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In inertial confinement (ICF) experiments at the NIKE laser facility, the high-power krypton fluoride (KrF)
laser output beams propagate through long (∼75 m) air paths to achieve angular multiplexing, which is required
because the KrF medium does not store energy for a sufficiently long time. Recent experiments and simulations
have shown that, via stimulated rotational Raman scattering, this propagation can spectrally broaden the laser
beam well beyond the ∼1 THz laser linewidth normally achieved by the induced spatial incoherence (ISI)
technique used in NIKE. These enhanced bandwidths may be enough to suppress the laser-plasma instabilities
which limit the maximum intensity that can be incident on the ICF target. In this paper we investigate an
alternative technique that achieves spectral broadening by self-phase modulation in Xe gas, which has a large,
negative nonlinear refractive index ∼248 nm, and thus completely avoids transverse filamentation issues. The
collective, nonlinear atomic response to the chaotic, nonsteady state ISI light is modeled using a two-photon
vector model, and the effect of near-resonant behavior on the spectral broadening is studied.
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I. INTRODUCTION

A primary challenge in inertial confinement fusion is the
growth of hydrodynamic instabilities and laser plasma insta-
bilities (LPI) [1]. Increasing the laser spectral bandwidth can
be an effective way of reducing the growth rates of LPI insta-
bilities [2]. Recent experiments on the NIKE KrF laser, which
uses a 75 m propagation bay for beam multiplexing, have
shown that stimulated rotational Raman scattering (SRRS)
in the air paths can spectrally broaden the bandwidth of the
chaotic, incoherent light well beyond the ∼1 THz normally al-
lowed by NIKE’s induced spatial incoherence (ISI) technique.
While SRRS is small in normal NIKE operation at moderate
beam intensities (∼50 MW/cm2), these experiments gener-
ated significant SRRS by imposing an ∼150 MW/cm2, 400 ps
spike on the pulse and folding the beam to lengthen the optical
air path. The amount of spectral broadening that was achieved,
however, was limited to several THz. Alternatively, to prop-
agate in an inert gas requires a large nonlinear refractive
index n2 ∼ 60 × 10−19 cm2/W—five times that of air—for
comparable spectral broadening. Though this would mean
self-filamentation for a Gaussian beam (where the nonlinear
focusing power at 248 nm in air is 100 MW), the important
parameter for ISI light is the power within a single coherence
zone; for a 75 times diffraction limited beam, the nonlinear
focusing power in air becomes ∼500 GW.

For linearly polarized light, there exists a two-photon res-
onance in atomic xenon (Xe) at 249.6 nm, which has been
discussed in the literature [3,4]. As a result of this resonance,
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Xe has a large, negative nonlinear index n2 at the 248.4 nm
KrF laser wavelength whose doubled frequency lies only
11.9 THz above the resonance; see Figs. 1 and 2. Hence
propagation through Xe gas has the potential to substantially
increase the spectral bandwidth of the KrF laser without
the problem of self-filamentation, which is a positive-n2 ef-
fect. The negative nonlinear index near resonance has been
observed and accurately calculated from known Xe electric
dipole matrix elements for narrow-band KrF light operating
under steady-state conditions [3,5].

At the NIKE facility, however, the KrF laser uses in-
coherent beam smoothing techniques that produce chaotic
variations on a ps time scale. The resulting multi-THz spectral
bandwidths of interest can thus include frequencies that are
much closer to the two-photon resonance than the 11.9 THz
detuning of the narrow-band KrF light. As a result, the non-
linear Kerr response can experience time delays and the upper
level may become partially populated during the pulse.

In this paper, we model the nonlinear response of Xe
gas to chaotic non-steady-state, near-resonance light using a
two-photon vector model. Although this model includes small
collisional damping coefficients, they play a negligible role in
spectral broadening at Xe pressures up to at least 200 mbar.
Earlier work on two-photon vector models can be found in
Refs. [6,7].

At 200 mbar, nonlinear refraction and two-photon ab-
sorption due to the small (0.02%) dimerization of the Xe
molecules are expected to be minimal but further investigation
may be needed; see Refs. [3,8]. The dimer density scales
quadratically with the xenon pressure p to give an esti-
mated two-photon attenuation coefficient [3]: κXe2 (m−1) ∼
0.8 × 10−2(p/1000)2I (GW/cm2). At p = 200 mbar and the
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FIG. 1. Nonlinear optical response of Xe near its two-photon
5p6 → 6p[1/2]0 resonance is that of a three-level system with mul-
tiple intermediate states |2〉 and allowed electronic transitions from
|1〉 → |2〉 and |2〉 → |3〉.

0.15 GW/cm2 intensities typical of the simulations performed
here, this gives only 0.2% attenuation over the 50 m prop-
agation path; at higher pressures, however, dimer absorption
could become an issue.

Though the laser propagation in a nonlinear medium
yields spectral broadening—which is useful for the reduction
of hydrodynamic and laser plasma instabilities in inertial
confinement fusion—the propagation also results in far-field
broadening. The consequent degradation of the laser beam
profile is studied.

A detailed overview of the NIKE laser facility and its KrF
laser can be found in Ref. [2]. The NIKE laser facility uses
echelon-free induced spatial incoherence (ISI) to produce a
laser beam that is spatially and temporally incoherent [9,10].
The beam’s speckle fluctuations occur over rapid (picosecond)
time scales such that they average out over hydrodynamic time
scales to yield a spatially and temporally uniform illumina-
tion. This, in turn, minimizes the hydrodynamic instabilities
that would otherwise be strongly seeded by laser beam spatial
nonuniformities.

FIG. 2. Wavelength dependence of the nonlinear refractive index
n2 of 200 mbar Xe in the regime of the two-photon resonance. The
curve is continuous but extends beyond the range shown here.

In Sec. II, we present the nonlinear Schrödinger equation
that is used to model laser propagation through a nonlinear
medium, discuss how to model the directed spatially and
temporally incoherent KrF radiation, and derive a model
for the nonlinear response of the Xe gas. In Secs. III and
IV, respectively, we describe the numerical techniques and
present simulation results. In Sec. V, we discuss the results
and propose a new direction for the inertial confinement
fusion experiments at the NIKE laser facility. In Sec. VI, we
summarize our results.

II. MODEL

A. Laser pulse propagation: Generalized nonlinear
Schrödinger equation

The electric field, in the absence of free charges, is given
by the wave equation with a nonlinear source term, i.e.,

∇2E (r, t ) = (∂/∂t )2E (r, t )/c2

+ μ0(∂/∂t )2[PL(r, t ) + PNL(r, t )],

where PL(r, t ) and PNL(r, t ) are respectively the linear and
nonlinear polarization of the propagation medium. The elec-
tric field is taken to be linearly polarized along the x axis
and the divergence term has been neglected since the beam’s
spatial fluctuations occur over distances much larger than
the wavelength. Because (a) the nonlinear changes in the
refractive index are small relative to the linear changes in the
refractive index and (b) the KrF laser’s fractional bandwidth
�ω/ω0 � 1, we can make a slowly varying envelope approx-
imation and express the wave equation as a three-dimensional
generalization of the nonlinear Schrödinger equation (NLSE)
[11]. The envelope equation is given by

(∂/∂η)Ep(r, τ )

= i∇2
⊥Ep(r, τ )/2k0 + (−iβ2(∂/∂τ )2Ep(r, τ )/2 + · · ·)

+i
(
ω2

0/2ε0c2k0
)
[1 + i(∂/∂τ )/ω0]2PNL,p(r, τ ), (1)

where η = z and τ = t − z/v are the longitudinal and
temporal variables in a frame moving at the group velocity v,
k0 is the wave number at the carrier frequency ω0 = 2πc/λ0,
and β2 is the group-velocity dispersion coefficient at ω0. The
electric field is given by E (r, t ) = (1/2)Ep(r, t ) exp(ik0z −
iω0t ) + (1/2)E∗

p (r, t ) exp(−ik0z + iω0t ) and the nonlinear
polarization field (excluding higher harmonics) is
given by PNL(r, t ) = (1/2)PNL,p(r, t ) exp(ik0z − iω0t ) +
(1/2)P∗

NL,p(r, t ) exp(−ik0z + iω0t ). The wave equation given
in Eq. (1) can be solved numerically via the split-step method,
see Ref. [12], and is driven by the nonlinear polarization of
the Xe gas, which is derived in Sec. II C.

B. Spatial and temporal incoherence

The front end of the NIKE KrF light source is a spa-
tially and temporally incoherent ASE (amplified spontaneous
emission) oscillator, which can be represented by a collection
of many independent oscillators emitting at frequencies in
the range of the carrier frequency, and which are scattered
throughout space in such a way that the spatial frequency dis-
tribution is roughly symmetric about zero. Numerically, this
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is represented by a 3D function determined according to the
average output of the ASE, which we model here as Gaussian
in frequency and spatial frequency space and centered about
(ω0, 0, 0). Each amplitude Aω,kx,ky —corresponding to the sum
of a large collection of independent oscillators at (ω, kx, ki )—
is thus a Gaussian-distributed complex random number with
random phase. The amplitude squared |Aω,kx,ky |2 is then mul-
tiplied by the incident power spectrum. The resulting function
Aω,kx,ky is Fourier transformed into time and space, resulting
in the function G(t, x, y). The function G has been normalized
according to the power of the KrF beam and multiplied by a
top-hat shaped filter function, which corresponds to the beam
aperture.

The ASE light, which is modeled as a quasicollimated
multimode beam, traverses an aperture whose width D is ∼75
times larger than the spatial coherence zones determined by
the (kx, ky) angular divergence. It thus takes on the structure
of a 75 × 75 transverse array of uncorrelated beams, each
of which is mostly uncorrelated with even itself after ev-
ery coherence time τc = 2π/�ω, where �ω is the spectral
bandwidth. Each uncorrelated beam is produced by a varying
number of random oscillators, so the structure can be viewed
as a three-dimensional, checkered array of random Gaussian
numbers with random phase labeled as F (t, x, y), which when
integrated over many coherence times yields a flat-top beam
profile.

Nonetheless, it will suffice to model the field envelope as
E0 × G(t, x, y); see Ref. [13]. A measurement of the initial
beam profile or the far-field profile can be incorporated for
more accurate results.

C. Nonlinear response of Xe gas

Here we derive the nonlinear polarization of the Xe gas,
which is the source term of the wave propagation equation;
see Eq. (1).

1. Density-matrix equations

The electric response of the Xe atom is modeled
by the Hamiltonian Ĥ (r, t ) = Ĥ0(r, t ) + V̂ (r, t ), where
Ĥ0(r, t ) represents the unperturbed atom, V̂ (r, t ) =
−μ(r) · E(r, t ) = −qr · E(r, t ) represents the electric dipole
interaction, μ is the dipole moment operator, and E (r, t ) =
|Ep(r, t )| cos[φ(r, t )] = (1/2)Ep(r, t ) exp(ik0z − iω0t ) + c.c.
is the classical field associated with the KrF laser light.
Although the following equations can produce a nonzero
third harmonic polarization, the third harmonic electric
field is neglected here. This is justified because the large
phase mismatch created by dispersion and cross-phase
modulation strongly suppresses the convective growth of the
third-harmonic field at this far UV wavelength, which is also
strongly absorbed by photoionization. The slowly varying
amplitude |Ep(r, t )| and the phase φ(r, t ) are real, with the
instantaneous frequency given by ω(t ) = φ̇(t ) = ω0 + δω(t ),
where ω0 = 2πc/λ0 and λ0 = 248.4 nm. If the KrF light
is linearly polarized, a two-photon near resonance with the
Xe 6p[1/2]0 state at 80119 cm−1 (2/249.63 nm) results in
a negative nonlinear refractive index around λ0. We write
the wave function as � = ∑

n cn(r, t )un(R), where un(R)
is the eigenfunction corresponding to the eigenstate |n〉 of

H0 and R is the position of the outer electron with respect
to the nucleus. Although multiple odd-parity intermediate
eigenstates contribute to the two-photon transition, we model
a three-level system here for simplicity, where |1〉 is the 5p6

ground state, |2〉 represents the odd-parity intermediate states,
and |3〉 is the Xe 6p[1/2]0 two-photon near-resonant state.
For the closed, three-level system, the von Neumann equation
dρ/dt = [Ĥ, ρ]/ih̄ yields the following density-matrix
equations:

∂ρ11/∂t = i(�12ρ21 − �21ρ12) + �I
(
ρ22 − ρ

eq
22

)
+ R�c

(
ρ33 − ρ

eq
33

)
,

∂ρ22/∂t = −�I
(
ρ22 − ρ

eq
22

) + i(�21ρ12 − �12ρ21)

+ i(�23ρ32 − �32ρ23) + (1 − R)�c
(
ρ33 − ρ

eq
33

)
,

∂ρ33/∂t = −�c
(
ρ33 − ρ

eq
33

) + i(�32ρ23 − �23ρ32),

∂ρ12/∂t = − γNρ12 + i ω21ρ12+ i �12(ρ22 − ρ11) − i�̄32ρ13,

∂ρ13/∂t = − γcρ13+ i ω31ρ13+ i (�12ρ23 − �23ρ12),

∂ρ23/∂t = − γLρ23 + i ω32ρ23 + i �23(ρ33 − ρ22)+ i�21ρ13,

(2)

where the density-matrix elements are defined as ρnm(r, t ) =
〈n|ρ(r, t )|m〉 = c∗

m(r, t )cn(r, t ) and where ωmn = ωm − ωn.
The transition frequencies are defined as �m n(r, t ) =
〈m|μ̂|n〉 · E (r, t )/h̄ = �+

m n(r, t ) exp [iφ(r, t )] + �−
m n(r, t )

exp[−iφ(r, t )], where �±
m n(r, t ) = μmn · |Ep(r, t )|/2h̄ varies

slowly in time and space and ± is a carrier frequency marker;
for linear polarization we take μnm to be real and express
�+

m n(r, t ) → �mn(r, t ) = μmn|Ep(r, t )|/2h̄. Equation (2)
applies to a general three-level system with ground state
|1〉, intermediate state |2〉, and excited state |3〉. The spatial
symmetry of the Hamiltonian requires that �n n = 0 for each
eigenstate |n〉, and we have specified the allowed transitions
to be |1〉 → |2〉 → |3〉. The dynamics of inelastic collisions
and spontaneous emission in the system are general, where R
satisfies 0 � R � 1 and describes the fraction of the energy
emitted from |3〉 that transfers directly to |1〉.

2. Parameters

For a 248.4 nm laser pulse propagating through an atomic
Xe gas, the two-photon excited state is the Xe 6p[1/2]0 state.
For a KrF NIKE pulse, we have 600 ps short pulses and
4 ns long pulses, which yield a frequency scale 1.7 GHz and
0.3 GHz, respectively. The elastic collision rate at 200 mbar is
0.5 GHz and the radiative decay rate of the excited Xe state is
0.03 GHz; see Appendix A.

3. Separation of density-matrix elements into harmonics
of the laser frequency

To simplify the notation, the spatial dependence of the
field and matrix elements will be dropped here but can be
reincorporated in a straightforward manner. We write each
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element as the sum of components at roughly the various
harmonics 0,±φ̇(t ),±2φ̇(t ),±3φ̇(t ) of the laser frequency:

ρi j = σi j (0) + σi j (−φ) exp(−iφ) + σi j (φ) exp(iφ)

+ σi j (−2φ) exp(−2iφ) + σi j (2φ) exp(2iφ)

+ σi j (−3φ) exp(−3iφ) + σi j (3φ) exp(3iφ),

where σi j (−sφ) = [σ ji(sφ)]∗. The density-matrix equations
are then rewritten according to Eq. (A1) for integer s ∈
(−3,−2, . . . , 3). We calculate the full nonlinear response to
the first-harmonic field here, but will ultimately only include
the first-harmonic polarization component in the analysis.

4. Two-photon vector model

For an ISI beam with temporal fluctuations that are much
longer than the time scale associated with the detuning, e.g.,
2π/� ∼ 0.2 ps, where � = (2ω0 − ω31)/2, the off-diagonal
density-matrix elements are only driven significantly near the
various harmonics of the laser frequency; see Appendix A
and Eq. (A3). In the case where damping terms can be
neglected, we define a real vector r = (r1, r2, r3) according to
r1 = σ13(2φ) + [σ13(2φ)]∗, r2 = i(σ13(2φ) − [σ13(2φ)]∗),
r3 = σ33(0φ) − σ11(0φ), and obtain the familiar (see
Refs. [6,7]) two-photon vector model shown below [see
Eqs. (9)–(11) for the formulation that is used for our
simulations]:

ṙ1 = −γ3r2,

ṙ2 = γ3r1 − γ1[r3 + O(�/ω0)] ≈ γ3r1 − γ1r3, (3)

ṙ3 = γ1r2,

where

γ1 = �12�23

(
1

ω21 − φ̇
− 1

ω32 − φ̇

)
≈ 2 �12�23

ω21 − φ̇

=
(

μ12μ23|Ep|2
2h̄2(ω21 − φ̇)

)
,

γ3 = −(ω31 − 2φ̇ + δω31),

and

δω31 = �2
12

(
1

φ̇ − ω32
+ 1

3φ̇ − ω32

)

+�2
23

(
1

φ̇ − ω21
+ 1

3φ̇ − ω21

)

= |μ12Ep/2h̄|2
(

1

φ̇ − ω32
+ 1

3φ̇ − ω32

)

+ |μ23Ep/2h̄|2
(

1

φ̇ − ω21
+ 1

3φ̇ − ω21

)
.

5. Two-photon adiabatic following approximation

When the phase and amplitude of the field envelope vary
slowly with respect to the magnitude of the two-photon rota-
tion vector γ , e.g., |∂v(t )/∂t |/|v(t )| � |γ3(t )|, where v(t ) =
E2

p (t )r3(t ), Eq. (3) can be solved approximately via an adia-
batic following approximation [14], and the collective state of

the Xe atoms can be expressed as

r1 = ±γ1/
(
γ 2

1 + γ 2
3

)1/2
,

r3 = ±γ3/
(
γ 2

1 + γ 2
3

)1/2
, (4)

r2 = ṙ3/γ1 = ± γ1γ̇3 − γ3γ̇1(
γ 2

1 + γ 2
3

)3/2 .

Given the initial condition r = (0, 0,−1) and positive γ3

the lower sign is appropriate. In this paper, the temporal
incoherence of the NIKE laser induces large enough field fluc-
tuations that the adiabatic following approximation condition
is violated; however, the approximation is nonetheless a useful
comparison. We further note that the adiabatic following
approximation yields an effective modulation-instability gain
that is asymmetric about the pump frequency. This is not,
however, the cause of the small blue shift which appears in
the n2(φ̇) nonlinear response simulations; see Sec. IV.

6. Polarization

The total polarization is given by P(r, t ) = N〈μ̂〉 =
NTr(ρμ̂) = N (〈2|μ̂|1〉ρ12 + 〈3|μ̂|2〉ρ23 + c.c.) whose com-
ponent along the linearly polarized real field of magnitude
E (r, t ) = |Ep(r, t )| cos[φ(r, t )] can be written as

P = N (μ12σ12(φ) exp(iφ) + μ12σ12(3φ) exp(3iφ)

+μ23σ23(φ) exp(iφ) + μ23σ23(3φ) exp(3iφ))+c.c.

The third-harmonic polarization component is included for
completeness in this expression, but is neglected in the re-
mainder of the discussion and in the simulations.

The envelopes σ12(nφ) and σ23(nφ) are well approximated
by their adiabatic solutions in Eq. (A2b) because the re-
spective detunings |ω21 − nφ̇| and |ω32 − nφ̇| that appear in
σ̇12(nφ) and σ̇23(nφ) [see Eq. (A1)] far exceed the damping
terms γN and γL or any spectral components in σ12(nφ) and
σ23(nφ). Applying these results, ignoring the small damping
terms γN, L, using �±

mn = μmn|Ep|/2h̄, then writing σ33(0φ) �
(1 + r3)/2, σ11(0φ) � (1 − r3)/2, σ13(2φ) = (r1 − ir2)/2,
we obtain the polarization associated with the two-photon
vector model:

P/N � − μ21(φ̇− ω21)−1(�+
12 σ11(0φ)

+�−
32σ13(2φ)) exp(iφ)+μ32(φ̇ − ω32)−1(�+

23σ33(0φ)

+�−
21σ13(2φ)) exp(iφ) + c.c., (5a)

which becomes

P/N � = −(2h̄)−1

(
μ2

12(φ̇ − ω21)−1(1 − r3)

−μ2
23(φ̇ − ω32)−1(1 + r3)

)
|Ep| cos(φ)

− (2h̄)−1μ12μ23

(
(φ̇ − ω21)−1

−(φ̇ − ω32)−1

)

× |Ep|
(

r1 cos(φ)
+r2 sin(φ)

)
, (5b)

where we have defined the matrix elements μ12 = μ21 and
μ23 = μ32 to be real, and ignored all even harmonic terms
except σ13(2φ). Using the two-photon adiabatic following
approximation of Eq. (4) and neglecting the small damping
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term r2 ∝ γ̇1 , γ̇3, we obtain

P/N � −(2h̄)−1
(
γ 2

1 + γ 2
3

)−1/2

×

⎛
⎜⎜⎝

μ2
12(φ̇ − ω21)−1

[(
γ 2

1 + γ 2
3

)1/2 + γ3
]

−μ2
23(φ̇ − ω32)−1

[(
γ 2

1 + γ 2
3

)1/2 − γ3
]

−μ12μ23γ1((φ̇ − ω21)
−1 − (φ̇ − ω32)

−1
)

⎞
⎟⎟⎠

× |Ep| cos(φ). (5c)

In the small field limit where γ3 � γ1, this reduces to

P/N ≈
(

− μ2
12

(φ̇ − ω21)h̄
− |Ep|2 μ2

12μ
2
23

8h̄3

×
(

1

φ̇ − ω21
− 1

φ̇ − ω32

)2( 1

2φ̇ − ω31

))
|Ep| cos(φ).

(5d)

The polarization has the usual linear, dc terms as well as
the nonlinear terms at the laser frequency.

From (5d), we obtain the following expression for the
nonlinear refractive index:

ñ2(φ̇) = Nμ2
12μ

2
23

4ε0n0 h̄3(ω31 − 2φ̇)(ω21 − φ̇)
2 , (6)

where

PNL,p(t ) = {2ε0n0ñ2[φ̇(t )]|Ep(t )|2}Ep(t ), (7)

E (t ) = (1/2)Ep(t ) exp(−iω0t ) + c.c. = |Ep(t )| cos[φ(t )],
(8a)

and

PNL(t ) = (1/2)PNL,p(t ) exp(−iω0t ) + c.c. (8b)

Equations (6) and (7) represent the delayed Kerr response.
The response time to an instantaneously switched-on intensity
would be approximately the inverse of the smallest detuning
factor. In Xe at 248 nm, this would be ∼5 THz, corresponding
to an ∼2 ps delay time, which is much longer than the fs time
scale of the linear response. The narrow-band limit of Eq. (6),
i.e.,

ñ2(ω0) = Nμ2
12μ

2
23

4ε0n0 h̄3(ω31 − 2ω0)(ω21 − ω0)2 ,

can be obtained alternatively by expanding the density-matrix
elements in powers of the field amplitude; see Ref. [5]. This
will be referred to as the instantaneous Kerr response, or the
steady-state case.

This result is obtained from the first-harmonic term of
the nonlinear polarization and is consistent with the non-
linear index derived in Refs. [3,15], according to ñ2 =
(1/2)ñ2,alt = (1/8π )ñ2,alt,cgs, where ñ2,alt is defined according

to ε = (n0 + ñ2,alt〈Ep
2〉)

2 − 1 = (n0 + 2ñ2|Ep|2)
2 − 1, where

the time-averaged field magnitude 〈Ep
2〉 = |Ep|2/2 and the

subscript “cgs” refers to cgs units. We note that it has been
derived in the small field limit under the two-photon adiabatic
following approximation.

In the more general case, i.e., Eq. (5b), the nonlinear
polarization PNL(t ) = (1/2)PNL,p(t ) exp(−iω0t ) + c.c. can be

expressed as shown below (see Appendix A for a discussion
of the additional intermediate levels):

PNL,p(t )/Ep(t )

= (N/2h̄)(μ12(ω21 − φ̇ − iγN )−1[μ23ρZ − μ12(1 + r3)]

−μ23( ω32 − φ̇ − i γL )−1[μ23(1 + r3) + μ12ρZ ]),

where ρZ = 2σ13(2φ)∗ = (r1 + ir2) and Eq. (3) gives

dρZ/dt = iγ3ρZ − iγ1r3,

dr3/dt = γ1r2 = iγ1(ρ∗
Z − ρZ )/2 = iγ1ρ

∗
Z/2 + c.c.,

γ1 = �12�23

(
1

ω21 − φ̇
− 1

ω32 − φ̇

)

= μ12μ23

h̄2

∣∣Ep/2
∣∣2

(
1

ω21 − φ̇
− 1

ω32 − φ̇

)
,

γ3 = −(ω31 − 2φ̇ + δω31) ≈ −(ω31 − 2φ̇).

We note that the (1 − r3) factor in Eq. (5b) has been rewritten
as 2 − (1 + r3). The first term represents the contribution to
the linear index of refraction (approximately δn0 ∼ 5 × 10−4)
and has been eliminated in order to yield the expression for
PNL,p(t ).

Alternatively, we can write the nonlinear polarization as

PNL,p(t )/Ep(t )

= (N/2h̄)(μ12(ω21 − φ̇ − iγN )−1( μ23ρL )

−μ23( ω32 − φ̇ − i γL )−1(μ12ρL ))
E∗

p (t )

Ep(t )

+ (N/2h̄)(μ12(ω21 − φ̇ − iγN )−1[−μ12(1 + r3)]

−μ23( ω32 − φ̇ − i γL )−1[μ23(1 + r3)]), (9)

where ρL = (r1 + ir2) exp[2iω0t − 2iφ(t )], and

dρL/dt = iγ ′
3ρL − iγ ′

1r3,

dr3/dt = iγ ′
1ρ

∗
L/2 + c.c. = Im[(γ ′

1)∗ρL],

γ ′
1 = μ12μ23

h̄2 (Ep/2)2

(
1

ω21 − ω0
− 1

ω32 − ω0

)
,

γ ′
3 = −(ω31 − 2ω0 + δω31) ≈ −(ω31 − 2ω0). (10)

This latter form is preferable from a numerical standpoint
because the instantaneous frequency φ̇ of a temporally inco-
herent laser tends to fluctuate wildly over short time scales,
i.e., a much higher temporal resolution is required to resolve
ρZ than to resolve ρL.

In the case of negligible population redistribution, Eq. (10)
can be expressed by a single, driven harmonic-oscillator equa-
tion given by

(∂/∂t − iγ ′
3)ρL = iγ ′

1 (11)

and solved exactly, i.e.,

ρL(t ) = ρL(t0) exp

(
i
∫ t

t0

γ ′
3(t ′)dt ′

)

+
∫ t

t0

dt ′′iγ ′
1(t ′′) exp

(
i
∫ t

t ′′
γ ′

3(t ′)dt ′
)

.
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FIG. 3. Propagation of a 30 XDL (times diffraction limit) temporally and spatially incoherent KrF laser beam through 50 m of 200 mbar
Xe gas; see Table I. (a) Total (time-integrated) power spectrum. (b) Axial lineout of near-field beam profile. (c) Axial lineout of far-field beam
profile, modeled via the two-photon vector model (TPVM) using either Eqs. (10) or (11), the delayed Kerr response ñ2(φ̇), see Eqs. (6) and
(7), and the steady-state response ñ2(ω0). Properties of the incident light (z = 0) are indicated in black.

This solution can be evaluated more simply in frequency
space, i.e., ρ̃L = iγ̃ ′

1/(iω − iγ ′
3).

Equations (9)–(11) are the working equations for all TPVM
simulations.

III. NUMERICAL TECHNIQUES

The generalized nonlinear Schrödinger equation, see
Eq. (1), is integrated along the propagation axis via a split-step
method, where the diffraction term has been incorporated
into the dispersive propagator and where calculation of the
nonlinear propagator is parallelizable.

The nonlinear polarization of Xe gas according to the
two-photon vector model can be calculated most generally via
numerical time integration of the coupled first-order equations
dr3/dt and dρL/dt in Eq. (10) according to a straightforward
iterative scheme—or in the case of negligible population
redistribution Eq. (11). In the latter case, we opt for the
straightforward frequency domain solution discussed above,
which is an order of magnitude faster. Doing so requires
that a small imaginary component be added to γ ′

3 to prevent
divergent behavior.

The instantaneous frequency at time t is not required in
our formulation of the two-photon vector model, see Eqs. (9)–
(11), but it can be calculated by taking the derivative of the
phase of the electric-field envelope having accounted for 2π

phase jumps. Alternatively, it can be calculated by locating the

spectral peak of the Fourier transform of the product of the
field envelope and a narrow Gaussian centered about time t .
The instantaneous frequency is used to calculate the nonlinear
source term for the ñ2(φ̇) response model given in Eqs. (6)
and (7).

The input condition for the generalized nonlinear
Schrödinger equation is discussed in Sec. II B of the paper.
The filter function generating the top-hat beam shape is con-
structed from two hyperbolic tangent functions.

Guard bands are employed in frequency space to eliminate
all energy above a frequency threshold (roughly 12 THz in
Fig. 3), which is less than half of the maximum frequency
in the simulation window, thereby avoiding aliasing across
the periodic boundary imposed by the fast Fourier transform
operation. The frequency threshold is set conservatively to
ensure that the energy loss associated with the guard bands is
not substantial. To simulate population redistribution can re-
quire enhanced time resolution, which corresponds to a wider
frequency window. Regardless, the same frequency guard
bands are applied to the electric field after each propagation
step in order to eliminate any high-frequency artifacts which
arise from the numerical integration of the coherence term.

Any error in the numerical integration especially for a
longer pulse can slightly violate the energy conservation
condition

∫ T/2
−T/2 |Ê (t, x, y)|2r2(t, x, y)dt = 0, which is valid

in the limit that �cT � 1. To address this concern, r2 is
shifted accordingly upward or downward by a very small,
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TABLE I. Simulation parameters for Figs. 3 and 4.

KrF beam/Xe properties

Peak power 33 GW
Beam size 15 cm × 15 cm
Transverse coherence length 0.5 cm (i.e., XDL = 30a)
Pulse length >10 ps
Pulse temporal shape Gaussian
Pulse transverse spatial shape

Flat-top beam with smoothed edges
Linewidth 1 THz
Detuning of 2ω0 from two-photon resonance 11.9 THz
Nonlinear refractive index at ω0

b −190 × 10−19 cm2/W
Group-velocity dispersion coefficient 8.2 × 10−6 ps2/cm

aThe times diffraction limit (XDL) is often denoted elsewhere in the
literature as M2

x .
bReference [4]. This value may be a 15%–20% overestimate; see
Ref. [3].

smooth plateau of the pulse width T after each integration
step. The necessary resolution along the propagation axis
can be reduced by splitting the growth or decay part of the
nonlinear propagator into smaller, energy-conserving steps,
i.e., exp(α r2 �z) ≈ ∑

n (
√

1 + α r2 �z/n)
2n

. Grid resolution
requirements in both vector spaces are imposed as well.

IV. NUMERICAL RESULTS

The propagation of a temporally and spatially incoherent
KrF laser beam through a chamber of 200 mbar Xe gas is
simulated in this section. The simulation parameters are listed
in Table I and correspond to the incident beam in Ref. [13].

Figures 3 and 4 are simulated according to Eq. (1). In
Fig. 3, the nonlinear polarization for the TPVM is given by
Eq. (9) and is determined by solving Eq. (11) in frequency
space; to determine it according to Eq. (10) yields the same
result because population inversion is small. The nonlinear
polarization in the second model in Fig. 3 is determined

FIG. 4. Spectral broadening factor and far-field broadening fac-
tor are plotted as a function of the times diffraction limit (XDL),
for propagation of a temporally and spatially incoherent KrF laser
beam through 50 m of 200 mbar Xe gas. To clarify the physics, the
nonlinear polarization in this figure has been determined according
to the steady-state model as opposed to Eqs. (9) and (11). All trends
and conclusions, however, are the same.

according to Eqs. (6) and (7), and the nonlinear polarization in
the third model in Fig. 3 is the instantaneous Kerr nonlinearity
ñ2(ω0), also referred to here as the steady-state solution. Each
data point in Fig. 4 is simulated also according to Eq. (1),
for its own, noise-generated incident beam with the specified
times diffraction limit. To clarify the physical behavior, the
nonlinear polarization used in Fig. 4 has been determined
according to the steady-state solution as opposed to Eqs. (9)
and (11); the trends and conclusions, however, are the same.

We obtain the following results, in which the coher-
ence time is estimated according to the expression tc =∫

(P(ν))2dν, where P(ν) is the normalized total (time-
integrated) power spectrum of the beam, i.e.,

∫
P(ν)dν = 1.

This enables the calculation of a spectral broadening factor
defined as SBF = tc(0)/tc(z), where z is the propagation
distance. Similarly, to quantify the broadening of the far-field
profile (whose shape is identical to the near-field transverse
spatial frequency spectrum), we substitute it into the 2D
spatial version of the tc expression to calculate the near-field
transverse coherence zone radius rc; this gives the far-field
broadening factor FFBF = rc(0)/rc(z). This factor is essen-
tially unchanged if we use the 1D (along the x axis) spatial
version of the tc expression. The small broadening of the near-
field profile itself can be estimated by the beam spread factor
BSF = 1 + (k⊥/k0)z/D, where k⊥/k0 is the beam spreading
angle, k⊥ is the spatial frequency version of rc, and D = 15 cm
is the beam width. The small beam spread (BSF ≈ 1.0005)
arises in part due to the ISI beam divergence and in part due
to the effects of the nonlinear far-field broadening.

The amount of spectral broadening seen in Fig. 3 for 50 m
of 200 mbar Xe is comparable to that seen in Ref. [13] for
beam propagation through a 100 m air path.

The transverse spatial behavior in Fig. 3 is independent
of whether the nonlinearity is calculated according to the
TPVM, delayed Kerr response ñ2(φ̇), or steady-state response
ñ2(ω0). The spectral behavior, however, is model dependent.
The TPVM displays a reduction in high frequencies; its
difference with respect to the delayed Kerr response ñ2(φ̇)
can be attributed to the large field fluctuations, which render
inaccurate the step used to obtain Eq. (5c) (in which the
adiabatic following approximation was applied and the γ̇i term
was neglected).

Since the simulations are only for a 30 times-diffraction-
limited beam (due to computational constraints), it is useful
to consider how the propagation properties of a 75 times-
diffraction-limited beam will differ; see Fig. 4. The spec-
tral broadening factor (SBF) is reduced as XDL increases,
as is the far-field broadening factor (FFBF). These effects
can be attributed to the phase mismatch of the 3D wave
vectors involved in four wave mixing or, equivalently, the
interruption of amplification paths. For a smaller spot size,
the beam spreading factor (BSF) can become significant and
increase with XDL, such that the SBF and FFBF decrease
more significantly with XDL than in Fig. 4 and roughly in
proportion to (1 + XDL/a)−2, where a is some constant. The
small beam spread (BSF ≈ 1.0005) is due to the effects of
far-field broadening and is roughly an order of magnitude
larger than it would be due to ISI beam divergence alone.

It is expected (for the parameters in Table I) that at 75 times
diffraction limit the SBF will be roughly 2, and that the FFBF
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will be less than that; see Fig. 4. It must be noted, however,
that the nonlinearity may be overestimated by 15%–20%; see
Table I. The SBF is larger than the FFBF in Fig. 4, which
we have seen in simulations is in part due to the four wave
mixing phase mismatch mentioned above, but can be mostly
attributed to the positive group-velocity dispersion coefficient,
which in a negative-n2 medium sharpens the pulse in time,
thereby increasing the rate of spectral broadening.

V. DISCUSSION

We have shown that propagation of the KrF NIKE laser
output beams through Xe gas may be an effective way of
increasing the laser bandwidth beyond that which can be
achieved via SRRS in air or nitrogen [13]. The near-field
beam spreading factor is negligible in both approaches and,
while the far-field broadening factor is signifcant, it is smaller
than the spectral broadening factor, which has been enhanced
by group-velocity dispersion. In both approaches, far-field
broadening may limit the propagation distance and thus the
spectral broadening that can be achieved. Xenon has the ad-
vantage that it responds almost instantaneously (∼1 ps) to the
incident pulse, while SRRS in air or nitrogen requires buildup
times ∼100 ps determined by the ∼3 GHz pressure-broadened
rotational linewidths. However, the simulations in Ref. [13]
show that, just beyond the peak of the ∼400 ps pulse, the
time-resolved spectra are significantly broader than the time-
integrated spectra; this suggests that the SRRS would be more
effective for longer (ns) pulses. The best way to maximize
the spectral broadening, while limiting the degradation of the
far-field beam profile, may be propagation through a medium
containing both air and Xe to combine the two approaches.

VI. CONCLUSION

The nonlinear response of Xe gas to chaotic non-steady-
state, near-resonance light has been modeled using a two-
photon vector model. The propagation of the KrF NIKE
laser light through 200 mbar Xe has been simulated, and
a dependence of the spectral broadening and beam profile
degradation on the times diffraction limit is observed and
discussed. The results of the TPVM are compared with those
of a delayed response model and an instantaneous response
model. We conclude that propagation of the KrF NIKE laser
output beams through Xe may be an effective way of increas-
ing the laser bandwidth, thereby suppressing the laser-plasma
instabilities.
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APPENDIX A

1. Parameters

For a 248.4 nm laser pulse propagating through an atomic
Xe gas, the two-photon excited state is the Xe 6p[1/2]0 state,
and a classical collisional model predicts an elastic collision

rate of γc ∼ 4Pπr2
Xe

√
2/mXekT = 2.4 GHz × (P/bar), where

P is the pressure of the Xe gas, T is the gas temperature,
and mXe and rXe are the mass and van der Waals radius
of an individual Xe molecule. We estimate the spontaneous
emission rates as A32 = |μ32|2ω3

32/(3πε0 h̄c3) ≈ 40 MHz
and A21 = |μ21|2ω3

21/(3πε0 h̄c3) ≈ 5 GHz (see Ref. [16]).
The FWHM of the two-photon absorption spectrum
given a laser linewidth �ωL = 2.9 GHz is measured to
be �νFWHM = 4.6 + 3.5(P/bar) GHz ≈

√
�ν2

L + �ν2
D + γc

(see Ref. [8]), where the Doppler broadening linewidth
�νD = 2ν0(2kBT ln 2/mXe)1/2/c ≈ 1.3 GHz and the elastic
collision rate γc ∼ 4Pπr2

Xe

√
2/mXekT = 2.4 GHz × (P/bar)

are in agreement with the experimental result. The radiative
rate of the excited Xe state is measured to be ∼30 MHz (see
Ref. [17]), which is consistent with the limiting spontaneous
emission rate of 40 MHz. For a KrF NIKE pulse, the 600 ps
short pulses and 4 ns long pulses correspond to a frequency
scale 1.7 GHz and 0.3 GHz, respectively. The elastic collision
rate at 200 mbar is 0.5 GHz and the inelastic collision rate is
presumably at least an order of magnitude smaller.

2. Density-matrix equations

The density-matrix equations given in Eq. (1) can be
rewritten for integer s ∈ (−3,−2, . . . , 3) and shown below:

σ̇11(sφ) = (−isφ̇ − �o)σ11(sφ) + δs�0ρ
eq
11

+ a�I
[
σ22(sφ) − δsρ

eq
22

] + ab�c
[
σ33(sφ) − δsρ

eq
33

]
+

∑
±

i(�±
12σ21[φ(s ∓ 1)] − �±

21σ12[φ(s ∓ 1)]),

σ̇22(sφ) = (−isφ̇ − �I )σ22(sφ) + δs�Iρ
eq
22

+ a(1 − b)�c
[
σ33(sφ) − δsρ

eq
33

]
+

∑
±

i(�±
21σ12[φ(s ∓ 1)] − �±

12σ21[φ(s ∓ 1)]

+�±
23σ32[φ(s ∓ 1)] − �±

32σ23[φ(s ∓ 1)]),

σ̇33(sφ) = (−isφ̇ − �c)σ33(sφ) + δs�cρ
eq
33

+
∑
±

i(�±
32σ23[φ(s ∓ 1)] − �±

23σ32[φ(s ∓ 1)]),

σ̇12(sφ) = (−isφ̇ + i ω21 − γN )σ12(sφ)

+
∑
±

i(�±
12{σ22[φ(s ∓ 1)] − σ11[φ(s ∓ 1)]}

−�±
32σ13[φ(s ∓ 1)]),

σ̇13(sφ) = (−isφ̇ + i ω31 − γc)σ13(sφ)

+
∑
±

i (�±
12σ23[φ(s ∓ 1)] − �±

23σ12[φ(s ∓ 1)]),

σ̇23(sφ) = (−isφ̇ + i ω32 − γL )σ23(sφ)

+
∑
±

i (�±
23{σ33[φ(s ∓ 1)] − σ22[φ(s ∓ 1)]}

+�±
21σ13[φ(s ∓ 1)]). (A1)
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3. Two-photon vector model

On a time scale that is much longer than the
inverse of the detuning 2π/� ∼ 0.2 ps, where � =
(2ω0 − ω31)/2, the off-diagonal density-matrix elements
will be significantly driven only near the various har-
monics of the laser frequency. This means the com-
ponents σmn(sφ) can be taken to be slowly varying
in time, i.e., |σ̇mn(sφ)|/|ω0σmn(sφ)| ∼ |(ω31 − 2φ̇)|/ω0 =
|�|/ω0 � 1. In the given case where each one-photon transi-
tion is off resonance, this allows us to take, to zeroth order in
�/ω0, |σ̇12(sφ)| � |(−isφ̇ + i ω21 − γN )σ12(sφ)|,|σ̇23(sφ)| �
|(−isφ̇ + i ω32 − γL )σ23(sφ)|. In this case it is also reason-
able to neglect the population of the intermediate state σ22

because it is driven off resonance and is to second order in
the field. Since the time scale of the pulse may be comparable
to or shorter than the average elastic collision time, there
are non-negligible transient components of ρ12 and ρ23 as
well. However, these components are nonresonant with the
harmonics of the laser frequency and thus represent only a
contribution to the linear response.

The near-resonance components σ11(0), σ33(0), σ13(2φ)
can be identified as the ones which drive other elements and
contribute significantly to the polarization field. Simplifying
the expression and redefining the eigenstates such that the
dipole moments μ12 = μ21 and μ23 = μ32 are real, we obtain,
for linear polarization,

�+
12

∗ = [�−
12] = �+

12 → �12, �+
23 → �23 (A2a)

and

σ12(sφ) ≈ (sφ̇ − ω21 − iγN )−1
∑
±

(�12{σ11[φ(s ∓ 1)]}

+�32σ13[φ(s ∓ 1)]),

σ23(sφ) ≈ (−sφ̇ + ω32 + iγL )−1
∑
±

(�23σ33[φ(s ∓ 1)]

+�21σ13[φ(s ∓ 1)]),

σ̇13(2φ) = Aσ13(2φ) + Bσ11(0φ) + Cσ33(0φ),

σ̇11(0φ) = Eσ13(2φ) + c.c. + Fσ11(0φ) + c.c.

+ Gσ33(0φ) + c.c. + H,

σ̇33(0φ) = Jσ13(2φ) + c.c. + Lσ33(0φ) + c.c. + M, (A2b)

where E = B and J = C from Eq. (A2a), and

A = [i(ω31 − 2φ̇) − γc]

−�2
12

(
1

iφ̇ − i ω32 + γL
+ 1

3iφ̇ − i ω32 + γL

)

−�2
23

(
1

iφ̇ − i ω21 + γN
+ 1

3iφ̇ − i ω21 + γN

)
,

B = −�12�23(iφ̇ − i ω21 + γN )−1,

C = −�12�23(iφ̇ − i ω32 + γL )−1,

E = −�12�23(iφ̇ − i ω21 + γN )−1 = B,

F = −�o/2 − �2
12(iφ̇ − i ω21 + γN )−1

−�2
12(−iφ̇ − i ω21 + γN )−1,

G = +ab�c/2,

H = �0ρ
eq
11 − ab�cρ

eq
33,

J = −�12�23(iφ̇ − i ω32 + γL )−1 = C,

L = −�c/2 − �2
23(iφ̇ − i ω32 + γL )−1

−�2
23(−iφ̇ − i ω32 + γL )−1,

M = �cρ
eq
33.

Defining a real vector r = (r1, r2, r3) where r1 =
σ13(2φ) + [σ13(2φ)]∗, r2 = i(σ13(2φ) − [σ13(2φ)]∗), r3 =
σ33(0φ) − σ11(0φ), we can rewrite Eq. (A2b) to zeroth order
in �/ω0 as

ṙ1 = A(r1 − ir2)/2 + A∗[(r1 − ir2)/2]∗ − �12�23

[
γN

(φ̇ − ω21)
2 + γ 2

N

(1 − r3) + γL

(φ̇ − ω32)
2 + γ 2

L

(1 + r3)

]
,

ṙ2 = i(A(r1 − ir2)/2 − A∗[(r1 − ir2)/2]∗) − �12�23

[
φ̇ − ω21

(φ̇ − ω21)
2 + γ 2

N

(1 − r3) + φ̇ − ω32

(φ̇ − ω32)
2 + γ 2

L

(1 + r3)

]
,

ṙ3 = −i�12�23

(
1

ω32 − φ̇ + iγL
− 1

ω21 − φ̇ + iγN

)
(r1 − ir2)/2 + c.c.

+
[
�0/2 + γN�2

12

(
1

(φ̇ − ω21)
2 + γ 2

N

+ 1

(φ̇ + ω21)
2 + γ 2

N

)]
(1 − r3)

+
[
−(1 + ab)�c/2 − γL�2

23

(
1

(φ̇ − ω32)
2 + γ 2

L

+ 1

(φ̇ + ω32)
2 + γ 2

L

)]
(1 + r3) + [

�c(1 + ab)ρeq
33 − �0ρ

eq
11

]
, (A3)

where we have made the replacements σ13(2φ) = (r1 − ir2)/2, σ11(0φ) � (1 − r3)/2, σ33(0φ) � (1 + r3)/2.

4. Polarization

Treatment of intermediate states

In the case of multiple intermediate levels, we can sum
over states |2〉 to obtain the total polarization. According to

energy of each intermediate state and its transition dipole
moments, one can determine the fractional contribution of
each state to the nonlinear index given in Eq. (7). However,
treatment of multiple intermediate levels in the two-photon
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vector model shouldn’t be important for comparing simula-
tions with future experiments (except in the case when popu-
lation redistribution is significant). This is because the additive
contribution of each intermediate state to the nonlinear index
∼μ12μ23/(ω21 − ω0) is of the same form as its contribution
to the more general expression for the nonlinear polarization,
see Eq. (10) and Eq. (5a), thereby producing a response that
is representative of a two-photon transition with only one
intermediate state.

APPENDIX B

Two-photon absorption rate

Solving Eq. (3) given the initial condition r(t = 0) =
(0, 0,−1) and a constant (or slowly varying in time) field
amplitude and phase, i.e., γ̇ /γ 2 � 1, we obtain r3 = −1 +
γ 2

1 [1 − cos (t
√

γ 2
1 + �2)]/(γ 2

1 + �2). We can then express

the two-photon excited population ρ33 as ρ33 ≈ (1 + r3)/2 =
γ 2

1 sin2(t
√

γ 2
1 + �2/2)/(γ 2

1 + �2) ∼ 10−9 for the average
field intensity and detuning given in Table I. For long times,
in the low-intensity limit, we express ρ33 as a function of
frequency and obtain the following function which peaks at

� = 0: ρ33(�) ≈ γ 2
1 sin2(t�/2)

�2 = πγ 2
1 t

2 [ sin2(�t/2)
π (t/2)�2 ]. Applying the

relation for the long time limit, we can recover the stan-
dard two-photon absorption rate R2γ . The transition prob-
ability is given by R2γ t = ∫

[lim(t/2)→∞ ρ33(�)]g(�)d� =
(πγ 2

1 t/2)
∫

δ(�)g(�)d�, from which we obtain R2γ =
πγ 2

1 g(0)/2 = 2πg(0)(�12�23)2/(ω21 − φ̇)2, where g(�) is
the energy density. After 50 m propagation according to the
parameters in Table I, the energy density on resonance is given
by g(0) ∼ 10−3 THz−1. Hence a transition rate R2γ ∼ kHz is
obtained for a sufficiently slowly varying field amplitude and
phase, i.e., γ̇ /γ 2 � 1.
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