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Periodically driven parametric oscillators offer a convenient way to simulate classical Ising spins. When many
parametric oscillators are coupled dissipatively, they can be analogous to networks of Ising spins, forming an
effective coherent Ising machine (CIM) that efficiently solves computationally hard optimization problems. In
the companion paper, we studied experimentally the minimal realization of a CIM, i.e. two coupled parametric
oscillators [L. Bello, M. Calvanese Strinati, E. G. Dalla Torre, and A. Pe’er, Phys. Rev. Lett. 123, 083901 (2019)].
We found that the presence of an energy-conserving coupling between the oscillators can dramatically change
the dynamics, leading to everlasting beats which transcend the Ising description. Here, we analyze this effect
theoretically by solving numerically and, when possible, analytically the equations of motion of two parametric
oscillators. Our main tools include (i) a Floquet analysis of the linear equations, (ii) a multiscale analysis based on
a separation of timescales between the parametric oscillations and the beats, and (iii) the numerical identification
of limit cycles and attractors. Using these tools, we fully determine the phase boundaries and critical exponents
of the model, as a function of the intensity and the phase of the coupling and of the pump. Our study highlights
the universal character of the phase diagram and its independence on the specific type of nonlinearity present in
the system. Furthermore, we identify phases of the model with more than two attractors, possibly describing a
larger spin algebra.
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I. INTRODUCTION

Parametric oscillations are one of the best known examples
of nontrivial effect induced by a periodic drive. Over the
past decades, parametric oscillators have attracted significant
attention thanks to their wide range of applications for elec-
tronic low-noise amplification [1–5]. In recent years, paramet-
ric oscillators are used as generators of squeezed light [6–9],
with applications in high-accuracy sensing [10–13], quantum
information, and communication [14–19]. They have also
been studied in the context of nano- or microelectromechani-
cal systems (NEMS or MEMS), both for practical applications
and because they represent a suitable platform to analyze
fundamental aspects of nonlinear dynamics [20–27].

A degenerate parametric oscillator is the canonical exam-
ple of a period doubling instability. Because of the external
periodic pump, the system can display two regimes: a stable
regime, in which the oscillator is not excited, and a paramet-
rically amplified regime, in which the oscillator oscillates at
half the frequency of the pump. In the latter case, the equation
of motion of the parametric oscillator admits two solutions,
characterized by a relative shift of one period of the pump.
A parametric oscillator is therefore the simplest example of a
discrete time crystal that explicitly breaks time-translational
symmetry [28–39]. As such, it is suitable for the simulation of
a classical spin-1/2 (Ising spin) where the spin states (“up” or
“down”) are represented by the two inequivalent solutions.

Recently, networks of many coupled degenerate optical
parametric oscillators have been proposed as suitable plat-
forms to simulate networks of classical spin-1/2 (Ising) sys-
tems on a large scale. This kind of simulator was referred to
as a coherent Ising machine (CIM) [40] and was proposed

as a platform to efficiently solve complex combinatorial and
minimization problems. Because of its potential applications
in computation, its recent experimental realization [41–43]
has triggered a significant amount of work, on both the
theoretical and computational sides [44–49].

In light of such potential applications, in this work, we
focus on the minimal realization of such network, namely, two
coupled degenerate parametric oscillators. Such a system has
been analyzed in previous studies in the context of MEMS
[24–26]. In the companion paper [50], we analyzed the system
of two coupled parametric oscillators experimentally and the-
oretically, in view of its application as the building block for
a CIM. The two parametric oscillators were experimentally
implemented by two radio-frequency cavities, in the presence
of a power-splitter nondissipative coupling. Our main finding
was that the system of two coupled oscillators presents a much
richer phenomenology than previously analyzed, depending
on the values of the system parameters. In addition to a phase
where the two oscillators display the expected behavior of
two Ising spins [40], it was found that, depending on the dis-
sipative or nondissipative nature of the coupling, the system
gives rise to a phase where the dynamics is characterized by
limit cycles. In this case, the amplitudes of the two oscillators
exhibit periodic beats on top of the fast oscillations at half the
frequency of the drive. Such phase lies beyond the dynamics
of coupled Ising spins, and its presence may be either a useful
resource for CIMs or an additional source of error, which
requires further investigation. The goal of this paper is to pro-
vide a theoretical background for the experiment in Ref. [50],
as well as a complete characterization of the possible phases
in the system of two coupled parametric oscillators.
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Specifically, we first consider in Sec. II the linearized equa-
tions of motion of the model and solve them using Floquet
theory. This approach allows us to determine the stability
diagram of the model. Next, in Sec. III, we apply a multiple-
scale analysis to determine the phase diagram in the presence
of nonlinearities. In our study, we focus on the universal
properties of the model, such as the critical exponents of the
different instabilities and the role of the different types of
nonlinearities (Sec. IV). While most of the article is dedicated
to energy-preserving couplings, toward the end (Sec. V) we
consider a dissipative coupling and connect our findings to
the results of Ref. [40] in the context of CIMs.

II. LINEAR PARAMETRIC OSCILLATORS: SOLUTION BY
FLOQUET THEOREM

We open our analysis by introducing a model of coupled
parametric oscillators with purely energy-preserving coupling
and showing the explicit solution in the absence of nonlinear
terms. In our study, we do not follow the canonical approach
to this problem, used for instance in Ref. [51] to solve a
single parametric oscillator. Here, we instead rely on the
Floquet theorem (see, e.g., Refs. [52–54]), which can be easily
generalized to more complicated situations.

A. In-phase pumps

In the absence of nonlinearities, a pair of coupled paramet-
ric oscillators is described by a set of two generalized linear
Mathieu’s equations:

ẍ1 + ω2
0[1 + h sin(γ t )]x1 + ω0g ẋ1 − ω0r ẋ2 = 0,

(1)
ẍ2 + ω2

0[1 + h sin(γ t )]x2 + ω0g ẋ2 + ω0r ẋ1 = 0.

In Eq. (1), ω0 denotes the proper frequency of the oscillators,
h and γ represent the intensity and frequency of the pumps,
respectively, and g is the intrinsic loss term, which we take
equal for both oscillators. The coupling r describes an energy-
preserving coupling between the oscillators: This coupling
corresponds to rotations in the (x1, x2) plane and preserves
the total energy, which is proportional to x2

1,2 for the x1 or
x2 modes, respectively. In the experiment of Ref. [50], this
coupling was implemented by a power-splitter coupler. In
Eq. (1), the two oscillators are coupled such that the exchange
of energy from x1 to x2, and vice versa, occurs with the

same rate, which is determined by r. This assumption will
be relaxed in Sec. V. In the limit of r → 0, Eq. (1) becomes
equivalent to two decoupled parametric oscillators described
by two Mathieu’s equations.

The equations in Eq. (1) can be separated by performing
the change of basis x±(t ) = x1(t ) ± i x2(t ). In such basis,
we have two decoupled parametric oscillators with real and
imaginary loss terms:

ẍ+ + ω2
0[1 + h sin(γ t )]x+ + ω0(g + i r)ẋ+ = 0, (2a)

ẍ− + ω2
0[1 + h sin(γ t )]x− + ω0(g − i r)ẋ− = 0. (2b)

The ẋ± terms in Eq. (2) can be reabsorbed into the definitions
of the fields by introducing x±(t ) = e−(g±i r)ω0t/2 y±(t ) and
then Eq. (2) becomes

ÿ± + ω2
0

[
1 − (g ± i r)2

4
+ h sin(γ t )

]
y± = 0 . (3)

For simplicity, we first focus on the case of g, r � 1, where
one can neglect terms proportional to (g ± ir)2:

ÿ± + ω2
0[1 + h sin(γ t )]y± = 0. (4)

In this limit, y+(t ) and y−(t ) obey the same equation. In
the next subsection, we will show how to release this con-
straint. Since the equations of motion are periodic with period
T = 2π/γ , we can look for solutions of the form y±(t ) =
e−iμt f (t ), where μ is a complex frequency and f (t ) is a
periodic function with period T . In order to determine μ, we
can proceed as follows: Using the periodicity of f (t ), we can
express y±(t ) in terms of its Fourier components,

y±(t ) = e−iμt
∑
n ∈Z

An einγ t , (5)

where An identifies the amplitude of the nth Fourier com-
ponent, where n is an integer number. If we plug Eq. (5)
into Eq. (4) and equate to zero terms multiplying the same
oscillating factor, we obtain a recursive equation for the
coefficients An:

Dn(μ) An + i

2
ω2

0h(An+1 − An−1) = 0, (6)

where we define Dn(μ) = ω2
0 − (nγ − μ)2. We can more

conveniently write Eq. (6) in the matrix form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...

−i
ω2

0h

2
D−1(μ) i

ω2
0h

2
0 0

· · · 0 −i
ω2

0h

2
D0(μ) i

ω2
0h

2
0 · · ·

0 0 −i
ω2

0h

2
D+1(μ) i

ω2
0h

2
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

A−1

A0

A+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (7)

The expression in Eq. (7) can be rewritten as Mμ · A = 0,
where A identifies the column vector containing the Fourier

components of f (t ), and Mμ is the infinite-by-infinite matrix
in Eq. (7). In general, from Eq. (7), the requirement for the
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existence of a nontrivial solution requires that the determinant
of the matrix Mμ vanishes, det(Mμ) = 0.

We now make the following observation: As we see from
Eq. (6), the parametric drive directly couples each Fourier
component An only to its nearest-neighbor ones, An±1. This
means that An is coupled to An±m, with m > 0, via a coupling
that is of the order of hm. Within a perturbative fashion, at
first order in h, we therefore see that the strongest effect of
the parametric drive is coupling An with An−1 or with An+1.
By inspection of Eq. (6), we see that, for h → 0+, such
coupling occurs when Dn(μ) = Dn±1(μ) = 0. This condition
is satisfied for μ = ω0(2n ± 1), which corresponds to the
parametric resonance condition γ = 2ω0.

Since the function in Eq. (5) is periodic with period γ =
2ω0, we can without loss of generality focus on the case
of n = 0 and therefore consider the situation in which only

A0 and A−1 are coupled by the parametric drive. Therefore,
from Eqs. (6) and (7) the requirement for the existence of a
nontrivial solution reduces to the condition

det

⎛
⎜⎝ω2

0 − (μ + γ )2 i
ω2

0h

2

−i
ω2

0h

2
ω2

0 − μ2

⎞
⎟⎠ ≡ P4(μ) = 0, (8)

with γ sufficiently close to 2ω0. We can parametrize the
deviation from the parametric resonance condition by intro-
ducing a small detuning ε and by rewriting γ = 2ω0 + ε. The
polynomial P4(μ) defined in Eq. (8) has four complex roots.
Since we are looking for the parametric resonance between A0

and A−1, we consider only the degenerate roots that converge
to μ = −ω0 when h = 0 and ε = 0, which are found to be

μ±(h, ε) = −ω0 − ε

2
± 1

2

√
ε2 + 4εω0 + 8ω2

0 − 2ω0

√
4(ε + 2ω0)2 + ω2

0h2. (9)

As evident from Eq. (5), if μ1,2 are complex, then their
nonzero imaginary part quantifies the rate of the parametric
exponential damping [Im(μ) < 0] or exponential amplifica-
tion [Im(μ) > 0] of the solution y±(t ). By expanding μ1,2 for
small h and ε and by discarding terms of the order of ε2h, the
two solutions in Eq. (9) can be written as

μ±(h, ε) � −ω0 − ε

2
± i

2

√(
ω0h

2

)2

− ε2. (10)

The region such that Im(μ±) > 0 (i.e., ω0h/2 > |ε|) identifies
the linear instability region, where parametric amplification
occurs. Within this region, as evident from Eqs. (5) and (10),
the oscillator frequency is always exactly equal to ω0 + ε/2 ≡
γ /2, i.e., half of the pump frequency, therefore manifesting
its time-crystal nature. Thus, the growing solution of Eq. (4)

is found to be y+(t ) ∼ e(ω0t/2)
√

(h/2)2−(ε/ω0 )2
cos(γ t/2), from

which it follows that

x±(t ) ∼ e∓i ω0rt
2 e

ω0t
2 [

√
( h

2 )
2−( ε

ω0
)2−g] cos(γ t/2). (11)

Equation (11) describes two solutions, x1(t ) = Re[x±(t )] and
x2(t ) = ±Im[x±(t )]. Within the instability region, these so-
lutions represent two parametrically driven solutions with
in-quadrature beats (in the limit r � 1). Notice that, from
Eq. (11), it is evident that the parametric amplification
occurs when the pump strength h is above a threshold
value: In this case, parametric amplification occurs when√

(hω0/2)2 − ε2 > ω0g. At resonance ε = 0 (i.e., γ = 2ω0),
the threshold condition reads h > 2g.

B. Varying the pump phase: General derivation

We now use the scheme introduced in Sec. II A in order
to solve the system of linear Mathieu’s equations in the case
when the two oscillators are pumped with a different phase,

γ t → γ t ± φ/2:

ẍ1 + ω2
0[1 + h sin(γ t − φ/2)]x1 + ω0g ẋ1 − ω0r ẋ2 = 0,

ẍ2 + ω2
0[1 + h sin(γ t + φ/2)]x2 + ω0g ẋ2 + ω0r ẋ1 = 0,

(12)

where φ represents the phase difference between the two
pumps. Since the oscillators normally lock to the phase of
the pump, varying the phase difference between the pumps
is equivalent to varying the phase between the two oscillators.
We can equivalently rewrite Eq. (12) as

ẍ1 + ω2
0[1 + h sin(γ t ) cos(φ/2)]x1 − hω2

0 sin(φ/2)

× cos(γ t ) x1 + ω0g ẋ1 − ω0r ẋ2 = 0,

ẍ2 + ω2
0[1 + h sin(γ t ) cos(φ/2)]x2 + hω2

0 sin(φ/2)

× cos(γ t ) x2 + ω0g ẋ2 + ω0r ẋ1 = 0. (13)

In the basis x±(t ) = x1(t ) ± i x2(t ), Eq. (13) becomes

ẍ+ + ω2
0[1 + h sin(γ t ) cos(φ/2)]x+ + ω0(g + i r)ẋ+

− hω2
0 sin(φ/2) cos(γ t ) x− = 0,

ẍ− + ω2
0[1 + h sin(γ t ) cos(φ/2)]x− + ω0(g − i r)ẋ−

− hω2
0 sin(φ/2) cos(γ t ) x+ = 0. (14)

By comparing Eq. (14) with Eq. (2), one finds that a finite
dephasing φ 
= 0 has two effects: It (i) reduces the strength
of the parametric drive from h to h cos(φ/2) and (ii) gives
birth to an effective coupling between the x+(t ) and x−(t )
oscillators, whose strength is proportional to sin(φ/2). Since
now the x±(t ) oscillators obey different equations of motion,
we write the Floquet form of x±(t ) [see Eq. (5)] in the vector
form: (

x+
x−

)
= e−iμt

∑
n ∈Z

einγ t

(
H (+)

n

H (−)
n

)
, (15)

where H (+)
n and H (−)

n represent the nth Fourier component of
x+ and x−, respectively. By proceeding as done for Eq. (6), we
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obtain the recursion relations for H (±)
n :

D±,n(μ) H (±)
n + i

ω0h2

2
cos

(
φ

2

)
(H (±)

n+1 − H (±)
n−1) − ω0h2

2
sin

(
φ

2

)
(H (∓)

n−1 + H (∓)
n+1) = 0, (16)

where we define D±,n = ω2
0 − (nγ − μ)2 + i ω0(g ± i r)(nγ − μ). As done for Eq. (7), Eq. (16) can be also written in the matrix

form ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...

M∗(h, φ) D−1(μ) M(h, φ) 0 0

· · · 0 M∗(h, φ) D0(μ) M(h, φ) 0 · · ·
0 0 M∗(h, φ) D+1(μ) M(h, φ)

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

H−1

H0

H+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (17)

where one defines

Dn(μ) =
(

D+,n 0

0 D−,n

)
, (18a)

M(h, φ) =

⎛
⎜⎜⎝

i
hω2

0

2
cos(φ/2) −hω2

0

2
sin(φ/2)

−hω2
0

2
sin(φ/2) i

hω2
0

2
cos(φ/2)

⎞
⎟⎟⎠. (18b)

We now define �r = ω0

√
1 + (r2 − g2)/4 and focus on the

limit of small g, where

D±,n � �2
r −

[
nγ − μ − ω0

2
(ig ± r)

]2

. (19)

As in Sec. II A, we focus on the four-by-four minor of the
matrix in Eq. (17) which contains the blocks for n = 0 and
n = −1. As for Eq. (8), the requirement for the existence of
a nontrivial solution results in the computation of the roots
of an (eight-order) polynomial, P8(μ). Among its eight roots,
some of them (which we call the relevant roots) can acquire
a nonzero imaginary part depending on which parametric
resonance is met. As we will explain below, in this case, there
are three distinct resonances, where parametric amplification
can occur, which are given by γ = 2�r, 2�r ± ω0r.

1. Parametric resonance at γ = 2�r

We first discuss the parametric resonance at γ = 2�r . In
the limit of h = 0, one has four relevant roots that are doubly
degenerate. They are μ

(0)
±,± � ±ω0r/2 − γ /2 − i ω0g/2, for

which D±,0 = D±,−1 = 0. For finite h, the root degeneracy is
removed and one finds

μ
(0)
±,±(h, γ ) � ±ω0r

2
− γ

2
− i

ω0g

2
± i �(0)(h, γ ). (20)

As for the case in Eq. (10), the additional imaginary part
�(0)(h, γ ), determines the rate of parametric amplification
for the resonance around γ = 2�r . The rate �(0) is identical
for x+ and x−, indicating that both quadratures are amplified
by the same amount. Importantly, the oscillation frequencies
of the two quadratures differ by ω0r, indicating that the
system’s energy oscillates between x1 and x2. Also, x±(t )

display fast oscillations at half the frequency of the pump
but with in-quadrature beats at frequency ω0r/2 on top of
such oscillations. As we will discuss in Sec. III (see also
the Appendix), in the presence of nonlinearities, this behavior
will evolve into a limit cycle that will eventually stabilize the
amplitude of the beats.

2. Parametric resonances at γ = 2�r ± ω0r

We now move to the resonances at γ = 2�r ± ω0r. In this
case, we have only two relevant roots, which are degenerate
in the limit h → 0+. We denote the two roots by μ

(±ω0r)
± �

−γ /2 − i ω0g/2. A nonzero h removes the degeneracy in the
two relevant roots, adding an equal and opposite imaginary
part, which now we call �(±ω0r)(h, γ , r). Therefore, for finite
h, one has

μ
(±ω0r)
± (h, γ ) � −γ

2
− i

ω0g

2
± i �(±ω0r)(h, γ , r). (21)

From Eq. (21), we see that both oscillators oscillate with a
frequency equal to γ /2 within all the instability region (for
small h). Therefore, the system behaves as a time crystal, in
which fast oscillations of x± are locked in phase with the even
or odd cycles of the pump.

The functions �(0)(h, γ ) and �(±ω0r)(h, γ , r) in Eqs. (20)
and (21) identify the three different instability regions around
the three parametric resonances γ = 2�r, 2�r ± ω0r, respec-
tively. In contrast to the case discussed in Sec. II A, we
could not find an analytical expression for �(0)(h, γ ) and
�(±ω0r)(h, γ , r). Therefore, in order to determine the stability
phase diagram, we resort to numerics.

C. Linear instability regions

The regions of linear instability can be numerically de-
termined from the imaginary part of the roots of the poly-
nomial P8(μ), for different values of h and γ . This deter-
mines −ω0g/2 + �(0)(h, γ ) or −ω0g/2 + �(±ω0r)(h, γ , r) in
Eqs. (20) and (21). An example of the instability regions in the
h vs γ − 2�r plane is shown in Fig. 1. For concreteness, we
show the instability regions for small g, which we choose g =
10−2, and r = 0.2, and for (a) φ = 0, (b) φ = π/2, and (c)
φ = π . For φ = 0, the instability region consists of one cone
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FIG. 1. Example of the instability region in the h vs γ − 2�r

plane, in units of ω0. The instability regions, shown in arbitrary
scale from zero (dark blue) to some maximum value (red), have
been quantified by numerically computing the imaginary part of
the roots in Eqs. (20) and (21), for small g = 10−2 and r = 0.2.
We use (a) φ = 0, (b) φ = π/2, and (c) φ = π . There can be a
nonzero region in which different instability regions overlap (evident
for φ = π ).

centered at γ = 2�r . For nonzero φ, two additional outer
instability regions appear centered at γ − 2�r = ±ω0r =
±0.2 ω0 around the central region. For φ = π , the resonance
at γ = 2�r is completely suppressed, and only the instability
regions around γ − 2�r = ±ω0r are found.

A better insight regarding the properties of the system is
given by studying the behavior of the real and imaginary parts
of the relevant roots as we vary γ and h. This is shown in
Fig. 2, focusing in particular on the instability phase diagram
computed at φ = π/2 [Fig. 1(b)], which is also reported in
Fig. 2 for completeness. The blue dots represent the four
relevant roots [Eqs. (20) and (21)], plotted by showing their
imaginary parts as a function of their real parts from which
we subtract γ /2. We do not show the other four roots since
they do not contribute to the instabilities of the system and
therefore are not relevant for the present discussion.

We show the relevant roots in five prototype cases in Fig. 2:
(a) inside the stable region [Im(μ) < 0, i.e., the white area (S)
of the insets], all roots have negative imaginary part, which is
equal to −ω0g/2 in the small g and r limit. This case corre-
sponds to an exponential damping in time for both oscillators.
Inside the instability regions, one or two pairs of roots acquire
in addition an equal and opposite imaginary part, depending
on which one of the instability regions is entered. In the case
of the outer instability regions [Fig. 2(c)], only two roots
acquire an additional factor �(±ω0r) while having a real part
that is locked to γ /2 [see also Eq. (21)], which is highlighted
in the figure by the cyan dashed vertical line. Instead, inside
the central instability region [Fig. 2(e)], four roots acquire
an additional imaginary part �(0) while having a real part
locked to γ /2 ± ω0r/2 [see also Eq. (20)], which is instead
highlighted by the red vertical lines. These two types of in-
stabilities correspond, respectively, to a Pitchfork bifurcation
and to a Hopf instability [55]. Parametric amplification occurs
when the unstable region [Im(μ) > 0, i.e., the yellow area (U)
in the insets] is entered, i.e., when the overall imaginary part is
such that either −ω0g/2 + �(±ω0r) > 0 for the outer regions,
or −ω0g/2 + �(0) > 0 for the central region, which identifies
the threshold for parametric amplification.

FIG. 2. Stability phase diagram as in Fig. 1 for φ = π/2 (here
reported up to h = 0.3) and configurations of the four relevant roots
[blue dots in panels (a)–(e)] as the phase diagram is horizontally cut
at fixed h (magenta dashed arrow) from left to right, and gray arrows
indicate how the roots move accordingly. In the insets, we show the
roots by plotting their imaginary part (in arbitrary units) vs their real
part to which we subtract γ /2: δ Re(μ) = Re(μ) − γ /2, in units of
ω0. The yellow area (U) denotes the unstable region [Im(μ) > 0],
whereas the stable region (S) corresponds to Im(μ) < 0.

The key result of this analysis is that, in our system, when
the parametric linear instability is met, the two modes are
amplified and oscillate with a frequency that is locked to half
of the frequency of the pump. The parametric amplification
can occur with or without beats, depending on which region
of linear instability (the central or the outer ones, respectively)
is entered. Such linearly unstable regions are the precursors of
the stable regions of limit cycle and synchronized oscillations,
in which nonlinear effects eventually stabilize the long-time
dynamics. This will be the topic of the next sections (see also
the Appendix).

As a final remark, we stress that the advantage of using the
perturbative method here presented is that it grants us a good
analytical control. Quantitatively, the results presented in this
section are valid strictly speaking in the limit of h → 0+. For
a not too large finite value of h, there will be corrections to our
findings, but the qualitative picture remains valid. For the sake
of completeness, we mention that the full numerical solution
can be obtained by resorting to the formalism of fundamental
matrices [53].

III. NONLINEAR CASE: PERTURBATIVE
MULTIPLE-SCALE ANALYSIS

The method based on Floquet’s theorem presented in
Sec. II allows us to systematically study systems of linear
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coupled parametric oscillators, but it cannot be applied in
the presence of nonlinearities. When a nonlinear term is
included in the equations of motion, one can resort to a
multiple-scale perturbation method [56] in order to determine
the long-time dynamics of the oscillators. The goal of this
section is to apply such method in order to study the dy-
namics of the system of coupled oscillators [Eq. (12)] in the
specific case where a quadratic nonlinearity is included in the
model.

A. Equations for the long-time dynamics

In the actual physical context, there are different sources
of nonlinearities that can appear in the equations of motion
[Eq. (12)], such as saturation, Kerr effects, or pump deple-
tion. In this section, we focus on one type of nonlinear-
ity, namely, the pump depletion, which is in many experi-
mental contexts the most relevant type of nonlinearity. We
postpone the discussion of other types of nonlinearities to
Sec. IV.

The pump depletion accounts for the fact that the pump
intensity is depleted within the nonlinear medium by means
of down-conversion processes to the signal (and idler) field.
In the limit of small depletion, we can therefore write the
equations of motion as

ẍ1 + ω2
0

[
1 + h

(
1 − β x2

1

)
sin(γ t )

]
x1 + ω0g ẋ1 − ω0r ẋ2 = 0,

ẍ2 + ω2
0

[
1 + h

(
1 − β x2

2

)
sin(γ t + φ)

]
x2 + ω0g ẋ2 + ω0r ẋ1

= 0. (22)

Here, β quantifies the pump depletion. We now focus on the
resonant case γ = 2�r where the system is more affected
by the parametric instability. In order to determine the non-
trivial long-time dynamics of the system, we proceed with
a multiple-scale perturbative expansion [56]. The details of
the calculation are reported in the Appendix for the sake of
completeness.

In Eq. (22), we identify ω0 as the largest frequency
scale, which identifies the fastest timescale of the system
t = 2π/ω0. We assume that the coupling constants, r, g, and
h are much smaller than unity and influence the dynamics of
x1(t ) and x2(t ) only on timescales which are much longer
than 2π/ω0. In these conditions, the full dynamics can be
separated in quickly varying and slowly varying degrees of
freedom. If we work at fixed g, which we take as the small
expansion parameter of the theory, we can identify the char-
acteristic timescale of the slowly varying degrees of freedom
by τ = gt . Therefore, we can write x1(t, τ ) = A(τ ) eiω0t +
A∗(τ ) e−iω0t and x2(t, τ ) = B(τ ) eiω0t + B∗(τ ) e−iω0t , where
e±iω0t describes fast oscillations at frequency ω0 = γ /2, and
A(τ ) and B(τ ) represent the slowly varying complex am-
plitudes for x1 and x2, respectively. In the following, we
express time in units of ω0, i.e., we define τ̃ = ω0τ , and it
is convenient to redefine h and r with respect to g, i.e., by
introducing h̃ = h/g and r̃ = r/g.

By separating the real and imaginary parts of each
complex amplitude, i.e., A = AR + i AI and B = BR + i BI ,
the main result is that the dynamics of the slowly vary-
ing amplitudes is described by a set of four coupled

equations:

∂AR

∂τ̃
=

[
h̃

4
− 1

2
− βh̃

2

(
A2

R + 3 A2
I

)]
AR + r̃

2
BR

∂AI

∂τ̃
=

[
− h̃

4
− 1

2
+ βh̃

2

(
A2

I + 3 A2
R

)]
AI + r̃

2
BI , (23a)

∂BR

∂τ̃
= h̃

4
[BR cos(φ) + BI sin(φ)] − 1

2
BR − βh̃

2

[
B3

R cos(φ)

+2 B3
I sin(φ) + 3 BRB2

I cos(φ)
] − r̃

2
AR, (23b)

∂BI

∂τ̃
= h̃

4
[BR sin(φ) − BI cos(φ)] − 1

2
BI − βh̃

2

[
2B3

R sin(φ)

− B3
I cos(φ) − 3 B2

RBI cos(φ)
] − r̃

2
AI . (23c)

The system in Eq. (23) encodes the dynamics of A and
B. According to the standard analysis of nonlinear systems
[55], all the information that we need in order to describe
the long-time dynamics of x1,2(t ) can be found by studying
the configuration of the fixed points of Eq. (23), which are
found by imposing ∂A/∂τ̃ = ∂B/∂τ̃ = 0. Their stability is
determined by the eigenvalues of the Jacobian matrix at
a specific point (see the Appendix). Because we were not
able to find an analytic expression for the fixed points, we
resorted only to the numerical solution of Eq. (23). For the
configuration of the fixed points in the decoupled case (r̃ = 0),
the reader is referred to the Appendix.

B. Phase diagram of two coupled oscillators

The key result for φ = 0 is reported in Fig. 3, in which
we show the phase diagram in the h/(2g) versus r/g plane.
According to our analysis, three main regions are found:
When the system is below the threshold for parametric am-
plification [region I], the origin A = B = 0 is the only stable
attractor, and each trajectory of A(τ ) and B(τ ) is attracted into
the origin. In this region, oscillations are suppressed in the
long-time limit.

For any finite r̃, as the pump intensity is increased up to a
threshold value identified by the red dash-dotted line in Fig. 3,
the origin becomes a saddle point, giving birth to a stable
limit cycle in its surrounding via a supercritical Hopf bifur-
cation [region II]. In this region, the two oscillators display
everlasting beats, whose frequency, close to the threshold, is
determined by ω0r and whose shape changes as h̃ is increased.
For the analytical derivation of the boundary between regions
I and II, the reader is referred to the Appendix.

As the pump intensity is further increased, stable attractor
and saddle nodes are born in pairs via saddle-node bifurca-
tions. Specifically, depending on the value of r̃, by increasing
h̃, a region with either four [region III] or eight [region
IV] stable fixed points is entered. Inside these regions, the
limit cycle disappears and the amplitude of the oscillations
becomes constant in time (synchronized). The transition line
between the two regimes has been numerically determined
and is identified by the blue dashed line in the figure. We
find that such a transition can occur in two different ways.
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FIG. 3. Phase diagram of the nonlinear oscillators in the h/(2g)
vs r/g plane obtained by solving numerically Eq. (23) for φ = 0.
Different phases correspond to different configurations of the fixed
points. In the insets, we show the fixed points (black dots for
saddle points and green dots for stable fixed points) and the flow
(red line) in the BR vs AR plane. For h/(2g) not too far from the
threshold h/(2g) = 1, we can identify three main regions: (I) below
the threshold, only the origin is a stable attractor (inset 1); (II) right
above threshold, the origin loses its stability giving birth to a stable
limit cycle, whose shape depends on the distance from the system
threshold and on the coupling strength [inset 2 deep into region II,
insets 3 and 4 close to the boundary of region II, for low and high
pump power, respectively]. In this region, x± exhibits everlasting
beats; (III) synchronization region, in which four stable attractors
stabilize the dynamics (inset 5). In addition to region III, we also
find two additional regions (IV and V) in which eight or sixteen
stable fixed points are found (not shown), respectively. Interestingly,
between regions II and IV, we find a subregion in which the limit
cycle can coexists with stable attractors (inset 6). The blue dashed
line and the red dash-dotted line enclose the region in which the
limit cycle is found. The experimentally accessed region is usually
up to h/(2g) � 2. To the best of our knowledge, the regions that
are found for larger pump intensities, in which the model displays
a number of stable points larger than four, remains experimentally
unexplored.

For small couplings, we find that the period of the limit cycle,
which represents the period of the beats on top of the fast
oscillations at half the pump frequency, diverges as region III
is approached (see also Sec. III C). At the boundary between
regions II and III, eight fixed points (four attractors and four
saddle points) are born on the limit cycle via a saddle-node
bifurcation, causing the extinction of the limit cycle as region
III is entered. This phenomenology is customary referred
to as an infinite-period bifurcation. For larger values of the
coupling, we find that there is a first area inside region IV,
in which the limit cycle can coexist with the stable attractors
and therefore fast oscillations occur, either displaying beats or
with constant amplitude, depending on the initial conditions.

FIG. 4. Phase boundaries as in Fig. 3 for different values of
the pump dephasing φ. The shaded area enclosed by two curves
determines the region in which the limit cycle is found, for a given
value of φ. In particular, we show the boundaries for φ/π = 0 (full
orange lines), φ/π = 0.5 (dashed blue lines), φ/π = 0.8 (dotted red
lines), φ/π = 0.95 (dash-dotted green lines), and φ/π = 1 (black
full line). The presence of φ 
= 0 lowers the boundary for the infinite-
period bifurcation and raises the boundary for the supercriticial Hopf
bifurcation (see the Appendix).

After this region, the limit cycle collapses into one of the
attractors, and therefore only synchronized oscillations are
found. For even larger values of h̃, a region with sixteen stable
fixed points [region V] is found.

As φ is increased from 0 to π , the region II in which the
limit cycle is found tends to become smaller and eventually
completely disappears for φ = π . Figure 4 shows the two
boundaries for the supercritical Hopf bifurcation from region
I to II, and for the infinite-period bifurcation from region II to
III discussed in Fig. 3, for different values of φ. For φ = π , the
system directly passes from the below-threshold region to the
synchronization one. Importantly, for the range of parameters
considered here, the synchronization region after the limit
cycle region, for small values of the coupling, is always found
with four stable fixed points for all values of φ.

Before concluding this section, we comment on the physi-
cality of the model. As shown in Fig. 3, our model predicts
a large number of fixed points. Because we are describing
a system of two parametric oscillators, one would expect
that, in the synchronized regime, the spin picture holds when
the system has only four stable fixed points on the real axis
(twice as many as a single parametric oscillator). Indeed, for
experimental purposes, the model that we consider is relevant
only for values of the pump that are not too far away from
the oscillations threshold (i.e., when the single oscillator has
two stable fixed points; see the Appendix). This is precisely
the situation discussed in Ref. [50]. In order for the model
to be physical, it is important to verify that the condition
1 − β(x̄2

1 + x̄2
2 )/2 > 0 holds inside the full phase diagram,
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where x̄2
1,2 is the long-time average of x2

1,2(t ). This condition
ensures that, on average, the energy of the pump is always
down converted to the optical fields. We have verified that
such condition holds inside the numerically explored phase
diagram, even for very large values of the pump intensity.

Notice that the experimentally accessed region is usually
up to h/(2g) � 2, which corresponds to the maximum of
the conversion efficiency (i.e., unity) [57–61]. To the best of
our knowledge, the regions that are found for larger pump
intensities, in which the model displays a number of stable
points larger than four, remain experimentally unexplored.
Our theory indicates the existence of interesting dynamics
also in this high-pump intensity range. A deeper analysis
of such regions is beyond the aim of the present paper and
remains a subject of future studies.

C. Critical scaling by a three-scale analysis

In this section, we determine the critical exponent for
the radius of the limit cycle close to the supercritical Hopf
bifurcation boundary between regions I and II and of the
period of the limit cycle close to the infinite-period bifurcation
between regions II and III of the phase diagram in Fig. 3.

In order to determine the scaling of the radius of the limit
cycle, we focus on the points in region II which are close to the
threshold h̃th = 2 and sufficiently far from the infinite-period
bifurcation. In this case, the condition h � r � 1 holds and
the dynamics of the oscillators is determined by three dif-
ferent characteristic frequencies: ω0 (fast oscillations), ω0r
(medium-scale beats), and ω0h (long-time overall amplitude).
In this condition, it is natural to perform a multiple-scale anal-
ysis by introducing three different timescales. If we redefine
r = r0 r̃ and h = g h̃, where r0 is a characteristic scale for
the dynamics of the beats, we can distinguish three different
timescales in the expansion: t (for fast oscillations), σ = r0t
(for the medium-scale dynamics, i.e., beats), and τ = gt (for
the slow dynamics).

Focusing on the resonant case γ = 2ω0, it is convenient to
rewrite the equations of motion in Eq. (22) using the x± =
x1 ± i x2 basis, as in Sec. II:

ẍ+ + ω2
0[1 + gh̃ sin(2ω0t )]x+ + ω0g ẋ+ + i ω0r0r̃ ẋ+

− βgh̃ω2
0

4
sin(2ω0t ) (x3

− + 3 x2
+x−) = 0,

ẍ− + ω2
0[1 + gh̃ sin(2ω0t )]x− + ω0g ẋ− − i ω0r0r̃ ẋ−

− βgh̃ω2
0

4
sin(2ω0t )(x3

+ + 3 x+x2
−) = 0. (24)

We now expand x± = x(0)
± + r0 x(B)

± + gx(1)
± . By proceeding

as in Sec. III A (see also the Appendix), one obtains the
equations for the quickly varying and medium-scale modes,

∂2

∂t2
x(0)
± + ω2

0 x(0)
± = 0, (25a)

∂2

∂t2
x(B)
± + 2

∂

∂σ

∂

∂t
x(0)
± + ω2

0x(B)
± ± i ω0r̃

∂

∂t
x(0)
± = 0, (25b)

and similarly the equations for the slowly varying modes

∂2

∂t2
x(1)
± + 2

∂

∂τ

∂

∂t
x(0)
± + ω2

0 x(1)
± + h̃ω2

0 sin(2ω0t ) x(0)
±

+ω0
∂

∂t
x(0)
± − βω2

0h̃

4
sin(2ω0t )[(x(0)

∓ )
3 + 3(x(0)

± )
2
x(0)
∓ ]

= 0. (26)

From Eqs. (25) and (26), since x± = x∗
∓ and since the equa-

tions for the slowly varying modes of x+ and x− are mutually
complex conjugated, we can use solutions of the form

x(0)
+ (t, σ, τ ) = C+(σ )[AS (τ )eiω0t + A∗

S (τ )e−iω0t ],
(27)

x(0)
− (t, σ, τ ) = C−(σ )[AS (τ )eiω0t + A∗

S (τ )e−iω0t ],

where C± = C∗
∓ describe the medium-scale modes and the

slowly varying modes are described by the same complex am-
plitude AS . By plugging these expressions into Eq. (25b), one
has the solvability condition for the medium-scale dynamics:

∂

∂σ
C± = ∓i

ω0r̃

2
C± , (28)

from which one obtains the beating factor C±(σ ) =
C(0)e∓iω0 r̃σ/2 = C(0)e∓iω0rt/2, where C(0) = |C(0)|eiu is a
complex number. Here, |C(0)| is a normalization factor and
u determines the initial phase of the beats. By using these
expression for x(0)

± in Eq. (26) and by neglecting oscillating
factors as e±i2ω0rt that are strongly oscillating on the slow
timescale, one obtains the solvability condition for the slowly
varying amplitude AS:

2
∂AS

∂τ̃
− h̃

2
A∗

S + i AS + 3h̃β

8
(3|AS|2A∗

S − A3
S ) = 0, (29)

which is nothing but Eq. (23a) without the B term and with the
replacement β → 3β/4. For its solution, the reader is referred
to the Appendix. For completeness, we recall below the main
results.

Basing on the notation used in the Appendix, close to the
threshold value h̃ � 2, the origin is a saddle point and other
four fixed points (two saddle points and two stable nodes) are
found in its surroundings. Such points appear on the imagi-
nary and real axes, respectively. We call the stable fixed point
W ′

+, whose polar coordinates in the Im(AS ) versus Re(AS )

plane are [Eq. (A7)] ϕW ′+ = 0 and RW ′+ =
√

(2 − 4/h̃)/(3β ).
Such a point is the only one that can stabilize the long-time
dynamics of x±. In particular, its coordinates determine the
amplitude of the beats. Therefore, by recalling that, for φ =
0, h̃th = 2, the radius of the limit cycle from the long-time
dynamics of AS , which we call RLC := limt→∞ |AS (gt )|, is
readily determined:

RLC =
√

2

3β

(
1 − h̃th

h̃

)
. (30)

At the onset of the supercritical Hopf bifurcation, the limit
cycle grows from zero amplitude with the critical expo-
nent 1/2. In terms of the A and B amplitudes determined
by Eq. (23), the limit cycle is therefore identified by the
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FIG. 5. Radius of the limit cycle RLC as a function of h̃ − h̃th,
where h̃th = 2. Red points are numerically obtained by solving
Eq. (23) for φ = 0, r̃ = 0.25, and β = 10−2, and for h̃ close to the
boundary of the supercritical Hopf bifurcation h̃th = 2. We superim-
pose to the numerical data the analytic behavior (blue dash-dotted
line) found by the three-scale analysis in Eq. (30). In order to
further highlight the 1/2 critical exponent of the supercritical Hopf
bifurcation, we rescale the data by defining x = ln(1 − h̃th/h̃) and,
from Eq. (30), f (x) = ln

√
2/(3β ) + x/2 (inset).

dynamics

|A(t )| = |Re[C+(σ )] AS (τ )| =
∣∣∣∣cos

(
ω0rt

2
+ u

)∣∣∣∣ RLC, (31a)

|B(t )| = |Im[C+(σ )] AS (τ )| =
∣∣∣∣sin

(
ω0rt

2
+ u

)∣∣∣∣ RLC . (31b)

In the long-time limit, the limit cycle is therefore a perfect
circular arc whose frequency is determined by r and whose
radius solely depends on (h̃ − h̃th )/h̃ [Eq. (30)].

In order to explicitly show the critical exponent 1/2 of
the supercritical Hopf bifurcation, we compute the radius
of the limit cycle as a function of h̃ for a fixed r̃ 
= 0 by
numerically solving Eq. (23) for φ = 0 and β = 10−2 close
to the boundary of the supercritical Hopf bifurcation h̃th = 2
(red dash-dotted line in Fig. 3). The result is shown in Fig. 5.
We then superimpose the numerically determined data with
the expected behavior [Eq. (30)] found by the three-scale
analysis. The agreement between the two behaviors confirms
the prediction found in Eq. (30). Such square-root scaling can
be further highlighted by rescaling the data and the analytical
behavior by introducing x = ln(1 − h̃th/h̃) and, from Eq. (30),
f (x) = ln

√
2/(3β ) + x/2, which is shown in the inset.

The same critical exponent is found by studying the be-
havior of the period of the limit cycle TLC close to the
infinite-period bifurcation [55] (blue dashed line in the phase
diagram in Fig. 3). The result of the simulation is shown in
Fig. 6. We show the numerically determined value of TLC as
a function of the distance from the critical line h̃ − h̃c at a
fixed r̃ = 5 × 10−3. The continuous line represents the best
fit of the form TLC,fit = c1 + c2/

√
h̃c − h̃, where c1 and c2

are fit parameters. As evident from the figure, the agreement
between the numerical data and the fit confirms the fact that
the period of the limit cycle diverges as TLC ∼ (h̃c − h̃)

−1/2
as

the infinite-period bifurcation is approached.

FIG. 6. Period of the limit cycle TLC as a function of h̃ − h̃c,
where h̃c is the critical value for the infinite-period bifurcation, which
is numerically found: h̃c = 2.02828427. Red points are numerically
obtained by solving Eq. (23) for φ = 0, β = 10−2, and r̃ = 5 × 10−3

and by finely scanning h̃ close to the boundary of the infinite-period
bifurcation (blue dashed line of the phase diagram in Fig. 3). The
data are fitted with the function TLC,fit = c1 + c2/

√
h̃c − h̃ (blue line),

where c1 and c2 are fit parameters that are determined numerically.
(Inset) Rescaled data by defining y = ln(h̃c − h̃) and l (y) = ln(TLC −
c1) − ln(c2) = −y/2 in order to highlight the exponent 1/2. The
cyan dashed vertical line highlights the phase boundary h̃ − h̃c = 0.

Before concluding this section, we mention that the whole
analysis remains valid if a different form of coupling is
considered, i.e., ω2

0r x2,1 in the equation of motion (22) of
x1 and x2, respectively [40]. The proof of this statement is
discussed in the Appendix.

IV. DIFFERENT TYPES OF NONLINEARITY

In this section, we comment on the effects of different
nonlinearity of the two oscillators. We show that the phe-
nomenology discussed in Sec. III is not a consequence of the
specific choice of the model, but it is common to other models
which can be relevant in different experimental contexts. The
properties that we discuss in this section are found by using
exactly the same tools discussed in the previous sections. We
therefore report the main results without explicitly showing
all the technical details.

In order to ease the notation, we rewrite the equations of
motion in a more compact and generic form as

ẍ1 + ω2
0[1 + h sin(γ t )]x1 + ω0g ẋ1 − ω0 r ẋ2 + FNL;1 = 0,

ẍ2 + ω2
0[1 + h sin(γ t + φ)]x2 + ω0g ẋ2 + ω0 r ẋ1 + FNL;2

= 0, (32)

in which FNL;1,2 identify the nonlinear terms. In Eq. (22),
we considered the pump-depletion nonlinearity FNL,1 =
−hβω2

0 sin(2ω0t ) x3
1, FNL,2 = −hβω2

0 sin(2ω0t + φ) x3
2. As

mentioned before, another possible nonlinearity arises from
a Kerr or saturation effect. In this case, the cubic term in
Eq. (22) will not be coupled to the pump, and the equations of
motion in Eq. (32) are now written with FNL;1,2 = −βω2

0 x3
1,2

(see Table I), whose multiple-scale equations are obtained as
done for Eq. (23).

023835-9



MARCELLO CALVANESE STRINATI et al. PHYSICAL REVIEW A 100, 023835 (2019)

TABLE I. Types of nonlinearity (pump depletion or Kerr satura-
tion) that we consider in the equations of motion in Eq. (32).

Nonlinearity

Pump depletion

FNL,1 = −hβω2
0 sin(2ω0t ) x3

1

FNL,2 = −hβω2
0 sin(2ω0t + φ) x3

2

Kerr saturation

FNL;1 = −βω2
0 x3

1

FNL;2 = −βω2
0 x3

2

The phase diagram that we obtain from the configurations
of the fixed points, which is shown in Fig. 7(b), displays the
same phases found for the phase diagram in Fig. 3, which is
reported for completeness in Fig. 7(a): (I) a region in which
the system is below threshold, (II) an extended region in

FIG. 7. Phase diagrams as in Fig. 3 for [(a1) and (b1)] φ = 0,
[(a2) and (b2)] φ = 0.4 π , and [(a3) and (b3)] φ = π . The phase
diagrams have been obtained by considering (a) pump-depletion
nonlinearity and (b) for Kerr nonlinearity. The different phases are
(I) phase in which the origin is the only stable attractor; (I a) phase in
which the origin is a stable attractor and coexists with other attractors
(no limit cycle is found in this phase); (II) phase with stable limit
cycle and no stable attractor; (III) phase with four stable attractors,
in which the origin is a saddle point; and (III a) phase like phase III
but with two stable attractors only.

which only a stable limit cycle can stabilize the dynamics,
therefore yielding also in this case everlasting beats in the
time evolution of x1 and x2, and (IIIa)–(III) a region in which
stable attractors stabilize the dynamics. However, unlike the
model analyzed in Fig. 3, in addition to region III, in which
four attractors are found, for φ > 0 [Fig. 7(b2)], there is an
additional intermediate region, which we call region IIIa, in
which only two attractors are found.

As discussed in Fig. 4, for φ = π [Figs. 4(a3) and 4(b3)],
the region with the limit cycle [region II] disappears, and
one passes directly from the below-threshold region to the
region with stable attractors, which are four in the case of
the pump-depletion nonlinearity and two in the case of the
Kerr nonlinearity. In the latter case, for larger values of the
pump, the region with four stable attractors is found above
the one with two attractors only. In a more physical situation
in which both nonlinearities are found, one always finds, for
φ > 0, a small region with two stable fixed points before the
one with four stable points, as the pump intensity is increased.
Interestingly, when the Kerr nonlinearity is considered, the
behavior of the the radius of the limit cycle at the onset of the
supercritical Hopf bifurcation (for φ = 0) is found to grow
from zero with a critical exponent equal to 1/4 in contrast
to the critical exponent 1/2 found in the case of the pump-
depletion nonlinearity [see also Eq. (A13)]. Such difference
can be exploited in experiments to distinguish between the
two types nonlinearities. This point is left for future work.

From this analysis, apart from the specific quantitative
details that depend on the specific model that we consider,
it is therefore seen that the presence of a wide region in which
the system displays everlasting beats comes solely from the
interplay between parametric gain, losses, nonlinearity, cou-
pling, and, apart from extremely fine-tuned phase differences
between the two oscillators, it always emerges for any nonzero
coupling as the oscillation threshold is crossed (see Sec. V
for the extension to the case of dissipative coupling). When
the system is within such phase, the system of two coupled
parametric oscillators therefore does not match the picture of
two Ising spins discussed in previous work [40–42,46].

V. DISSIPATIVE COUPLING AND CIM

So far, we considered only the effect of an energy-
preserving coupling, which is found when the energy ex-
change rate between the two oscillator is balanced. In this
section, we consider the effects of a dissipative coupling,
which is instead found whenever the two oscillators exchange
energy with different rates, in order to connect our model to
the one discussed in Ref. [40] in the context of CIMs. We
eventually discuss a generic experimental implementation of
such a coupling.

In order to show this connection, we first consider the linear
case. We rewrite Eq. (12) as

ẍ1 + ω2
0[1 + h sin(γ t − φ/2)]x1 + ω0g ẋ1 − ω0(r − α) ẋ2

= 0,

ẍ2 + ω2
0[1 + h sin(γ t + φ/2)]x2 + ω0g ẋ2 + ω0(r + α) ẋ1

= 0, (33)
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where all quantities are as in Eq. (33), and α � 0 repre-
sents the strength of the dissipative part of the coupling that
quantifies the unbalancing between the energy exchange rates
between the two oscillators. As we will show, depending
on the relation between r and α, the system undergoes a
transition between the CIM behavior [40] and the beating
phenomenology discussed in the previous sections.

In order to diagonalize Eq. (33), we introduce the basis
(k− k+)T = K (x1 x2)T , where T denotes the transposition and
the nonunitary matrix K is

K = 1√
1 + |(r − α)/(r + α)|

(
1 −i

√
(r − α)/(r + α)

1 i
√

(r − α)/(r + α)

)
.

(34)

In this basis, the equation of motion (33) becomes

k̈± + ω2
0[1 + h sin(γ t ) cos(φ/2)]k± + ω0 g k̇±

∓i ω0

√
r2 − α2 k̇± − hω2

0 sin(φ/2) cos(γ t ) k∓ = 0. (35)

From Eq. (35) and using the same tools as in Sec. II, one can
see that two different regimes arise:

(1) For r > α, i.e., when the nature of the coupling is
mostly nondissipative, the term

√
r2 − α2 is real. This is

the situation studied in Sec. II. When γ = 2ω0, the solution
displays beats at a frequency ±ω0

√
r2 − α2/2. Two additional

parametric resonances at γ = 2ω0 ± ω0

√
r2 − α2 are found,

at which parametric amplification occurs without beats.
(2) For r < α, i.e., when the dissipative part of the cou-

pling dominates, the term
√

r2 − α2 = i
√

α2 − r2 is imagi-
nary. Now, only the parametric resonance at γ = 2ω0 is found,
for all values of φ, and the solution never displays beats.
Instead, the modes k± have now different loss terms g ∓√

α2 − r2 for k±, leading to different oscillation thresholds.
The systems therefore undergoes a transition between the

CIM to the beating behavior at r = α. The analysis can be ex-
tended to the nonlinear case by including the pump-depletion
nonlinearity and proceeding with the two-scale expansion as
in Eq. (23); see the Appendix for more details. By using
this method, we compute the phase diagram in the h/(2g)
versus r/g plane, as done in Figs. 3 and 7, for different
values of α (which we also rescale as α̃ = α/g) and φ. The
result is shown in Fig. 8. The phase diagram for α̃ = 0 and
φ = 0 is the same as in Figs. 3 and 7(a1) and is reported
here for completeness. As explained there, when crossing the
oscillation threshold h = 2g, one always enters the beating
region. For stronger pumps, the system undergoes a transition
to a region with four (or eight) fixed points. The picture
changes when α̃ > 0. In particular, we choose α̃ = 0.15 and
first show the result for φ = 0. We see that, in this case, an
additional phase with two stable fixed points emerges, and for
r̃ < α̃, this phase is found directly above the threshold (see the
Appendix for the analytical computation). For larger values of
h̃, from the region with two stable points, the phase with four
stable fixed points is found. This situation matches the one
discussed in Ref. [40], in which the two-oscillator system can
be used as a CIM directly above the oscillation threshold. For
r̃ > α̃, the limit cycle region discussed throughout this paper
emerges between the below-threshold and the CIM regions.
This analysis suggests that there are two different routes to

FIG. 8. Phase diagram in the h/(2g) vs r/g plane as in Figs. 3
and 7, for different values of α̃ and φ, as in the legends. For α̃ > 0,
in addition to the (I) below threshold region, (II) limit cycle region,
(III) region with four stable fixed points and phases with more than
four fixed points (not labeled), which are not relevant for the present
purpose, region (IIIa) with two stable fixed points arises: for r̃ < α̃

right above threshold, and for r̃ > α̃, after the limit cycle region. The
former case is the working point for the two-oscillator CIM; see also
Ref. [40]. The red dashed line is the analytical threshold (Appendix).

reach the CIM regime, whose further analysis is left for future
work.

For φ > 0, the picture remains qualitatively similar. The
width of the region with two stable fixed points, as well as the
limit cycle region, is reduced as φ is increased, as discussed
in the previous sections for α̃ = 0. For φ = π , only the region
with four stable fixed points is found above threshold.

Before concluding, we discuss a generic experimental
setup to realize our system as in Eq. (33). A minimal setup is
reported in Fig. 9, which can be implemented both by means
of radio-frequency [50] or optical components, thus ensuring
the scalability of the setup. The two fields x1 and x2 are
generated inside two cavities A and B, respectively, and they
are coupled by a power-splitter coupling. In the most general
case, this component accounts for the following quantities:
(i) the transmittance coefficients cAA and cBB, which can
be without loss of generality taken equal for both cavities,
i.e., cAA = cBB = c � 0, whose effect is to renormalize the
intrinsic loss of the cavities g, and (ii) the coupling coefficients
cAB and cBA that when they have the same sign, determine the
amount of energy that is transferred from A to B, and from
B to A, respectively. Without loss of generality, we consider
cBA > 0.
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FIG. 9. Generic scheme for an experimental setup with power-
splitter coupler. The transmittance and energy transfer coefficients
are identified by cAA, cBB, cAB, cBA. When the exchange channels
identified by cAB and cBA are lossy, causing different coupling rates,
i.e., cAB 
= cBA, the coupling as in Eq. (33) can be obtained.

In this notation, the coupling between the two oscillators
can be written as

ẋ1 = +ω0cAB x2, ẋ2 = −ω0cBA x1. (36)

When cAB = cBA, one defines r = cAB = cBA, and this bal-
anced coupling leads only to the presence of beats, without
any CIM region. Instead, when the coupling is unbalanced,
i.e., cAB 
= cBA, it is possible to achieve the CIM regime. In
this case, one can write r = (cBA + cAB)/2 and α = (cBA −
cAB)/2, so that cAB = r − α and cBA = r + α, and Eq. (36)
becomes

ẋ1 = +ω0(r − α) x2, ẋ2 = −ω0(r + α) x1. (37)

By taking the time derivative on both sides of Eq. (37) and by
including this coupling in the equations of motion, Eq. (33) is
obtained.

VI. CONCLUSIONS

In this work, we reported a detailed analytical and numeri-
cal analysis of two parametric oscillators coupled by a power-
splitting coupling, first focusing on the case in which the
coupling was purely energy preserving and later discussing
the relation of our model with CIMs in the case of dissipative
coupling.

We first studied in detail the linear case by resorting to the
Floquet theorem. We analytically showed that the system dis-
plays three resonances, whose relative splitting in frequency
depends on the coupling strength, and then we numerically
determined the full stability phase diagram. We showed that,
depending on what resonance is met, parametric amplification
for both oscillators can occur with or without the beats. In the
former case, the frequency of the beats is solely determined
by the coupling strength.

We then discussed the nonlinear case, first by studying
in detail the model with one specific type of nonlinearity,
namely, the pump depletion. Next, we corroborated the gener-
ality of our finings by discussing the validity of our results in
different models, considering different types of nonlinearity
and coupling. A single parametric oscillator, above the oscil-
lation threshold, has two possible solutions that are identified
by a relative time shift of π (one period of the pump). For
this reason, a single parametric oscillation is suitable for the
simulation of a classical spin-1/2 degrees of freedom, the two
states of the spin being identified by the two solutions. In

contrast, we showed that two nonlinear coupled parametric
oscillators display a wide region in parameter space in which,
sufficiently not too far away from the oscillation threshold,
only a stable limit cycle is found and oscillations occurs
with everlasting beats whose shape and frequency depends
on the system parameters. This phenomenology was found as
long as the nature of the coupling was mostly nondissipative,
irrespective of the details of the nonlinearity and away from
extremely fine-tuned values of the phase difference between
the pumps.

Our findings, from a generic perspective, show a way
to use parametric oscillators in order to preserve coherence
indefinitely. On the other hand, they are immediately relevant
to the context of CIMs. Indeed, given the richer physics that
we found in the minimal building block of the two-oscillator
system with respect to what has been previously addressed,
it is crucial to understand how the interplay between two
couplings of different nature affects a more structured net-
work. For this reason, the extension of the study presented
in this paper to more than two coupled parametric oscillators,
specifically, studying the fate of the limit cycle when several
oscillations are coupled, is an important step in the analysis
of large-scale CIMs. We leave this point as an outstanding
perspective for future work.

ACKNOWLEDGMENTS

We thank Joseph Avron, Ivan Bonamassa, Claudio Conti,
Nir Davidson, Igor Gershenzon, Ron Lifshitz, Chene Tradon-
sky, and Yoshihisa Yamamoto for fruitful discussions. We are
grateful to David A. Kessler for careful reading and invaluable
comments on this paper. A.P. acknowledges support from ISF
Grant No. 46/14. M.C.S. acknowledges support from the ISF
Grants No. 231/14 and No. 1452/14.

APPENDIX

1. Details on the derivation of Eq. (23)

In this Appendix, we report the details of the derivation of
the system in Eq. (23). As we discussed in the main text, one
first separates the quickly varying timescale t from the slowly
varying one τ = gt . We now proceed with the perturbative
expansion, treating g as the small expansion parameter, and
consider only terms in the expansion that are at most of
the order of g. First, in the dynamics of x1 and x2, we
can explicitly separate the quickly varying timescale from
the slowly varying one; i.e., we write x1,2 = x1,2(t, τ ). We
can therefore express the time derivative as d/dt = ∂/∂t +
g(∂/∂τ ) and therefore d2/dt2 � ∂2/∂τ 2 + 2g(∂/∂τ )(∂/∂t ),
where we neglect terms of the order of g2. Similarly, we
expand x1,2 = x(0)

1,2 + gx(1)
1,2, where x(0)

1,2 and x(1)
1,2 represent the

zeroth-order and first-order correction to x1,2, respectively.
Using these definitions into Eq. (22) and the fact that

2�r � 2ω0, we can separate the terms that do not appear
multiplied by g, which are

∂2

∂t2
x(0)

1 + ω2
0 x(0)

1 = 0,
∂2

∂t2
x(0)

2 + ω2
0 x(0)

2 = 0 , (A1)
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from the terms that are proportional to g, which are

∂2

∂t2
x(1)

1 + ω2
0 x(1)

1 + 2
∂

∂τ

∂

∂t
x(0)

1 − r̃
∂

∂t
x(0)

2 + ω0
∂

∂t
x(0)

1

+ω2
0 h̃

[
1 − β

(
x(0)

1

)2]
sin(2ω0t ) x(0)

1 = 0, (A2a)

∂2

∂t2
x(1)

2 + ω2
0 x(1)

2 + 2
∂

∂τ

∂

∂t
x(0)

2 + r̃
∂

∂t
x(0)

1 + ω0
∂

∂t
x(0)

2

+ω2
0 h̃

[
1 − β

(
x(0)

2

)2]
sin(2ω0t + φ) x(0)

2 = 0. (A2b)

From Eq. (A1), we can write x1(t, τ ) = A(τ ) eiω0t +
A∗(τ ) e−iω0t and x2(t, τ ) = B(τ ) eiω0t + B∗(τ ) e−iω0t , where
A(τ ) and B(τ ) represent the slowly varying complex ampli-
tudes for x1 and x2, respectively. If these expressions of x(0)

1,2 are
used into Eqs. (A2a) and (A2b), one has [we show explicitly
the calculation for Eq. (A2a) only, the one for Eq. (A2b) being
essentially the same]

∂2

∂t2
x(1)

1 + ω2
0 x(1)

1 + i eiω0t

[
2ω0

∂A

∂τ
− ω2

0h̃

2
A∗ + ω2

0 A

+ ω2
0h̃ β

2

(
3|A|2A − A3

) − ω2
0 r̃ B

]
+ c.c. = 0, (A3)

where c.c. denotes the complex conjugation. The terms pro-
portional to e±iω0t in Eq. (A3), which are commonly referred
to as secular terms, represent a resonant driving force applied
to the x(1)

1 oscillator. Such a force will always cause the solu-
tion for x(1)

1 to be unbounded. In order to ensure the solvability
of Eq. (A3), we need to impose that such secular terms are
zero. This gives the solvability condition for Eq. (A3):

2ω0
∂A

∂τ
− ω2

0h̃

2
A∗ + ω2

0h̃ β

2
(3|A|2A∗ − A3) + ω2

0 A

−ω2
0 r̃ B = 0. (A4)

By separating real and imaginary parts of A and B, i.e., A =
AR + i AI and B = BR + i BI , we can write the two coupled
equations for AR and AI shown in Eq. (23a). By repeating the
same steps for Eq. (A2b), we therefore arrive to the set of
four coupled equations for the real and imaginary parts of the
complex amplitudes of the fields in Eq. (23).

2. Stability analysis of the single parametric oscillator

In this Appendix, we report for completeness the stability
analysis of the nonlinear Mathieu’s equation for the single
parametric oscillator in the presence of the pump-depletion
or Kerr nonlinearity.

a. Pump-depletion nonlinearity

We first focus on the case of the pump-depletion nonlinear-
ity, i.e., the case discussed in Sec. III A, for r̃ = 0. In this case,
the two oscillators are decoupled and one can study only the
dynamics of one of the two oscillators A or B in Eq. (23), since
for r = 0 the effect of φ is trivial and the two equations of
motion describe exactly the same physics. In order to simplify
the analytical calculation, we therefore study the equations for
A in Eq. (23), for φ = 0, which for completeness we recall

below (τ̃ = ω0τ ):

∂AR

∂τ̃
= AR

[
h̃

4
− 1

2
− βh̃

2

(
A2

R + 3 A2
I

)]
, (A5a)

∂AI

∂τ̃
= AI

[
− h̃

4
− 1

2
+ βh̃

2

(
A2

I + 3 A2
R

)]
. (A5b)

It is convenient to find the coordinates of the fixed points in
the AI versus AR plane in polar coordinates. We can therefore
define AR = R cos(ϕ) and AI = R sin(ϕ). From Eq. (A5), the
condition ∂A/∂τ̃ = 0 therefore yields the set of equations for
R 
= 0:

cos(ϕ)

[
h̃

2
− 1 − βh̃R2[cos2(ϕ) + 3 sin2(ϕ)]

]
= 0, (A6a)

sin(ϕ)

[
− h̃

2
− 1 + βh̃R2[sin2(ϕ) + 3 cos2(ϕ)]

]
= 0. (A6b)

From Eqs. (A6), one sees that ϕ = 0 and ϕ = π/2 are two
possible solutions for the angular variable, which define two
sets of fixed points that we call W±, i.e., ϕW− = π/2 and
ϕW+ = 0. The corresponding radial variables are found to be

RW± =
√

1

2β

(
1 ∓ 2

h̃

)
. (A7)

Instead, for ϕ 
= 0, π/2, one has from Eq. (A6a)

R2 = 1

β

(
1

2
− 1

h̃

)
1

cos2(ϕ) + 3 sin2(ϕ)
, (A8)

and if this is used in Eq. (A6b), one has the solution for the
angular variable

cos(ϕ) = ±
√

1

2

(
1 + 4

h̃

)
(A9)

for h̃ > 4. Equation (A9) identifies two additional fixed points
that we call P and Q, whose angular and radial variables are
therefore

ϕP = arccos

[√
1

2

(
1 + 4

h̃

) ]
, (A10a)

ϕQ = π − arccos

[√
1

2

(
1 + 4

h̃

)]
, (A10b)

RP,Q = 1

2
√

β
. (A10c)

We therefore have the following picture: For β > 0, W−
is found for any h̃ > 0, W+ is found for h̃ > 2, whereas P
and Q are found for h̃ > 4. From the expression of J1 in the
Appendix, the eigenvalues of the Jacobian are found to be

λ± = −ω0

2
± h̃ω0

2

√
1

4
− 3β R2 + 9 β2R4 cos2(2ϕ) (A11)

for a given fixed point, i.e., for the specific values of R and ϕ.
The eigenvalues of the Jacobian matrix are independent of β,
since R ∼ 1/

√
β for all fixed points with R 
= 0.

There are four main different situations depending on the
values of the system parameters that one can consider: First,
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FIG. 10. Flow of the nonlinear Mathieu’s equation with pump-
depletion nonlinearity [Eq. (A5)] in the AI vs AR plane. Blue arrows
represent the lines of the flow; black and green dots represent
unstable and stable fixed points, respectively. We show the flow for
four prototype cases: (a) for β = 0 and h̃ < 2, (b) β > 0 and h̃ < 2,
(c) β > 0 and 2 < h̃ < 4, and (d) β > 0 and h̃ > 4.

for β = 0 and h̃ < 2, the origin is the only fixed point of the
system and it is a stable node [Fig. 10(a)], which becomes a
saddle point when h̃ > 2 (not shown).

Second, for β > 0 and h̃ < 2 [Fig. 10(b)], two additional
fixed points (W−) appear in addition to the origin. We see
that at the origin (R = 0) the eigenvalues of the Jacobian are
λ±;O = −ω0/2 ± ω0h̃/4, and therefore they are both real and
negative if h̃ < 2, whereas the eigenvalues of the Jacobian for
the W− points are λ±;W− = −ω0/2 ± (ω0 + 3h̃)/2, which are
always real and with opposite sign. The points W− are always
saddle points, and therefore in the case h̃ < 2 only the origin
is a stable point also for β > 0.

Third, for 2 < h̃ < 4, two stable nodes (W+) are born in
pairs from the origin via a saddle-node bifurcation, after
which the origin becomes a saddle point, independent of β

[Fig. 10(c)]. This can be seen by looking at the eigenvalues
of the Jacobian matrix: For the fixed points W+ and W−,
the eigenvalues of the Jacobian are λ±;W+ = −ω0/2 ± ω0|3 −
h̃|/2 and λ±;W− = −ω0/2 ± ω0(3 + h̃)/2. In this range of h̃,
the point W− is always a saddle point, whereas the point W+
is a stable node, with both eigenvalues of the Jacobian real
and negative, whereas the origin (whose eigenvalues of the
Jacobian matrix are λ±;O = −ω0/2 ± ω0h̃/4, see above) is a
saddle points when h̃ > 2. In this situation, for the trajectories
flowing to the fixed point W+, the imaginary part of the
complex amplitude AI is suppressed (AI → 0), and the real
part AR is stabilized to some nonzero value. This situation
corresponds to squeezing.

Fourth, for h̃ > 4, two new stable attractors (P and Q) are
born from W+ via a saddle-node bifurcation, after which the

fixed point W+ becomes a saddle point [Fig. 10(d)]. For the
fixed points Q and P, the eigenvalues of the Jacobian matrix
are λ±;Q,P = −ω0/2 ± (ω0/2)

√
9 − h2/2. The fixed points P

and Q are therefore stable nodes with both eigenvalues real
and negative for 4 < h̃ < 3

√
2, and they are stable focuses

(with eigenvalues with negative real part and nonzero imagi-
nary part) for h̃ > 3

√
2.

One can see that the effect of having φ > 0 is to rigidly
rotate the flow of the nonlinear equation by an angle of
φ/2. Therefore, in computing the position of the fixed points,
one simply has to redefine the angles as ϕW± → ϕW± + φ/2
and ϕP,Q → ϕP,Q + φ/2, while the radial coordinates and the
eigenvalues of the Jacobian matrix remain unaffected by φ.

b. Kerr nonlinearity

We here recall the stability diagram of the nonlinear Math-
ieu’s equation with Kerr nonlinearity in the resonant case (see,
for instance, also Ref. [62]). Focusing on the case of φ = 0,
the nonlinear equations for the slowly varying amplitude are
(τ̃ = ω0τ )

∂AR

∂τ̃
=

(
h̃

4
− 1

2

)
AR + 3β

2
|A|2 AI , (A12a)

∂AI

∂τ̃
=

(
− h̃

4
− 1

2

)
AI − 3β

2
|A|2 AR. (A12b)

From Eq. (A12), one can see that there are two possible sit-
uations: When β = 0, the origin is a stable node for h̃ < 2 and
it is a saddle point for h̃ > 2, as in the case of Appendix A 2 a.
For β > 0, the origin is the only fixed point for h̃ < 2 and
it is a stable node. For h̃ > 2, the origin becomes a saddle
point and two additional stable fixed points (which we denote
by P) are born from the origin via a saddle-node bifurcation.
As done in Appendix A 2 a, we express the coordinates of the
fixed point P in polar coordinates, whose radial coordinate is

RP = 1√
3β

(
h̃2

4
− 1

)1/4

, (A13)

and the angular coordinate is

ϕP = −arctan

⎛
⎝

√
h̃ − 2

h̃ + 2

⎞
⎠ . (A14)

The eigenvalues of the Jacobian are found to be

λ± = −ω0

2
± ω0

2

√
h̃2

4
+ 3 h̃β R2 sin(2ϕ) − 27 β2 R4,

(A15)

for a given fixed point. As in Eq. (A11), the eigenvalues of
the Jacobian are independent of β. For the origin (R = 0),
one has the eigenvalues λ±;O = −ω0/2 ± ω0h̃/4. Instead, for

the point P, one has λ±;P = −ω0/2 ± (ω0/2)
√

5 − h̃2. The
fixed points P are the only fixed points in addition to the
origin (in the resonant case γ = 2ω0) that are found for all
h̃ > 2, and they are stable nodes for 2 < h̃ <

√
5 and stable

focuses for h̃ >
√

5. An example of the flow is shown in
Fig. 11, in the case of β > 0 and for the below-threshold case
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FIG. 11. Flow of the nonlinear Mathieu’s equation with Kerr
nonlinearity [Eq. (A12)] as in Fig. 10. We show the flow for two
prototype cases for β > 0: (a) for h̃ < 2 and (b) h̃ > 2.

h̃ < 2 [Fig. 11(a)], and for the above-threshold case h̃ > 2
[Fig. 11(b)].

3. Oscillation threshold and beats

Here, we discuss the stability properties of the origin as a
function of the system parameters for the system discussed
in Sec. III, in the presence of both energy-preserving and
dissipative coupling (see Sec. V). The results that we discuss
in this section are valid also for β = 0, since the stability
properties of the origin are unaffected by the nonlinearity.

The information regarding the position of the critical line
for the bifurcation separating the region of the phase diagram
in which the origin is a stable attractor (below threshold) from
the one in which the origin is unstable (limit cycle, CIM or
synchronization region) can be determined by studying the
Jacobian matrix at the origin, i.e., A = B = 0. The eigenvalues
of the Jacobian matrix at the origin are found to be

λ±,±

= −ω0

2
± ω0

4

√
h̃2−4 (r̃2−α̃2) ± i 4 h̃

√
r̃2−α̃2 cos

(
φ

2

)
.

(A16)

The origin is a stable point if all the eigenvalues in Eq. (A16)
have negative real parts. In this case, the largest negative real
part gives the decay rate to the trivial solution A = B = 0 be-
low the oscillations threshold: τ−1

decay = −gmax{Re[λ±,±]} =
gmin|Re[λ±,±]|. For sufficiently long times, below threshold,
the decay to the trivial solution is then x1(t ), x2(t ) ∼ e−t/τdecay .
We can therefore have two regimes:

(i) Case r̃ > α̃: Beating regime. By defining for conve-
nience the function

Y (h̃, r̃, α̃, φ) = h̃2 − 4 (r̃2 − α̃2)

+
√

[h̃2 − 4(r̃2 − α̃2)]
2 + 16 h̃2(r̃2 − α̃2) cos2

(
φ

2

)
,

(A17)

one can see that, in the h̃ versus r̃ plane, the origin is stable
point if h̃ < h̃th(r̃, α̃, φ), where h̃th(r̃, α̃, φ) is identified by the

contour line Y (h̃, r̃, α̃, φ) = 8, which yields

h̃th(r̃, α̃, φ) = 2

√
(r̃2 − α̃2) + 1

(r̃2 − α̃2) cos2(φ/2) + 1
. (A18)

Notice that, for generic φ, one has from Eq. (A18)
h̃th(r̃, α̃, φ) � 2, for all r̃, where the lower bound h̃th = 2 is
found for φ = 0, and it is independent of r̃, which is correctly
the threshold condition h/(2g) = 1 discussed in Eq. (11) at the
parametric resonance (ε = 0). For a generic φ, the threshold
for parametric oscillations depends on the strength of the
coupling.

The imaginary part of the eigenvalues in Eq. (A16), when
present, is what determines the presence or absence of beats.
From Eq. (A16), one can see that

|Im[λ±,±]| =
√

r̃2 − α̃2

2

√
(r̃2 − α̃2 + 1) cos2(φ/2)

(r̃2 − α̃2) cos2(φ/2) + 1
,

(A19)

and therefore the angular frequency of the limit cycle at
threshold is ωLC,th(r̃, α̃, φ) = ω0g |Im[λ±,±]|.

It is now interesting to compare the results in Eqs. (A18)
and (A19) with the one discussed in the linear case in
Sec. II C. One can see that, above threshold for φ < π ,
the origin is always an unstable point with |Im[λ±,±]| > 0,
and therefore the oscillators always display beats. In such a
situation, for β = 0, no limit cycle can stabilize the amplitude
of the beats and therefore the long-time dynamics of the
oscillators is given by an exponential amplification with the
beats superimposed. This situation corresponds to the one
discussed in the linear case in Sec. II C by means of Floquet
theorem, in the case in which the central instability region was
present [see, for example, Figs. 1(a) and 1(b)].

Instead, at φ = π and above the threshold identified by
h̃th(r̃) = 2

√
r̃2 + 1, one has |Im[λ±,±]| = 0. In this case, the

origin is unstable and amplification occurs without beats.
This situation, for β = 0, corresponds to the situation shown
in Fig. 1(c), in particular when the system is in the region
in which the two outer instability regions overlap (around
γ = 2�r � 2ω0). On top of these behaviors, found also in the
linear case, the interplay between β, g > 0 is what eventually
stabilizes the beats with the presence of the limit cycle (for
φ < π ) or the synchronization with the presence of addi-
tional stable attractors (for φ = π ) as the oscillation threshold
[Eq. (A18)] is crossed.

(ii) Case r̃ < α̃: CIM regime. In this case, in the regime
of interest, the eigenvalues in Eq. (A16) are real. This first
implies that, even when the origin becomes unstable, no limit
cycle is found. The origin is an unstable point when λ+,+ > 0,
and therefore the threshold is identified by the condition

h̃2 + 4 h̃
√

(α̃2 − r̃2) cos

(
φ

2

)
+ 4[(α̃2 − r̃2) − 1] = 0,

(A20)
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from which for the requirement h̃ ∈ R one obtains

h̃th(r̃, α̃, φ) = 2

√
1 + (α̃2 − r̃2)

[
cos2

(
φ

2

)
− 1

]
− 2

√
α̃2 − r̃2 cos

(
φ

2

)
. (A21)

As discussed in Sec. V, above this threshold, the region with two stable fixed points is found.

4. Alternative form of the coupling: Multiple-scale analysis

We report here the result of the calculation of the multiple-scale equations, using an alternative and commonly used form of
the coupling, and α = 0. We write the equation of motion [Eq. (22)] as

ẍ1 + ω2
0

[
1 + h

(
1 − β x2

1

)
sin(γ t )

]
x1 + ω0g ẋ1 + ω2

0r x2 = 0, (A22)

ẍ2 + ω2
0

[
1 + h

(
1 − β x2

2

)
sin(γ t + φ)

]
x2 + ω0g ẋ2 + ω2

0r x1 = 0. (A23)

The multiple-scale equations governing the dynamics of the slowly varying amplitudes of x1 and x2 in Eqs. (A22) and (A23) are
obtained as done for Eqs. (23). One obtains (τ̃ = ω0τ )

∂AR

∂τ̃
=

[
h̃

4
− 1

2
− βh̃

2

(
A2

R + 3 A2
I

)]
AR − r̃

2
BI

∂AI

∂τ̃
=

[
− h̃

4
− 1

2
+ βh̃

2

(
A2

I + 3 A2
R

)]
AI + r̃

2
BR, (A24a)

∂BR

∂τ̃
= h̃

4
[BR cos(φ) + BI sin(φ)] − 1

2
BR − βh̃

2

[
B3

R cos(φ) + 2 B3
I sin(φ) + 3 BRB2

I cos(φ)
] − r̃

2
AI , (A24b)

∂BI

∂τ̃
= h̃

4
[BR sin(φ) − BI cos(φ)] − 1

2
BI − βh̃

2

[
2B3

R sin(φ) − B3
I cos(φ) − 3 B2

RBI cos(φ)
] + r̃

2
AR. (A24c)

By comparing Eqs. (A24) with Eqs. (23), one can verify that the two set of equations describe the same dynamics if we
perform in Eq. (23) the rotation BR → −BI , BI → BR and redefine φ → π + φ. This proves that, in the limit of small coupling,
the long-time dynamics of the model with the coupling as in Eq. (22) and pump dephasing φ is equivalent to the long-time
dynamics of the model with the coupling as in Eqs. (A22) and (A23) with pump dephasing π + φ.

5. Expression of the Jacobian matrix of the system in Eq. (23)

We here explicitly report for completeness the expression of the Jacobian matrix computed around a given point AR, AI , BR, BI

from the system in Eq. (23). The Jacobian matrix can be compactly written as

J(AR, AI , BR, BI ) = ω0

(
J1 J2

J3 J4(φ)

)
, (A25)

where we define the 2 × 2 blocks as follows: One block for the oscillator A,

J1 =

⎛
⎜⎜⎜⎝

h̃

4
− 1

2
− 3βh̃

2
|A|2 −3βh̃ ARAI

3βh̃ ARAI − h̃

4
− 1

2
+ 3βh̃

2
|A|2

⎞
⎟⎟⎟⎠, (A26)

one phase-dependent block for the oscillator B,

J4(φ) =

⎛
⎜⎜⎜⎝

h̃ cos(φ)

4
− 1

2
− 3βh̃ cos(φ)

2
|B|2 h̃ sin(φ)

4
− 3βh̃

[
B2

I sin(φ) + BRBI cos(φ)
]

− h̃ sin(φ)

4
− 3βh̃

[
B2

R sin(φ) − BRBI cos(φ)
] − h̃ cos(φ)

4
− 1

2
+ 3βh̃ cos(φ)

2
|B|2

⎞
⎟⎟⎟⎠, (A27)

and eventually the block describing the coupling between the oscillator A and the oscillator B,

J2 = −J3 =

⎛
⎜⎝

r̃

2
0

0
r̃

2

⎞
⎟⎠. (A28)
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