized optomechanical system with dissipative or
dispersive coupling is that the following three inequalities are
simultaneously held:

S1 = κc

(
κ2

c

4
+ κcγm + �2

c

)
+ γm

(
γ 2

m

4
+ κcγm + ω2

m

)
− 2ωmGκG > 0, (14a)

S2 =
(

γ 2
m

4
+ ω2

m

)(
κ2

c

4
+ �2

c

)
+ κcωmGκG

+ 2ωm�c

(
G2

κ

8
− 2G2

)
> 0, (14b)

S3 =
[
κc

(κcγm

4
+ ω2

m

)
+ γm

(κcγm

4
+ �2

c

)
+ 2ωmGκG

]

×
[
κc

(
κ2

c

4
+ κcγm + �2

c

)
+ γm

(
γ 2

m

4
+ κcγm + ω2

m

)

− 2ωmGκG

]
− (κc + γm)2

[(
γ 2

m

4
+ ω2

m

)(
κ2

c

4
+ �2

c

)

+ κcωmGκG + 2ωm�c

(
G2

κ

8
− 2G2

)]
> 0, (14c)

where G = Gω + �c
2κc

Gκ . In the presence of the measurements,
Eq. (13b) is stable when [72]

Cxλ �= 0 ∀xλ : Ãxλ = λxλ with Re(λ) � 0, (15)

where C = CT
1 + CT

2 and Ã = A − (�1CT
1 + �2CT

2 ).

III. NUMERICAL RESULTS

In this section, we investigate in detail the properties of
the mechanical squeezing and optomechanical entanglement
and steering in the optomechanical system under the time-
continuous measurements. The mechanical squeezing can
be measured by the variance of the generalized quadrature
X̂ φm

m ≡ 1√
2
(b̂meiφm + b̂†

me−iφm ),

V φm
m = 〈(

X̂ φm
m

)2〉
. (16)

FIG. 2. The dependence of the mechanical squeezing Vm on
the detuning �c for (a),(c) purely dispersive coupling and for
(b),(d) purely dissipative coupling. (a),(b) The coupling Gω = ωm

and Gκ = ωm; (c),(d) the detection efficiency ηc = 1.0. The other
parameters κc = ωm, γm = 10−5ωm, and n̄th = 0.

The squeezing is achieved when Vm < 1
2 . The optimal squeez-

ing, with respect to the local angle φm, is equal to the minimal
eigenvalues of the correlation matrix σm of the mechanical
oscillator, i.e.,

Vm = Min {Eigen [σm]}, (17)

when expressing the covariance matrix σ in the form

σ =
(

σc Ccm

CT
cm σm

)
. (18)

Similarly, the optimal squeezing of the cavity field is Vc =
Min {Eigenvalues [σc]}.

The steering from the cavity field âc to the mechanical
oscillator b̂m can be quantified by the measure [73]

Sm|c = max

{
0,

1

2
ln

det σc

4 det σ

}
. (19)

Similarly, for the reverse steering from the mechanical oscil-
lator to the cavity field, it is quantified by

Sc|m = max

{
0,

1

2
ln

det σm

4 det σ

}
. (20)

In addition, the entanglement between the cavity field âc

and the mechanical oscillator b̂m can be quantified by the
logarithmic negativity [74],

Emc = max[0,− ln(2e)], (21)

where e = 2−1/2
√

�2(σ ) −
√

�2(σ ) − 4det σ and �(σ ) =
det σc + det σm − 2detCcm.

A. Mechanical squeezing

We first study the mechanical squeezing by numerically
solving the Riccati equation for Eq. (13b) in the steady-state
regime with the software MATHEMATICA. In our numerical
calculation, the local angles φc are chosen such that the
mechanical squeezing is optimized (similarly hereinafter). In
addition, we also set �m = 0 in this section. In Fig. 2, the
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FIG. 3. The dependence of the mechanical squeezing Vm (thin
curves) on the detuning �c for purely dispersive coupling for dif-
ferent coupling strengths Gω. The other parameters γm = 10−5ωm,
n̄th = 0, and ηc = 1.0. The thick curves depict the corresponding
entanglement Emc between the intracavity field and the mechanical
oscillator in the absence of the detection (ηc = 0).

dependence the mechanical variance Vm on the output of
the cavity field âc on the detuning �c is plotted. We note
that in the absence of the detection ηc = 0, the variance
Vm > 1

2 . But we can see from Fig. 2 that with the measure-
ment, the mechanical squeezing beyond the 3 dB limit (i.e.,
Vm < 1/4) can be achieved not only by purely dispersive
but also by purely dissipative coupling. This is because the
optomechanical correlations are established via the disper-
sive or dissipative coupling and the homodyne detection on
the output of the cavity field can therefore decrease the
quadrature fluctuations of the mechanical subsystem. It is
shown that the squeezing is dependent on the detection ef-
ficiency ηc. For the case of purely dispersive coupling, as
the coupling strength Gω decreases, the maximal squeezing
decreases and it moves further away, approximately from
�c ≈ 3.5ωm to �c ≈ 0, as similarly obtained in Ref. [63]
for a levitating nonsphere. For a fixed coupling strength, the
squeezing degree decreases as the detuning |�c| increases.
This is because, as the detuning arises, the effective coupling
between the cavity field and the mechanical oscillator is
weakened, which in turn decreases the correlations between
the two subsystems. Therefore, the mechanical squeezing is
reduced. This can also be affirmed from Fig. 3, which plots
the mechanical squeezing and the entanglement between the
intracavity field and the mechanical oscillator. It is shown that
the maximal squeezing occurs at the detuning at which the
light-mechanical entanglement is maximum in the absence of
the detection. As shown in Figs. 2(b) and 2(d), the behavior
of the mechanical squeezing via purely dissipative coupling
is quite different from that by purely dispersive coupling.
We see that the squeezing disappears for the near-resonant
coupling (�c ≈ 0). As the detuning increases, the degree of
squeezing is enhanced. This is because when the coupling Gω

or Gκ is fixed, the amplitude āss
c of the intracavity field âc

should be unchanged (Gω = gcωāss
c , Gκ = gcκ āss

c ), which thus
requires the power of the driving laser to be increased when
the detuning increases. This means the classical amplitude āin

s
of the input field âin

c , which is directly coupled to the motion
X̂m of the mechanical oscillator, correspondingly increases
for purely dissipative coupling. Therefore, the increasing of

FIG. 4. The dependence of the mechanical squeezing Vm on the
detuning �c for purely dispersive coupling in (a) with Gω = ωm and
for purely dissipative coupling in (b) with Gκ = ωm, for different
cavity dissipation rates κc. The other parameters γm = 10−5ωm, n̄th =
0, and ηc = 1.0.

the detuning implies the increase of the effective dissipative
optomechanical coupling, although the coupling Gκ is fixed.
This is clearly embodied by the effective Hamiltonian in
Eq. (5), where the term related to Gκ�c

κc
shows that the increase

of the detuning leads to the enhancement of the coupling
between the cavity field and the mechanical oscillator. As
a consequence, the mechanical squeezing via the detection
increases at first and then gets saturated as the detuning
increases. In addition, we can also see that the mechanical
squeezing vanishes at the approximate resonance �c ≈ 0,
since we have Gκ�c

κc
≈ 0, although the coupling Gκ �= 0 and

the dissipative optomechanical coupling (the terms related
to Gκ in the third and last lines) exist. This implies that
the optomechanical correlations which determine the optimal
mechanical squeezing via detection are mainly attributed to
the effective coherent optomechanical coupling in Eq. (5).

In Fig. 4, the dependence of the mechanical squeezing on
the detuning �c for different values of the cavity dissipation
rate κc is plotted. For the case of purely dispersive coupling,
the increase of κc means the increase of the detection strength.
Thus we see that the squeezing is improved around the de-
tuning �c ≈ −2.5ωm and for �c � 3.5ωm, whereas for the
purely dissipative coupling, the increase of κc brings about the
improvement of the squeezing. Also, this is mainly because,
as shown from Eq. (5) and discussed above, the coupling
strength Gκ�c

κc
increases with the decreasing of κc. Physically,

as explained above, for fixed coupling Gκ and driving power,
the decreasing of κc leads to the increase of āin

c and thus the
increase of the dissipative coupling.

In Fig. 5, we consider the generation of the mechanical
squeezing by the detection in the simultaneous presence of
dispersive and dissipative coupling. In fact, recent experi-
ments have already achieved the simultaneous occurrence of
the two types of coupling [75–77]. We see that the com-
bination of the two types of coupling leads the mechanical
squeezing to be considerably enhanced, even with weaker
coupling strengths, compared to the case of purely dispersive
or purely dissipative coupling. For instance, with the coupling
Gκ = 1

2 Gω = 1
4ωm, the optimal variance Vm ≈ 0.1 with the

detuning �c = 5ωm. This allows us to produce strong me-
chanical squeezing merely by utilizing weak optomechanical
coupling. In addition, we see that the enhancement occurs
just for �c > 0, which is because, as shown in Eq. (5), the
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FIG. 5. The dependence of the mechanical squeezing Vm on the
detuning �c for purely dispersive coupling (solid line), for purely
dissipative coupling (dashed line), and for the combination of the two
types of couplings (dash-dotted line). The other parameters κc = ωm,
γm = 10−5ωm, n̄th = 0, and ηc = 1.0.

coupling strength Gω + Gκ�c
κc

is reduced for �c < 0, whereas
it is enhanced for �c > 0.

So far, we have investigated the mechanical squeezing
via homodyne detection under the vacuum environment of
the mechanical oscillator. We now investigate the effect of
the thermal environment on the mechanical squeezing, with
realistic parameters close to recent relevant experiments. For
purely dispersive coupling [78,79], we consider the me-
chanical frequency ωm/2π ≈ 5 MHz, the cavity dissipation
rate κc/2π ≈ 10 MHz, the mechanical quality factor Qm =
ωm
γm

≈ 105, and the single-photon coupling strength gcω/2π ≈
90 Hz. When choosing the detuning �c ≈ 3.7ωm, we have the
collective dispersive coupling Gω/2π ≈ 5 MHz for the power
of pumping laser P ≈ 150 μW with pumping frequency
νp/2π ≈ 5 GHz in the microwave regime. As shown in Fig. 6,

FIG. 6. The effect of thermal phonons on the mechanical squeez-
ing Vm for purely dispersive coupling (solid line) with Gω = ωm, κc =
2ωm, and �c = 3.7ωm; for purely dissipative coupling (dashed line)
with Gκ = ωm, κc = 2ωm, and �c = 5ωm; and for the combination
of the coupling (dash-dot-dotted line) Gω = 0.5ωm, Gκ = 0.25ωm,
κc = ωm, and �c = 5ωm. The other parameters γm = 10−5ωm and
ηc = 1.0.

FIG. 7. The dependence of the optomechanical entanglement
Emc, the optomechanical steering Sc|m and Sm|c, the mechanical
squeezing Vm, and the cavity-field squeezing Vc on the detuning �c

via purely dispersive coupling Gω. The other parameters Gκ = 0,
κc = 0.2ωm, γm = 10−5ωm, n̄th = 0, �m = 0.05ωm, and ηt = 1.0.
(a) The entanglement and steering in the absence of the detection
(�m = 0 and ηt = 0).

we see that the mechanical squeezing via purely dispersive
coupling can exist up to the thermal phonon number n̄th ≈
3.5 × 104, while for the case of purely dissipative coupling,
we consider the parameters, proposed in Ref. [80] and real-
ized in Ref. [75], as ωm/2π ≈ 130 kHz, κc/2π ≈ 260 kHz,
Qm ≈ 105, and the single-photon coupling strength gcκ/2π ≈
2.5 Hz. When the detuning �c ≈ 5ωm, the coupling Gκ ≈ ωm

for the pumping power P ≈ 50 mW with the wavelength
λp ≈ 1064 nm, and we have n̄th ≈ 4 × 104. Meanwhile, for
the combination of the coupling, with the single-photon cou-
pling gcω ≈ 0.8 Hz and gcκ/2π ≈ 0.4 Hz, the coupling Gω =
2Gκ ≈ 0.5ωm for the pumping power P ≈ 400 mW with the
detuning �c = 5ωm, we have the maximal number of thermal
phonons n̄th ≈ 8 × 104. These results show that the present
scheme for generating mechanical squeezing is robust against
thermal fluctuations.

B. Optomechanical steering

We proceed to discuss the optomechanical steering of the
system under the continuous mechanical position monitoring.
In Figs. 7 and 8, we plot the optomechanical entanglement,
steering, and optical and mechanical squeezing, respectively,
for purely dispersive and purely dissipative coupling. As
shown in Fig. 7(a), without the continuous position moni-
toring, the entanglement via dispersive coupling is present
only in the regime of red detuning �c > 0 and it maximizes
approximately at �c = ωm for weak coupling Gω, which has
already been studied in Ref. [81]. The optomechanical steer-
ing cannot be generated, while for dissipative coupling, the
entanglement and steering are achievable in the blue-detuned
regime when the monitoring is absent, as depicted in Fig. 8(a).
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FIG. 8. The dependence of the optomechanical entanglement
Emc, the optomechanical steering Sc|m and Sm|c, the mechanical
squeezing Vm, and the cavity-field squeezing Vc on the detuning �c

via purely dissipative coupling Gκ . The other parameters Gω = 0,
κc = 0.2ωm, γm = 10−5ωm, n̄th = 0, �m = 0.05ωm, and ηt = 1.0.
(a) The situation without the detection (�m = 0 and ηt = 0).

However, when the monitoring is present, it can be seen that
for both types of coupling, the entanglement is considerably
enhanced such that strong optomechanical steering in both
directions can be achieved. The entanglement and steering
in the presence of the monitoring can be achieved in both
regimes of red and blue detuning. In addition, it is shown in
Figs. 7 and 8, with the position monitoring, the mechanical
and optical squeezing can also be generated for two types of
coupling. Physically, we can understand the above entangle-
ment enhancement as follows: on one hand, the continuous
monitoring extends the instability region to the blue-detuned
regime which favors the generation of entanglement since
the optomechanical parametric downconversion process [the
terms âcb̂m and â†

c b̂†
m in Eq. (11)], which is responsible for

the entanglement in this regime, is dominant. We therefore
see that the entanglement and steering in the blue-detuned
regime are stronger than that in the red-detuned regime for
two kinds of coupling. On the other hand, the monitoring
greatly reduces quantum fluctuations of the quadratures of
the mechanical oscillator and the cavity field (e.g., squeezing
generation), leading the entanglement to be enhanced, even
in the regime of red detuning. It is shown in Fig. 7 that for
dispersive coupling, the entanglement and steering maximize
at �c ≈ −ωm in the blue-detuned regime. This is because, at
this detuning, the resonant optomechanical parametric down-
conversion is achieved, while for dissipative coupling, as
the detuning −�c increases, the strength of the parametric
downconversion coupling increases, and thus the maxima of
the entanglement and steering do not occur at this detuning
but at |�c| � ωm for strong coupling.

In Fig. 9, the effect of the cavity dissipation rate κc

on the entanglement and steering is plotted, respectively,

FIG. 9. The dependence of the optomechanical entanglement
Emc and the optomechanical steering Sc|m and Sm|c on the detun-
ing �c for (a),(c),(e) purely dispersive coupling Gω = ωm and for
(b),(d),(f) purely dissipative coupling Gκ = ωm, for different rates κc

of cavity dissipation. The other parameters γm = 10−5ωm, n̄th = 0,
�m = 0.05ωm, and ηt = 1.0.

for purely dispersive and purely dissipative coupling. Ob-
viously, the entanglement and steering decrease as κc in-
creases due to the increased decoherence of the cavity field.
Nevertheless, for the present system, the entanglement and
steering can still be achieved even for κc > ωm. The field-
to-oscillator steering decreases faster than the reverse steer-
ing and, further, we can see that one-way steering, e.g.,
Sm|c = 0 and Sm|c �= 0, can be achieved. The asymmetric
steering makes steerable correlations distinct from the en-
tanglement. Essentially, this asymmetry results from the un-
equal damping rates of the cavity field and the mechanical
oscillator. As the cavity dissipation increases, the fluctua-
tions of the quadratures of the cavity field increase and the
field is more difficult to steer by the mechanics. There-
fore, here the asymmetric quantum correlations can be ob-
served by adjusting the detuning with the chosen dissipation
rate.

In Fig. 10, the effect of finite detection efficiency ηt is
investigated with the cavity dissipation rate κc < ωm. It is
shown that the entanglement and steering can be enhanced by
increasing the detection efficiency. It can be easily found that
in the regimes, where the optomechanical system is unstable
without the monitoring, the short-time entanglement is almost
equal to the steady-state entanglement with the monitoring in
these regimes. This implies that the continuous weak measure-
ment of the position of the mechanical oscillator merely alters
the stability and the steady-state entanglement and steering
in the presence of the measurement in these regimes is still
mainly determined just by the system’s parameters. Therefore,
we see that the steady-state entanglement and steering around
the peaks are sightly improved by increasing the detection
efficiency.
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FIG. 10. The dependence of the optomechanical entanglement
Emc and optomechanical steering Sc|m and Sm|c on the detuning �c

for (a),(c),(e) purely dispersive coupling Gω = ωm and for (b),(d),(f)
purely dissipative coupling Gκ = 0.3ωm, for different values ηt of de-
tection efficiency. The other parameters κc = 0.2ωm, γm = 10−5ωm,
n̄th = 0, and �m = 0.05ωm.

In Fig. 11, the entanglement and steering are plotted for
the combination of two kinds of coupling. We see that similar
to the mechanical squeezing, the entanglement and steering
are also enhanced in the regime of red detuning �c > 0 in
which the effective strength of optomechanical coupling in
Eq. (5) is increased, while in the regime of blue detuning
�c < 0, the effective coupling strength is decreased and thus
the entanglement and steering are reduced, compared to that
via purely dissipative coupling.

Finally, we study the effect of the thermal environment on
the entanglement and steering, which is plotted in Fig. 12.
For purely dispersive coupling, we consider the parameters
in the previous section, but with the cavity dissipation rate
κc/2π ≈ 1 MHz, the detuning �c ≈ −2ωm, and the collective

FIG. 11. The dependence of the (a) optomechanical entangle-
ment Emc, and the (b) optomechanical steering Sc|m and (c) Sm|c on
the detuning �c for purely dispersive coupling, for purely dissipative
coupling, and for the combination of two types of coupling. The other
parameters κc = 0.2ωm, γm = 10−5ωm, n̄th = 0, �m = 0.05ωm, and
ηt = 1.0.

FIG. 12. The effect of thermal phonons on the optomechani-
cal entanglement Emc, and the optomechanical steering Sc|m and
Sm|c for (a) purely dispersive coupling, with Gω = ωm and �c =
−2ωm, and for (b) purely dissipative coupling, with Gκ = 0.3ωm

and �c = −5ωm. The other parameters κc = 0.2ωm, γm = 10−5ωm,
�m = 0.05ωm, and ηt = 1.0.

dispersive coupling Gω/2π ≈ 5 MHz for the pump power
P ≈ 0.2 μW. In addition, we can also consider a lower-
frequency mechanical resonator, as in Ref. [71] in which
the mechanically mediated indirect coupling between optical
and microwave fields has been realized. For this system, we
assume that the optical cavity plays the role of the trans-
ducer cavity and choose the mechanical frequency ωm/2π =
400 kHz and mechanical damping γm/2π ≈ 4 Hz. For the
dissipation rate of the optical cavity κt/2π ≈ 2 MHz, the
condition is that the damping rate �m = 0.05ωm requires
the pumping power Pt ≈ 25 μW with the optical frequency
ωt/2π ≈ 280 THz and the single-photon coupling gt/2π ≈
7 Hz. When choosing the loss rate of the microwave cav-
ity κc ≈ 0.2ωm and the detuning �c ≈ −2ωm, one can also
achieve the coupling Gc ≈ ωm, with the pumping power
Pc ≈ 10 μW for the single-photon coupling gc/2π ≈ 2 Hz
and the microwave frequency ωc/2π ≈ 7 GHz. As shown
in Fig. 12(a), the maximal thermal phonon numbers for
achieving the entanglement and steering are, respectively,
n̄th ≈ 1.15 × 105 and n̄th ≈ 5.6 × 104 (Sc|m), while for the
case of purely dissipative coupling, we consider κc/2π ≈
26 kHz, the detuning �c ≈ −5ωm, and the coupling Gκ ≈ ωm

for the pumping power P ≈ 180 mW. The maximal thermal
phonon numbers for generating the entanglement and steer-
ing are, respectively, n̄th ≈ 1.27 × 105 and n̄th ≈ 6.3 × 104.
Therefore, the present scheme can be used for generating
robust optomechanical steerable correlations by continuously
monitoring the mechanical position.

IV. DISCUSSION AND CONCLUSION

Before concluding, we briefly discuss how to verify the
generated mechanical squeezing and optomechanical steering.
Similarly to the protocol proposed in Ref. [82], for the me-
chanical squeezing, we can couple the mechanical resonator
to another weakly driven probe cavity which is resonant to
the red sideband of the drive. The beam-splitter-like coupling
is induced between the mechanical oscillator and the probe
cavity field and the mechanical states can thus be mapped onto
the probe cavity field. Then, by homodyning the output field
of the probe cavity, one can detect the mechanical squeezing.
For the verification of the optomechanical steering, we cannot
use the transducer cavity as the probe cavity because it is a
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bad cavity. In principle, one can also couple the mechanical
resonator to a third cavity, but this will make the system
too complicated. Thus, we employ a weak probe field sent
into the cavity âc. Likewise, the probe field is tuned to be
resonant to the lower sideband of the cavity field âc to induce
the beam-splitter-like interaction between the probe field and
the mechanical oscillator. By keeping the frequency separate
between the probe field and the cavity field âc much larger
than the linewidth κ−1

c , we can resolve the two output fields of
the probe and cavity fields. Then, by homodyning the output
fields and combining them, we can verify the optomechanical
steering.

In conclusion, in this paper we first consider the generation
of mechanical squeezing in a dispersively or dissipatively
coupled optomechanical system by continuously homodyn-
ing the output of the cavity field. It is found that strong
steady-state mechanical squeezing can be achieved, but the
properties of the squeezing are quite different for two types
of coupling. In addition, the combination of the two types
of coupling can also enhance the mechanical squeezing. We
next consider the achievement of optomechanical steering in
a dispersive or dissipative optomechanical system via con-
tinuously monitoring the position of the mechanical oscilla-
tor. The position monitoring can be realized by dispersively
coupling the mechanical oscillator weakly to an overdamped
transducer cavity whose output field is subject to continuous
homodyne detection. It is revealed that the monitoring of the
mechanical position can lead the steady-state optomechanical
entanglement to be enhanced considerably such that strong
optomechanical steerable correlations can be generated. In
addition, the continuous monitoring can also bring about
the simultaneous squeezing of the mechanical oscillator and
cavity field. The effects of thermal phonons are also studied
and it is shown that the generated squeezing and steering are
robust against the thermal fluctuations.
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APPENDIX: LANGEVIN EQUATION OF MOTION
FOR THE MECHANICAL OSCILLATOR

In this Appendix, we will derive the Langevin equation
of motion for a mechanical oscillator in a thermal bath.
We consider that the mechanical mode b̂m is coupled to
a bath of harmonic oscillators, which is described by the

Hamiltonian [83]

Ĥsb = ωmb̂†
mb̂m +

∑
k

ωkd̂†
k dk +

∑
k

gk (b̂m + b̂†
m)(d̂†

k + d̂k ),

(A1)

where the annihilation operator b̂k denotes the kth oscillator of
the bath with frequency ωk and gk represent the system-bath
coupling. In the interaction picture, the above Hamiltonian
becomes

Ĥsb =
∑

k

gk
[
b̂md̂ke−i(ωm+ωk )t + b̂md̂†

k e−i(ωm−ωk )t + H.c.
]
.

(A2)

When the mechanical resonant frequency ωm � gk for the fre-
quency ωk in the vicinity of the resonance, the fast oscillating
term b̂md̂ke−i(ωm+ωk )t and its conjugate can be neglected. Then,
the Hamiltonian can be approximated, in the original picture,
into

Ĥsb = ωmb̂†
mb̂m +

∑
k

ωkd̂†
k dk +

∑
k

gk (b̂md̂k + b̂md̂†
k ),

(A3)

which is the system-bath interaction that we have encountered
in quantum optics textbooks [84,85]. With Eq. (A3), we obtain

d

dt
b̂m = −iωmb̂m −

∑
k

g2
k

∫ t

0
dt ′b̂m(t ′)e−iωk (t−t ′ ) − b̂in(t ),

(A4)

where b̂in(t ) = i
∑

k gkb̂k (0)e−iωkt is dependent only on the

initial states of the bath oscillators. By replace ˆ̃bm = b̂meiωmt

and
∑

k → ∫
dω, we have [84,85]

d

dt
ˆ̃bm =−

∫ ∞

0
dωg2(ω)

dk

dω

∫ t

0
dt ′ ˆ̃bm(t ′)e−i(ω−ωm )(t−t ′ )− ˆ̃bin(t ),

� −J (ωm)
∫ t

0
dt ′ ˆ̃bm(t ′)

∫ ∞

−∞
dωe−i(ω−ωm )(t−t ′ ) − ˆ̃bin(t )

= −γm

2
b̂m(t ) − ˆ̃bin(t ), (A5)

where we have let J (ω) = g2(ω) dk
dω

, J (ωm) = γm

2π
, and ˆ̃bin(t ) =

i
∑

k gkb̂k (0)e−i(ωk−ωm )t , which satisfies the correlation

〈 ˆ̃b†
in(t ) ˆ̃bin(t ′)〉 =

∫ ∞

0
dωJ (ω)n̄th(ω)ei(ωk−ωm )(t−t ′ )

� γmn̄th(ωm)δ(t − t ′), (A6)

when only the frequency components around the resonance
ωm contribute the above integrations. Equation (A5) describes
the damping of the mechanical mode in the thermal bath,
which is used in Eq. (4c).
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