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A three-level atom in � configuration is reduced to an effective two-level system, under appropriate
conditions, and its PT symmetric properties are investigated. This effective qubit system, when subjected to
a beam-splitter type of interaction, provides the scope of directly (indirectly) probing the nonclassical properties
of the output (input) state. Here, we study nonclassical properties of the output state by using some well-known
measures of nonclassical correlations like the measurement-induced disturbance, concurrence, and negativity.
The nonclassical features are found to enhance in the PT symmetric (PTS) phase compared to the PT symmetry
broken (PTB) phase. Further, the output ports of the beam splitter are subjected to different quantum noise
channels, both non-Markovian, e.g., random telegraph noise as well as Markovian, e.g., phase damping and
amplitude damping noise. The application of noise channels is found to decrease the degree of nonclassicality,
though continuing to exhibit distinct behavior in PTS and PTB phases, with the dominant behavior appearing
in the former case. Further, the results are compared with the case when dynamics is governed by a Hermitian
Hamiltonian. This allows one to demarcate the contributions to nonclassicality from different types of dynamics.

DOI: 10.1103/PhysRevA.100.023836

I. INTRODUCTION

In textbook quantum mechanics, one of the fundamental
axioms is that the physical observables are represented by
the Hermitian operators which always possess real eigen-
values and conserve the probability [1]. In particular, the
Hamiltonian H generating the time evolution of the system
has real eigenvalues and the corresponding time translation
operator U = e−iHt is unitary as a consequence of Hermitic-
ity of H . However, a non-Hermitian Hamiltonian with the
parity (P) - time (T ) symmetry, often referred to as a PT
symmetric Hamiltonian, can also possess a real eigenvalue
spectrum [2]. Such non-Hermitian Hamiltonians may undergo
a spontaneous transition to the PT symmetry broken phase
[3]. The operators P and T are defined by their action on
the dynamical variables x̂ (the position operator) and p̂ (the
momentum operator), such that the linear operator P acts as
p̂ → −p̂ and x̂ → −x̂, while the antilinear operator T acts
such that p̂ → −p̂, x̂ → x̂. Further, T also flips the sign of i =√−1, i.e., it transforms i → −i, such that the commutation
relation [x̂, p̂] = i is preserved. The PT symmetric systems
can exhibit exceptional points (EPs) where the eigenvalues
of the non-Hermitian Hamiltonian are degenerate. At these
points, the Hamiltonian is not diagonalizable and the geo-
metric eigenvectors of the Hamiltonian no longer span the
underlying Hilbert space, rather the complete Hilbert space is
spanned by the geometric eigenvectors supplemented by so-
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called algebraic eigenvectors of the same (nondiagonalizable)
Hamiltonian (see [4,5] and the references therein).

The PT symmetric Hamiltonians belong to a more general
class of pseudo-Hermitian systems [6]. The eigenfunctions of
a system Hamiltonian in the PT symmetric phase are also
the eigenfunctions of the PT operator, i.e., all eigenfunc-
tions are also PT symmetric. However, in the PTB phase,
some or all the eigenvalues become complex and not all the
eigenfunctions of the Hamiltonian possess PT symmetry.
With these interesting properties, the non-Hermitian quantum
mechanics has attracted a lot of attention, leading to the
exploration of PT symmetric systems in different domains.
The phase lapses observed in the experiments with Aharonov-
Bohm rings remained a puzzle until the phenomenon was
explained using the non-Hermitian Hamiltonian [7,8]. The
non-Hermitian Hamiltonians have been used to describe the
laser-induced continuum structures in atoms [9,10]. In [11], a
scheme based on resonance coalescence to achieve vibrational
cooling was proposed. The extension of PT symmetric quan-
tum mechanics to quantum field theory with cubic interaction
was reported in [12]. Further, the role of non-Hermicity in
open quantum systems has been explored in [13,14]. The
dominance of the Lyapunov exponent over the non-Hermicity
parameters leads to real eigenvalues in the Hatano-Nelson
non-Hermitian Anderson model for disordered systems [15].
Based on Lagrangian principles a formalism was developed
to describe coupled optical PT symmetric systems [16].
In [17], it was demonstrated that the PT symmetric po-
tentials can exhibit phenomena such as double refraction,
power oscillations, and secondary emissions. The existence
of solitons in optical PT symmetric systems was reported
in [18]. These solitons were found to be stable over a wide
range of potential parameters. The concept of pseudo-PT
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symmetry was introduced in [19], where it was shown that
one can manipulate PT symmetry properties in periodically
modulated optical systems with balanced gain and loss. The
quantum phase transition and its connection with the geomet-
ric phase was studied in the non-Hermitian PT symmetric
Ising model [5,20]. A non-Hermitian, PT symmetric model
of the dimerized spin chain was introduced in [21] and its
(anti-)ferromagnetic quantum phase transition was analyzed.
The PT symmetric systems with spontaneous generation of
photons and superradiant emission of radiation were also
investigated in [22,23].

From a practical point of view, PT symmetry has found
many important applications such as the single-mode PT
lasers [24,25], unidirectional reflectionless PT symmetric
metamaterial at optical frequencies [26]. Based on PT sym-
metry, many new photonic devices have been designed and
fabricated [27,28]. The PT symmetric periodic structures act
as unidirectional electromagnetically induced transparency
(EIT) devices near the exceptional point [29]. A PT symmet-
ric coupler under appropriate conditions can act as an optical
switch [30]. Further, PT symmetry has made the notion of
loss useful, which was otherwise considered as a detrimental
physical effect [31].

The above mentioned features and applications of PT
symmetry and the potential application of entanglement in
quantum computing and communication have motivated us
to look for a PT symmetric physical system which can be
realized experimentally and which can generate entanglement.
In what follows, such a system will be studied.

Effective Hamiltonians in quasiopen systems related to
microwave cavities have been investigated in [32] with regard
to PT symmetric subconfigurations and effective PT phase
transitions. It is worth mentioning here that the non-Hermitian
Hamiltonian, in the context of open quantum systems [33],
are often referred to as effective Hamiltonians Heff , governing
the dynamics in a restrictive subspace of the quantum system
and appear as von Neumann–type evolution in the master
equations [13,34–36]. Thus, the notion of PT symmetry has
proved to be a useful tool in probing the behavior of dynamics
of the systems described by effective Hamiltonians which
correspond to non-Hermititan systems. Since the degree of
quantumness of a system is controlled by the underlying
dynamics, this naturally invites one to explore the interplay
between nonclassicality and PT symmetry in such systems
[37–43].

In this work, we will analyze the behavior of nonclassical
correlations, quantified by well-known measures of quantum
correlations viz., measurement-induced disturbance (MID)
[44], concurrence [45–47], and negativity in a PT sym-
metric system. This will be achieved by using a �-type
atom, i.e., a three-level atom in which a state is coupled
by radiative interaction to two other states lying below it
(energetically) which have no radiative coupling between
them. This three-level system is reduced to an effective two-
level system with the underlying Hamiltonian bearing PT
symmetry. The resulting qubit is combined with vacuum at the
beam splitter (or through an interaction which is mathemati-
cally equivalent to a beam-splitter operation), and the output
state is analyzed for the above mentioned nonclassicality
measures [48,49].

The paper is organized as follows: In Sec. II, we discuss
beam-splitter operation and how it can be used to probe the
nonclassicality of a single qubit state. This is followed by a
discussion of various measures of nonclassicality. Section III
is devoted to detailed discussion of the model consisting of a
PT symmetric system. In Sec. IV, we analyze the effect of
various quantum noise channels on the nonclassical feature of
the output state. Results and their discussion are presented in
Sec. V. We conclude in Sec. VI.

II. NONCLASSICALITY FOR A SINGLE INPUT STATE
AT BEAM SPLITTER

A single qubit state when fed to one port of a beam
splitter and the vacuum at the other port, results in a bipartite
state which may exhibit nonclassical properties including
entanglement [48,50]. Specifically, at the output of the beam
splitter a two-mode entangled state is obtained if and only
if the state (other than the vacuum state) fed into the input
is a single-mode nonclassical state. Thus, the nonclassicality
of the single-mode input state gets transferred to a two-mode
entangled state, and one can try to measure the nonclassicality
of the input state by measuring the entanglement of the
output state [48,50]. For a particular beam-splitter setting, the
behavior of the nonclassical properties of the output state is
entirely controlled by the input state parameters. Since we are
not considering optical qubits, in the present study, a beam-
splitter operation is visualized as an operation described by an
interaction Hamiltonian which is mathematically equivalent
to the beam-splitter Hamiltonian.

A. Beam-splitter input-output state

In what follows, we plan to analyze the nonclassicality of
the simplest quantum state, a qubit state, parametrized by p ∈
[0, 1], and x such that |x| ∈ [0,

√
p(1 − p)] and given by

ρ(p; x) ≡ [ρmn] =
(

1 − p x
x∗ p

)
. (1)

Such states, when combined with the vacuum at a beam
splitter, result in the output state being separable (if the input
qubit state is classical) or entangled (if the input qubit state
is nonclassical). This statement is not restricted to the usual
optical beam splitter. In fact, there are many physical systems
whose Hamiltonians (thus, the operation and the physical
consequence of the operation) are equivalent to that of the
usual beam splitter. For example, we can think of the easy
to visualize systems like a symmetric linear optical coupler
[51] or double-well atom-atom Bose Einstein condensates
(BECs), where each well contains a BEC, but particle ex-
change is allowed in such a way that the total number of
particles is conserved [52]. Such setups described by effective
PT -symmetric Hamiltonians have also been studied in [53]
and discussed in [54]. The Hamiltonian of these systems are
equivalent to that of the usual beam splitter. Now, extending
this discussion to the context of the present work, we may
note that the atomic beam splitter was realized long ago [55]
where atoms were diffracted from cleaved ionic crystals. As
a result, the electronic states of an atom were found to be
slightly shifted when approaching the atomic surface. More
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recently, an atomic beam splitter (more precisely dark state
beam splitter) has been realized for metastable helium having
two dark states which are relatively stable [56]. A magneto-
optical beam splitter for atoms was reported in [57]. Many
of the initially designed or proposed atomic beam splitters
were based on tunneling, and were not robust. A robust beam
splitter on an atomic chip was introduced for the guided atoms
in [58]. Another class of atomic beam splitters involves the in-
teraction of an atom with electric or magnetic dipole moment
with static electric or magnetic fields. A detailed account of
the beam-splitter operations with the atom can be found in
[59]. In short, there are various physical systems (especially
atomic systems) which are operationally equivalent to the
conventional beam splitter, and in all those cases the resulting
output state can be used to directly probe the nonclassicality
(entanglement) of the output state and thus indirectly probe
the nonclassical properties of the input state. Here the output
state can be expressed as

ρout (θ ) = UBS(ρ ⊗ |0〉〈0|)UBS
†, (2)

where UBS = exp(− i
h̄ Hθ ) corresponds to a unitary transfor-

mation of the beam-splitter operation. The balanced beam-
splitter operation is characterized by θ = π/21 and can be
generated by the Hamiltonian H = ih̄

2 (a†
1a2 − a1a†

2), with
a1(a2) being the annihilation operators for the two input
modes. Physical realization of this Hamiltonian is easy for
optical qubits. However, for the atomic system, this can be
realized by using pulses of appropriate shape and frequency.
Specifically, we may note that the balanced beam-splitter op-
eration UBS performed on the product input-state ρ

⊗ |0〉〈0|
can be decomposed in terms of standard quantum gates as
UBS = (CS)(T

⊗
T)

√
SWAP, where CS corresponds to a

controlled S gate, and T and
√

SWAP are different quantum
logic gates whose details can be found in [61,62]. As all these
gates can be realized for atomic qubits, an operation equiva-
lent to UBS can also be realized for the atomic system of our
interest. In the rest of this work, we will deal with the balanced
beam splitter and call ρout (θ = π/2) as ρout, given by

ρout =

⎛
⎜⎜⎜⎜⎝

1 − p ix√
2

x√
2

0
−ix∗√

2
p
2

−ip
2 0

x∗√
2

ip
2

p
2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (3)

The nonclassicality of this state can be probed using the well-
known measures such as MID discerning the classical and
quantum correlations exhibited by a system under the action
of joint measurements on its subsystems and the entanglement
measures such as concurrence and negativity, discussed next.

B. Measurement-induced disturbance

Consider a bipartite system described by the state ρ be-
longing to Hilbert space HA ⊗ HB, where HA and HB repre-

1The specific choice θ = π/2 is made in consistency with the exist-
ing literature [60]. However, for other values of θ , the computation
will become complex but the final conclusions of this paper would
remain the same.

sent the state space of systems A and B, respectively. One can
construct the reduced state for one system by tracing over the
other. Let ρA and ρB denote the reduced states for A and B;
one can write

ρA =
∑

i

pA
i �

A
i and ρB =

∑
j

pB
j �

B
j . (4)

Here, �A and �B are the projectors on the corresponding state
space with eigenvalues pA and pB, respectively. One can define
a joint measurement �, in terms of the spectral resolution of
reduced states, such that the postmeasurement state is given
by

�(ρ) =
∑
i, j

(
�A

i ⊗ �B
j

)
ρ
(
�A

i ⊗ �B
j

)
. (5)

If the postmeasurement state does not change under the action
of �, i.e., if �(ρ) = ρ, we say that ρ is a classical state with
respect to the measurement strategies {�A

i ⊗ �B
j }; otherwise

ρ is a legitimate quantum state. This idea was used to con-
struct a measure of nonclassicality [44,63] given as follows:

Q(ρ) = I (ρ) − I (�(ρ)). (6)

Here, I (·) is the quantum mutual information defined as
I (ρ) = S(ρA) + S(ρB) − S(ρ) and S(·) is the von Neumann
entropy. Note that for a classical state I (�(ρ)) = I (ρ), so
Q(ρ) = 0. Therefore, Eq. (6) quantifies the difference be-
tween the quantum and classical correlations exhibited by a
bipartite system.

C. Entanglement measures

In order to quantify the entanglement in a quantum system,
several well-known measures have been proposed. These
include entanglement of formation [64,65], entanglement of
distillation [66], relative entropy of entanglement [67,68], and
negativity [69,70]. For pure states, the Bell states provide
an example of the maximally entangled states. However, in
case of mixed states, defining a maximally entangled state is
not straightforward. In this work, we use two entanglement
measures, i.e., concurrence and negativity. The concurrence,
as defined in [71], is given by

C(ρ) = max[0, λ1 − λ2 − λ3 − λ4]. (7)

Here, λi are eigenvalues of the matrix
√√

ρρ̃
√

ρ and ρ̃ =
(σy ⊗ σy)ρ(σy ⊗ σy) where σy is the Pauli matrix. Alterna-
tively, λi represent the square roots of the eigenvalues of ρρ̃.
The parameter C varies between 0 (unentangled states) to 1
(maximally entangled states). The negativity [69] is based on
the positive partial transpose (PPT) criterion of separability
and for a subsystem A is defined as

N (ρ) = ||ρ	A ||1 − 1

2
. (8)

Here, ρ	A is the partial transpose of ρ with respect to the
subsystem A. Equivalently, one can define the negativity as

N (ρ) =
∑

k

|λk| − λk

2
, (9)
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FIG. 1. Schematic illustration of three-level atom.

where {λk} is the set of eigenvalues of the partial transposed
matrix ρ	A . The nonclassical potential for the single-mode
input state ρ is defined to be the amount of nonclassicality of
the output state ρout. Consequently, the concurrence potential
(CP) and negativity potential (NP)2 are defined as [48]

CP(ρ) = C(ρout ), NP(ρ) = N (ρout ). (10)

Note that the nonclassical features of the output state are
controlled by the input state parameters.

The above mentioned procedure is now applied to a spe-
cific system of an effective two-level atom interacting with
a reservoir. This system exhibits PT symmetry in a certain
parameter range, thereby allowing one to study the interplay
between PT symmetry and nonclassicality.

III. MODEL

A three-level �-type atom, with decay modes associated
with all the three levels, provides an example of a PT
symmetric system [72,73]. In this work, we will deal with an
effective two-level Hamiltonian, which is constructed by start-
ing with a �-type system [74] shown in Fig. 1. The resulting
qubit state with the general form given by Eq. (1), exhibits
PT symmetry and can be fed to a beam splitter according to
the local operation given in Eq. (2). This allows one to explore
the nonclassicality of the output bipartite state, Eq. (3). This
construction, therefore, provides a platform for studying the
interplay between nonclassicality and PT symmetry of the
above described system.

The Hamiltonian, in a rotating frame with respect to the
optical modes, becomes

H = h̄
1 |1〉 〈1| + h̄
2 |3〉 〈3|
− h̄[g |1〉 〈2| + G |3〉 〈2| + �′eiφ |1〉 〈3| + H.c.]. (11)

2In 2005, Asboth et al. [50] proposed that the measures of en-
tanglement in the output mode of the beam splitter can be used to
indirectly measure the nonclassicality of the input mode. Thus, in this
approach, a conventional entanglement measure is not really used to
measure entanglement, rather it is used to measure nonclassicality.
To stress on this distinct feature, Asboth et al. referred to it as entan-
glement potential [50]. Subsequently it has become a convention and
terms like concurrence potential are used frequently in analogy with
the nomenclature used by Asboth [48].

FIG. 2. Top plot depicts the real (lined-blue surface) and imag-
inary (plane-red surface) parts of the eigenvalues. Both real and
imaginary eigenvalues occur in pairs symmetrically about Re[E±] =
Im[E±] = 0. Bottom panel, presented here for clarity, depicts the
real eigenvalues with respect to the parameters γ and � for different
values of parameter φ.

Here, 
1,2 are the detunings of the optical fields from the
corresponding atomic resonances, and g and G are Rabi fre-
quencies of the two optical fields. �′ is the coupling strength
due to the RF field, and the phase φ can be controlled via the
adjustment of the relative phase between the RF field and the
two optical fields.

For simplicity, we assume equal coupling strengths g =
G and same detuning 
1 = 
2 = 
, and use the notation

�′
G2 = �. By assuming equal population gain and loss rates

associated with levels 1 and 3, respectively, the following
effective two-level Hamiltonian can be obtained [74]:

Heff = (1 − �eiφ )|1〉〈3| + (1 − �e−iφ )|3〉〈1|
+ iγ |1〉〈1| − iγ |3〉〈3|. (12)

The eigenvalues of this Hamiltonian are

E± = ±
√

J2 − γ 2, (13)

with J = |1 − �eiφ|. The eigenvalues are real, and hence the
system is PT symmetric, when the effective coupling 1 −
�eiφ is greater than the gain and loss γ . The PT symmetry is
said to be broken when the gain and loss exceeds the coupling
strength. The borderline between the two regimes is such that
the eigenvalues E± = 0, called the exceptional points. The
variation of energy with respect to the coupling � and gain
and loss rate γ is shown in Fig. 2.
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Using the effective Hamiltonian of Eq. (12), one can there-
fore write the time-dependent Schrödinger equation as

i
∂ |�(t )〉

∂t
= Heff |�(t )〉 , (14)

such that the nonunitary time translation operator is given by

U (t ) =
(

cos(ωt ) + γ

ω
sin(ωt ) −i 1−�eiφ

ω
sin(ωt )

−i 1−�e−iφ

ω
sin(ωt ) cos(ωt ) − γ

ω
sin(ωt )

)
.

(15)

Here, ω =
√

J2 − γ 2. Let the initial state be |�(0)〉 = |1〉 ≡
(1 0)T at time t = 0. At a later time t , the normalized wave
function becomes

|�PT (t )〉 =
[

cos(ωt ) + γ

ω
sin(ωt )

] |1〉 − i 1−�e−iφ

ω
sin(ωt ) |3〉

〈�PT (t )|�PT (t )〉
(16)

such that the probability of the atom being in states |1〉 and |3〉
is given by |〈1|�PT (t )〉|2 and |〈3|�PT (t )〉|2, respectively.

In the limit ω → 0, i.e., J → γ , we approach the excep-
tional points where the normalized state vector is given by

|�EP(t )〉 = (1 + γ t ) |1〉 − i(1 − �e−iφ )t |3〉
〈�EP(t )|�EP(t )〉 . (17)

For comparison, we also consider the case when time
evolution is generated by a Hermitian Hamiltonian such
that the eigenvalues are numerically identical to those given
by Eq. (13). As an example, we consider the Hermitian
Hamiltonian,

HH = �r · �σ , (18)

where �r = (r1, r2, r3) and �σ denotes the Pauli triplet
(σ1, σ2, σ3). The eigenvalues of HH are ±|�r|. Therefore, the
condition |�r| = J2 − γ 2, would allow one to demarcate the
contributions to nonclassicality of the input state subjected
to PT symmetric and Hermitian Hamiltonians. The unitary
evolution is governed by the following operator:

UH (t ) =
(

cos(rt ) − ir3
r sin(rt ) −ir1−r2

r sin(rt )
−ir1+r2

r sin(rt ) cos(rt ) + ir3
r sin(rt )

)
.

(19)

Consequently, the state |1〉 = (1 0)T at time t = 0 is time
translated to the following normalized form at some later
time t ,

|�H (t )〉 =
(

cos(rt ) − ir3
r sin(rt )

) |1〉 + (−ir1−r2
r sin(rt )

) |3〉
〈�H (t )|�H (t )〉 .

(20)

In what follows, we will use the states given in Eqs. (16),
(17), and (20), as input to the beam splitter (along with
the vacuum state) and analyze the resulting output state for
different measures of nonclassicality viz., MID, concurrence,
and negativity. In all our numerics, we will use the gain and
loss parameter γ = 0.5 and J = 0.6 (for PTS phase) and
J = 0.4 for PTB phase. Further, we choose r1 = 0, r2 = 0.1,
and r3 ≈ 0.317. This choice (which is completely arbitrary)

satisfies the condition |�r| ≈ J2 − γ 2 for the PTS phase and
therefore allows us to compare the extent of nonclassicality in
the PTS phase with that under Hermitian dynamics. Also, for
the dynamics at exceptional points we will use J = γ = 0.5.

IV. EFFECT OF DIFFERENT QUANTUM NOISE
CHANNELS ON NONCLASSICALITY

Evolution of quantum correlations in the presence of non-
Markovian noise has been the subject matter of many studies
[75–80]. However, to the best of our knowledge, the evolution
of the dynamics of the quantum correlations present in a PT
symmetric system has not been investigated earlier in the
presence of noise.

In this section, we study the interplay between non-
classicality and PT symmetry when the output ports of
the beam splitter are subjected to different quantum noise
channels. Specifically, we consider random telegraph noise
(RTN) [75,76,78,81], phase damping (PD) [82], and ampli-
tude damping (AD) [83,84] channels. The RTN allows us
to bring out the interplay between PT symmetry and non-
Markovian dynamics. Non-Markovian evolution has been
found to favor the suppression of decoherence and disentan-
glement [85,86]. Since one of the major challenges in carrying
out quantum information tasks is to sustain the coherence
and entanglement [87], non-Markovianity assisted control on
the degree of coherence, and entanglement can become very
pertinent in future.

Random telegraph noise. This model describes a qubit sub-
jected to a classical source of random telegraph noise, i.e., a
bistable fluctuator randomly switching between its two states
with a given rate γ [88]. The ratio between the switching rate
and the system-environment coupling, determines whether
the system is Markovian or non-Markovian. The underlying
time-dependent phenomenological Hamiltonian is HRTN =
h̄

∑
	i(t )σi, where σi are Pauli matrices and the independent

random variables 	i(t ) = aini(t ), with the random variable
ni(t ) having a Poisson distribution with mean t/2τi and ai is a
coin flip random variable assuming values ±ai. The bath cor-
relation functions are given by 〈	 j (t )	k (t ′)〉 = a2

k exp(−|t −
t ′|/τk )δ jk . In [89], it was shown that the complete positivity
requires two of ai be zero, which physically represents the
situation of noise acting only in one direction. Assuming a3 to
be nonzero, the evolution is governed by the following Kraus
operators,

K0(t ) =
√

1 + �(t )

2

(
1 0
0 1

)
,

K1(t ) =
√

1 − �(t )

2

(
1 0
0 −1

)
. (21)

Here, the parameter �(t ) = exp (−γ t )(cos(μγ t ) + sin(μγ t )
μ

)
is called the memory kernel and is crucial for determining
whether the dynamics is Markovian or non-Markovian. Also,
μ = √

( 2a
γ

)2 − 1 and γ = 1
2τ

. The parameter a is proportional
to the strength of system-environment coupling. In the non-
Markovian regime, the parameter μ is real and �(t ) an
oscillatory function. In Markovian case, μ is purely imagi-
nary leading to damped evolution. This demarcation can be
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FIG. 3. MID [Q(ρout )], Concurrence [C(ρout )], and Negativity [N (ρout )] of the output state given in Eq. (3), with respect to time in seconds
(s). The effective coupling between two levels is J = |1 − �eiφ | and the gain and loss rate is γ . The conditions J > γ and J < γ correspond
to PTS and PTB regimes, respectively. The nonclassical features are enhanced in the PTS regime, that is, when system coupling dominates the
gain and loss rate. This is in consonance with the results of our previous work [37].

controlled by the relative values of a and τ [78]. The Marko-
vian and non-Markovian regimes are characterized by 4aτ <

1 and 4aτ > 1, respectively. For a general qubit at time t = 0,
given by Eq. (1), the action of RTN map results in the state at
time t > 0, give by

ρ(t ) = ERTN
t←t0 [ρ(0)] =

(
1 − p x�(t )

x∗�(t ) p

)
. (22)

Phase damping. This noise process is uniquely quantum
mechanical in nature and describes the loss of quantum in-
formation without loss of energy [82]. In this case, the Kraus
operators are given by

K0 =
(

1 0
0

√
1 − λ

)
and K1 =

(
0 0
0

√
λ

)
. (23)

The parameter λ can be modeled as 1 − cos2(ηt ), with 0 �
ηt � π/2. The action of PD channel on a general state
[Eq. (1)] is as follows:

EPD
t←t0 [ρ] =

(
1 − p x

√
1 − λ

x∗√1 − λ p

)
. (24)

Amplitude damping. This noise process is a schematic
model for describing the energy dissipation effects due to loss
of energy from a quantum system to its environment. The
dynamics is given by the following Kraus operators [83]:

K0 =
(

1 0
0

√
1 − γ

)
and K1 =

(
0

√
γ

0 0

)
. (25)

The time-dependent parameter can be modeled by γ = 1 −
e−χt . Under the AD channel a general qubit state evolves as

EAD
t←t0 [ρ] =

(
1 − p(1 − γ ) x

√
1 − γ

x∗√1 − γ p(1 − γ )

)
. (26)

The implementation of the quantum noise channel at the
output ports of the beam splitter can be realized by the
combined action of such channels on a bipartite state ρ(α)
[90]. Note that the channel acts on the output states of the
form given by Eq. (3) and the input state is given by Eqs. (16),
(17), and (20). We have

ρ(α, q1, q2)=
∑
i, j

[Ki(q1) ⊗ Kj (q2)]ρ(α)[K†
i (q1) ⊗ K†

j (q2)].

(27)

Here, q1 and q2 are the channel parameter and, in general,
q1 �= q2, Fig. 4. Using this description and the definition in
Eq. (7), one obtains the following analytic expressions for
concurrence,

C(ρout ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p Noiseless

p�1�2 RTN

p
√

(1 − λ1)(1 − λ2) PD

p
√

(1 − γ1)(1 − γ2) AD

. (28)

Here, p is the probability as defined in Eq. (1). Unfortunately,
the expressions for negativity turn out to be too complicated
and are not given here. An interesting observation is that
for p = 0 (and hence x = 0), that is, when both input ports
of the beam splitter contain vacuum state, the concurrence
of the output state becomes zero. The same is true for
other nonclassical measures like MID and negativity. This is
expected as the output state is expected to be nonclassical
if one of the input states is vacuum and the other one is
a nonclassical state, but the vacuum state is classical in
the sense that it can be described by positive P function
as it can be described as a coherent state having 0 pho-
tons. The nonclassical measure of the output state in all
other cases reflects the degree of nonclassiclaity of the input
state.

FIG. 4. Beam splitter (BS) with input states ρin and ρvac(=
|0〉〈0|). The output ports are subjected to a channel, leading to
the final output state ρout. The channel parameters are, in general,
different unless stated otherwise.
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FIG. 5. Showing concurrence with respect to time when the state parameter p = 1 which corresponds to the input state |1〉 at the beam
splitter. Left, middle, and right plots correspond to RTN, PD, and AD channels, respectively. The solid (blue) and dashed (red) curves in the
left plot pertain to non-Markovian and Markovian processes, respectively. The channels at the two output ports are assumed to be identical,
with the following parameters: for RTN, a = 0.05 and γ = 0.002 for the non-Markovian case, and a = 0.05 and γ = 1.2 for the Markovian
case. Further, η = 1 and χ = 1, for the PD and AD channels, respectively.

Another way of looking at the nonclassicality of the post
channel output state, is by noting that a two-qubit state can be
written, as discussed in the Appendix, in the following form:

|ψα〉 = √
α|01〉 + √

1 − α|10〉. (29)

This state, when subjected to the PD channel, results in the
following mixed state:

ρPD(q, λ1, λ2) = (
1
2 − y

)|β1〉〈β1| + (
1
2 + y

)|β2〉〈β2|
+ (

α − 1
2

)
(|β1〉〈β2| + |β2〉〈β1|),

FIG. 6. MID [Q(ρout )], as defined in Eq. (6), is plotted as a function of time when the output ports of the beam splitter are subjected to RTN
noise in non-Markovian (top left) and Markovian (top right) regimes, respectively. The same quantity is shown for the PD channel (bottom
left) and the AD channel (bottom right). Solid thin (blue) and dashed (red) curves correspond to the PTS and PTB phases, respectively, with
the input state given in Eq. (16). Dot-dashed (green) curve depicts the behavior at exceptional points with the input state given in Eq. (17).
Solid thick (black) curve corresponds to the case when the state evolves under the Hermitian Hamiltonian. The input state in this case is given
in Eq. (20). The various channel parameters used are the same as in Fig. 5.
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FIG. 7. Concurrence as a function of time when the output ports of the beam splitter are subjected to RTN noise in non-Markovian (top
left) and Markovina (top right) regimes, respectively. The same quantity is shown for the PD channel (bottom left) and the AD channel (bottom
right). The nomenclature for various curves is the same as in Fig. 6. The various channel parameters used are the same as in Fig. 5.

where y = √
α(1 − α)(1 − λ1)(1 − λ2). If one sets α = 1

2
which means p = 1, then the above state becomes

ρPD(q, λ1, λ2) = l+|β1〉〈β1| + l−|β2〉〈β2|.
Here, l± = (1 ± √

(1 − λ1)(1 − λ2))/2. Thus, for the special
case p = 1, we have the Bell-diagonal representation of the
state Eq. (29). The concurrence for such states is given by

C = 2max
[
0, max±[l±] − 1

2

] =
√

(1 − λ1)(1 − λ2). (30)

This is consistent with Eq. (28) for p = 1.

V. RESULTS AND DISCUSSION

The output state of the beam splitter when the output ports
are not subjected to noise channel is given in Eq. (3) which
is in terms of the input state parameters p and x. We consider
the case when the input state is given by Eq. (16). This allows
us to study the interplay between nonclassiclaity of the state
and the PT symmetry of the underlying system (Fig. 1). The
real eigenvalues, Fig. 2, imply complete PT symmetry(also
called the exact PT symmetry) [6] of the underlying effective
Hamiltonian, Eq. (12).

In order to investigate the nonclassicality of the output
state, we study the well-known measures such as MID, con-
currence, and negativity. These quantities are depicted in
Fig. 3 with respect to time. Enhancement in the magnitude

of these measures is observed in the PTS phase compared
to the PTB phase. This enhancement in nonclassicality can
be attributed to the fact that in the PTS phase, the coupling
strengths dominate the loss and gain rate.

Things become interesting when the output ports of the
beam splitter are subjected to the noisy quantum channels,
as illustrated in Fig. 4. In this work, we considered three
important channels, viz., RTN, PD, and AD. These channels
provide distinct dynamical features with RTN allowing both
Markovian as well as non-Markovian behavior, while PD and
AD admit Markovian dynamics. The channels on the output
ports could be the same or different depending on the channel
parameters. Here, we have considered the same channels on
both output ports. In Fig. 5, the concurrence of the output
state, when the input state is (0 1)T , is depicted with respect
to time. In particular, under the RTN evolution, the dynamics
in non-Markovian and Markovian regimes is contrasted by
the characteristic recurrent behavior in the former case. The
concurrence evolves under the RTN channel as follows:

C(ρout )|p=1 = e(−γ̃1t )

[
cos(μ1γ̃1t ) + sin(μ1γ̃1t )

μ1

]

× e(−γ̃2t )

[
cos(μ2γ̃2t ) + sin(μ2γ̃2t )

μ2

]
. (31)
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FIG. 8. Negativity as a function of time when the output ports of the beam splitter are subjected to RTN noise in non-Markovian (left) and
Markovian (right) regimes, respectively. The nomenclature for various curves is the same as in Fig. 6. The various channel parameters used
are the same as in Fig. 5.

The evolution is non-Markovian or Markovian according to
μi (i = 1, 2) being real or imaginary. We have considered the
case in which the channels on the output ports are identical,
that is, γ̃1 = γ̃2 and μ1 = μ2. In non-Markovian regime,
one observes an enhancement in the concurrence and thus
the entanglement, as compared with the Markovian case. In
contrast, the behavior of concurrence in PD and AD channels
shows the typical decrease with time.

We now analyze the behavior of various measures of
nonclassicality when the input state is evolving under the
PT symmetric Hamiltonian and is given by Eq. (16). The
output state is subjected to various noise models. The results
are compared with the case when the input state is time
evolved by a Hermitian Hamiltonian with the correspond-
ing unitary operator given in Eq. (19). Figure 6 shows the
measurement-induced disturbance (MID) quantified by the
parameter Q(ρout ). Although, the application of the noise
channels results in decreasing the degree of nonclassicality
(quantified by the maximum value) of various measures,
nevertheless, the nonclassicality measures continue to show
distinct behavior in PTS and PTB regimes, with enhanced
magnitude in the former case. The curve depicting the be-
havior at exceptional points lies between the two regimes. In
the Hermitian regime, the nonclassical features are found to
be least in magnitude, for the particular values of parameters
chosen. Further, in case of RTN noise, the non-Markovian
regime is seen to show the typical recurrent behavior. Similar
behavior is observed in the cases of concurrence (Fig. 7) and
negativity (Fig. 8). The oscillating feature of the measures of
nonclassiclaity in the Markovian regime of RTN as well as in
case of PD and AD channels should not be confused with the
characteristic recurrent behavior of non-Markovian dynamics.
This feature appears due to the oscillatory nature for the input
state given in Eq. (16), and can be seen from Fig. 5, where the
input state is |1〉 = (0 1)T , T being the transpose operation.

VI. CONCLUSION

We considered a �-type three-level atom and derived an
effective two-level system with PT symmetry. The PT sym-

metry is governed by the coupling strength between the two
levels and their respective loss and gain rate, such that when
the coupling dominated the loss and gain rate, the system is
in the PT symmetric phase. However, when the gain and loss
dominates the coupling, the system is said to be in the PT
broken phase. Consequently, the eigenvalues of the underlying
effective Hamiltonian are real and imaginary in the former and
latter cases, respectively.

The beam splitter provides an elegant way of analyzing
the nonclassical properties of the output state when the qubit
at the input is combined with vacuum. We investigated var-
ious measures of nonclassicality, viz., measurement-induced
disturbance (MID), concurrence, and negativity of the output
state when the input state is the effective qubit state of our
PT symmetric system. The nonclassical measures behave
quite different in PTS and PTB regimes, depicting an en-
hancement of nonclassicality in the former case. Further, the
application of various noise channels is accompanied with
a decrease in the degree of nonclassicality. However, the
nonclassicality measures continue to show distinct behavior
in PTS and PTB phases, dominating in the former case. We
considered three noise channels viz., non-Markovian random
telegraph noise (RTN) as well as Markovian phase damping
(PD), and amplitude damping (AD) channels and analyzed
the behavior of various nonclassical measures under the in-
fluence of these channels. The results of the PT symmetric
system are compared with the case when the time evolution
is generated by a Hermitian Hamiltonian. This allows one to
demarcate the contributions to nonclassicality from the two
types of dynamics. For the specific values of parameters used,
it is found that PT symmetric dynamics shows enhanced
nonclassical features compared to the Hermitian counterpart.
This study, therefore brings an interesting interplay of the
quantumness of a system, along with its memory, and its
PT symmetry, a property which is controlled by the coupling
strength and the loss and gain rate associated with the energy
levels of the system. The conceptual ideas and methods in-
troduced here are quite general, and the same can be used
to study the dynamics of various other physical systems.
For example, a comparative study of all types of three-level
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systems [72,73] in the context PT symmetry is ongoing
currently.

APPENDIX

In order to analyze the effect of various quantum channels
on the nonclassical properties of the output state ρout subjected
to quantum noise channels, we rewrite the general bipartite
state in a useful form. Consider a general two-party system
with the underlying Hilbert spaces denoted by H1 and H2

with the corresponding bases {|0〉1 , |1〉1} and {|0〉2 , |1〉2},
respectively. The tensor product state can be defined as

|w〉 = β00 |0〉1 ⊗ |0〉2 + β01 |0〉1 ⊗ |1〉2

+β10 |1〉1 ⊗ |0〉2 + β11 |1〉1 ⊗ |1〉2 . (A1)

This can also be viewed as a matrix,

Mw = (βi j ) =
(

a b
c d

)
. (A2)

According to the singular value decomposition theorem, any
matrix can be written as a product UDV †, where both U and
V are orthogonal matrices and D is a diagonal matrix. The
elements of D are called singular values. Therefore, we have

Mw = UDV †. (A3)

In order to diagonalize Mw, we note that the columns of both
U and V matrices form orthogonal basis, therefore,

U = (|u0〉 |u1〉) and V † =
(〈v0|

〈v1|
)

. (A4)

Hence,

Mw = UDV † = (|u0〉 |u1〉)

(
σ+ 0
0 σ−

)(〈v0|
〈v1|

)
. (A5)

Here σ± are the singular values [by definition, they are the
elements of the diagonal matrix D, Eq. (A3)]. If one writes

Mw = z0I + z1σ1 + z2σ2 + z3σ3, where σi are Pauli matrices,
then the expression for σ± turns out to be

σ± =

√√√√√ 3∑
i=0

|zi|2 ±
√√√√( 3∑

i=0

|zi|2
)2

− ∣∣z2
0 − z2

1 − z2
2 − z2

3

∣∣2
.

(A6)

Here, z0 = (a + d )/2, z1 = (b + c)/2, z2 = i(b − c)/2, and
z3 = (a − d )/2, where a, b, c, and d are as defined in
Eq. (A2). With this, the singular values are given by

σ± =
√

1

2
±

√
1

4
− |ad − bd|2. (A7)

Here, use has been made of the normalization condition
|〈w|w〉|2 = |a|2 + |b|2 + |c|2 + |d|2 = 1. Since σ 2

+ + σ 2
− =

1, we redefine σ+ = √
α and σ− = √

1 − α. Therefore, from
Eq. (A5), we have

Mw = √
α |u0〉 〈v0| + √

1 − α |u1〉 〈v1| . (A8)

Using this in Eq. (A1), we see that the tensor product state
becomes

|w〉 = √
α |u0〉 |v0〉 + √

1 − α |u1〉 |v1〉 . (A9)

Setting |u0〉 = |0〉u, |u1〉 = |1〉u, |v0〉 = |1〉v , and |v1〉 = |0〉v ,
we have

|w〉 = √
α |01〉 + √

1 − α |10〉 . (A10)

This, however, should not be interpreted as the generation
of an entangled state from a separable state. A separable
state |ψ〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉), with a = b = c =
d = 1/2, leads to α = 1, and hence |w〉 = |01〉.
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