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Control of a quantum emitter’s bandwidth by managing its reactive power
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Reactive power plays a crucial role in the design of small antenna systems, but its impact on the bandwidth
of quantum emitters is typically disregarded. Here, we theoretically demonstrate that there is an intermediate
domain between the usual weak- and strong-coupling regimes where the bandwidth of a quantum emitter is
directly related to the dispersion properties of the reactive power. This result emphasizes that reactive power must
be understood as an additional degree of freedom in engineering the bandwidth of quantum emitters. We illustrate
the applicability of this concept by revisiting typical configurations of quantum emitters coupled to resonant
cavities and waveguides. Analysis of the reactive power in these systems unveils functionalities including the
design of efficient but narrow-band photon sources, as well as quantum emitters exhibiting bandwidths narrower
than their nonradiative linewidths even under incoherent pumping.
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I. INTRODUCTION

The analysis of reactive power [1,2] and related quantities
such as stored energy [3,4] plays a central role in the design
of classical radiating systems and the identification of their
fundamental limits. This aspect is particularly relevant for
electrically small antennas, since the smaller the size of an
emitter the larger the impact of the reactive fields on its per-
formance. In fact, following the pioneering works of Wheeler
[5], Chu [6], and Harrington [7], much attention has been
devoted to the analysis of stored energy and the derivation
of physical bounds of antenna performance [8–15] (see, e.g.,
[16] for a historical review). The importance of these works is
that they fundamentally establish what is possible and what is
not possible to do with an antenna system. They also inspire
different antenna designs that approach the theoretical limits
[17–20] and facilitate the implementation of optimization
procedures [21–23].

In contrast, the concept of reactive power is strange to the
field of quantum optics and the design of quantum emitters.
Although interactions with so-called virtual photons are con-
sidered (see, e.g., the recent perspective [24]), these primarily
lead to shifts of the emission frequency [see Figs. 1(a) and
1(b)]. Different versions of these shifts include the cele-
brated Lamb shift [25], collective Lamb shift [26,27], and
medium-assisted shifts [28–30]. In general, the spectrum is
Lorentzian and its linewidth is determined by the decay rate
[see Fig. 1(b)]. Therefore, it appears that the interaction with
virtual photons and/or reactive fields has no impact on the
bandwidth of a quantum emitter. This point might appear to be
particularly surprising since most quantum emitters are deeply
subwavelength radiators, even more so than electrically small
antennas.

At the same time, it is known that this behavior relates
to the operation within the weak-coupling regime. On the
other hand, when a small quantum system is strongly coupled

to a photonic nanostructure, their interactions through the
radiation field can significantly impact its emission spectrum.
One particularly popular example is the vacuum Rabi split-
ting, where the strong interaction between the emitter and a
cavity mode results in a two-peaked spectrum (see, e.g., [31]).
Therefore, it is clear that when the coupling is sufficiently
strong the energy stored in the radiation field must have an
impact on the bandwidth of a quantum emitter. Different
works have addressed the emission spectrum of a quantum
emitter in the weak- and strong-coupling regimes [32–36].
However, the role of reactive interactions on the bandwidth of
a quantum emitter, and the possibilities that could be accessed
by engineering it, have not yet been explored. The emission
spectrum can also be modified via collective interactions with
other emitters, e.g., super-radiance, sub-radiance, or collec-
tive Lamb shift effects. However, these approaches typically
require a means to preserve the coherent interactions between
several, usually identical, emitters, which is more challenging
from an experimental point of view. As a consequence, they
will not be considered herein.

Here, we theoretically investigate the bandwidth of a quan-
tum emitter amid its transition from the weak- to the strong-
coupling regime, emphasizing the role of the reactive power
associated with the emitter’s current distribution. Specifically,
we demonstrate that there is an intermediate domain between
the usual weak- and strong-coupling regimes in which the
emission spectrum is Lorentzian, but the associated band-
width of the emitters is directly affected by the dispersion
properties of the reactive power [see Fig. 1(c)]. This result
highlights the reactive power as an additional degree of free-
dom in controlling the quantum emitter’s bandwidth that can
be harnessed to introduce photon sources with unprecedented
characteristics. Specifically, we will demonstrate how man-
aging the reactive power enables (i) increasing the efficiency
of a quantum emitter while maintaining a narrow bandwidth
and (ii) designing a quantum emitter exhibiting a bandwidth
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FIG. 1. (a) Sketch of the general configuration: A quantum
emitter, modeled as a two-level system {|e〉, |g〉} with a transition
frequency ω0, has an effective current distribution ĵ(r, ω) that is
coupled to a photonic environment characterized by a relative per-
mittivity ε(r, ω). (b) Zeroth-order (weak-coupling) approximation to
the emission spectrum, where reactive interactions shift the emission
frequency from ω0 to ωr and radiative interactions define its band-
width. (c) First-order correction to the spectrum where both radiative
and reactive interactions impact the emission bandwidth.

narrower than its nonradiative linewidth, even with incoherent
excitation.

II. THEORETICAL FRAMEWORK

As schematically depicted in Fig. 1, we investigate the
emission properties of a small quantum system modeled
as a two-level system. It has excited |e〉 = ∫

d3r ψe(r)|r〉
and ground |g〉 = ∫

d3r ψg(r)|r〉 states that are separated by
the transition frequency ω0. The system is coupled to a
macroscopic lossy photonic environment that is characterized
by the dispersive relative permittivity ε(r, ω) = εR(r, ω) +
i εI (r, ω). We model this quantum system within the frame-
work of macroscopic QED (see, e.g., [35]). Its Hamiltonian
can be written as

Ĥ = Ĥ0 + ĤB + ĤI , (1)

with

Ĥ0 = h̄ω0

2
σ̂z, (2)

ĤB =
∫ ∞

0
dω f

∫
d3r h̄ω f f̂†

(
r, ω f

) · f̂ (r, ω f ), (3)

ĤI = − q

2m

[̂
p · Â(̂r) + Â(̂r) · p̂

] + q2

2m
Â2 (̂r), (4)

where r̂ and p̂ are the position and momentum operators,
respectively; m is the mass of the electron; and σ̂z = |e〉〈e| −
|g〉〈g| and f̂ (r, ω f ) are polaritonic operators representing the

excitations of the photonic environment. The vector potential
operator is given by

Â(r) =
∫ ∞

0
dω f

∫
d3r′

√
h̄

πε0

ω f

c2

√
εI

(
r′, ω f

)
×{G(r, r′, ω f ) · f̂ (r′, ω f ) + H.c.}, (5)

where G(r, r′, ω f ) is the dyadic Green’s function of the
macroscopic environment.

In order to draw a closer connection with classical antenna
theory, we rewrite the interaction Hamiltonian as a function of
a current density operator. To this end, we disregard the Â2(r)
nonlinear term and expand the vector potential operator in the
position representation to find that the interaction Hamiltonian
can be rewritten as follows:

ĤI = −
∫

d3r ĵ(r) · Â(r). (6)

Here, we have defined the current density operator

ĵ(r) = 1

2m
ρ̂(r) p̂ + H.c., (7)

where ρ̂(r) = q|r〉〈r|. These operators are defined such
that their expectation values recover the charge den-
sity ρ(r, t ) = 〈̂ρ(r)〉 = q|ψ (r, t )|2 and the current density
j(r, t ) = 〈̂j(r)〉 = q

2m (−ih̄)ψ∗(r, t )∇ψ (r, t ) + H.c., in such
a manner that they satisfy the continuity equation ∂tρ(r, t ) +
∇ · j(r, t ) = 0 (see, e.g., [37] p. 32). For a two-level system,
{|e〉, |g〉}, the current density operator can be decomposed as
follows: ĵ(r) = jge(r)σ̂ + j∗ge(r)σ̂ † + jee(r)σ̂ †σ̂ + jgg(r)σ̂ σ̂ †,

with jab(r) = 〈a|̂j(r)|b〉 and σ̂ = |g〉〈e|.
In the following, we will be mostly concerned with the

properties of the fields generated by the quantum emit-
ters. Therefore, we compute the source field operators in
the Heisenberg picture by solving the equation of motion,
ih̄ ∂t â = [̂a, Ĥ ], for the polaritonic operator f̂ (r′, ω f ; t ), and
we find that the Laplace transform of the source vector poten-
tial and electric-field operator can be conveniently written in
analogy with their classical counterparts as functions of the
current density as follows:

ÂS (r; ω) = μ0

∫
d3r′ G(r, r′, ω) · ĵ(r′, ω), (8)

ÊS (r; ω) = iωμ0

∫
d3r′ G(r, r′, ω) · ĵ(r′, ω). (9)

III. EMISSION SPECTRUM

Next we examine the emission spectrum during a decay
process, i.e., when the emitter is initially excited and the
photonic environment is in its vacuum state: |ψ (t = 0)〉 =
|e〉|{0}〉. This configuration is relevant for incoherent pump-
ing or when the quantum emitter is resonantly excited via
an initialization pulse. Similar to the usual rotating wave
approximation, we approximate the interaction Hamiltonian
by keeping only those terms that preserve the number of
excitations:

ĤI = −
∫

d3r (σ̂ †(t ) j∗ge(r) · Â(+)
S (r; t ) + H.c.), (10)
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where Â(+)
S (r; t ) is the inverse Laplace transform of

Â(+)
S (r; ω) = μ0

∫
d3r′ G(r, r′, ω) · jge(r′)σ̂ (ω). Adapting

the theory introduced in [32–34,36] to our current density
formulation within the one-photon correlation approximation,
we find that the emission spectrum is given by

S(r, ω) = 〈(Ê(+)
S (r; ω))† · Ê(+)

S (r; ω)〉
= Cprop(r, ω)S0(ω), (11)

with

Cprop(r, ω) = ω2μ2
0

∣∣∣∣∫ d3r′ G(r, r′, ω) · jge
(
r′)∣∣∣∣2

(12)

being the propagation term which accounts for the directive
emission properties of the current density and its environment.
The term S0(ω) = 〈σ̂ †(ω)σ̂ (ω)〉 is the polarization spectrum;
it accounts for the impact of the emitter dynamics. It can be
written as

S0(ω) = 1

[ω − ω0 − 	ω(ω)]2 + 
2(ω)
4

. (13)

We have defined in this expression the (in general, dispersive)
decay rate, 
(ω), and frequency shift, 	ω(ω), which can be
written as a function of the current densities as follows:

�ω(ω) − i

(ω

2

= −μ0

h̄

∫
d3r

∫
d3r′ j∗ge(r) · G(r, r′, ω) · jge

(
r′). (14)

In view of Eq. (14), it is elucidating to draw an analogy
with classical antenna theory. In fact, although the expres-
sions for 
(ω) and 	ω(ω) have been derived within the
macroscopic QED formalism in a self-consistent manner, they
present a clear mathematical analogy with the fields radiated
by a classical current density jge(r). In order to illustrate this
point, we define Ecl (r, ω) = iωμ0

∫
d3r′ G(r, r′, ω) · jge(r′)

as the classical time-harmonic field [exp(−iωt ) time con-
vention] that would be generated by the current distribution
jge(r′). In doing so, we can directly relate the dispersive decay
rate and frequency shift to the supplied and reactive powers
associated with this classical current density, respectively
[1,2]:

�ω(ω) − i

(ω)

2
= 2

h̄ω
[Preac(ω) − iPsup(ω)], (15)

with

Psup = 1

2

∮
S∞

dS · (Ecl × H∗
cl ) + ω

2

∫
V∞

d3r ε0 εI (r, ω)|Ecl|2

(16)
and

Preac = ω

2

∫
V∞

d3r [ε0 εR(r, ω)|Ecl|2 − μ0|Hcl|2]. (17)

The volume integrals are taken over an asymptotically
large volume, V∞, bounded by a surface S∞ in the far zone of
the sources jge(r). On the one hand, Psup is the time-averaged
power supplied by the current distribution jge(r). It contains
both the power radiated away from the system as well as the
power dissipated in the surrounding environment. The reactive
power, Preac, is related to the energy stored in the electric

and magnetic fields during the interaction process; but it does
not lead to any net energy transfer. However, it has a critical
impact on the performance of classical systems, including its
bandwidth and robustness against undesired loss channels, as
well as stability and linearity aspects. Therefore, it could be
expected that reactive interactions should also play a role in
the performance of a quantum emitter, beyond determining its
frequency of operation.

In general, it is clear from Eq. (13) that the polarization
emission spectrum for a quantum emitter is determined by the
dispersion properties of 	ω(ω) and 
(ω). We can expect that
the spectrum will exhibit peaks at the resonant frequencies
given by the solutions to the implicit equation ωr = ω0 +
�ω(ωr ). In the neighborhood of one of these resonances, the
zeroth-order approximation to the emission spectrum would
be to neglect all dispersion properties near the resonance fre-
quency. This approximation recovers the usual Born-Markov
approximation (or weak-coupling regime), which leads to the
zeroth-order (Lorentzian) spectrum depicted in Fig. 1(b):

Szeroth
0 (ω) = 1

(ω − ωr )2 + 
2(ωr )
4

. (18)

Within this approximation, the 3-dB bandwidth of the
emission (frequency range between the half-maximum points)
will be simply given by the decay rate BW zeroth

3 dB = 
(ωr ). In
stark contrast with antenna theory, while the reactive part of
the interaction energy term is intimately related to the stored
energy, it does not have any impact on the quantum emitter’s
bandwidth. As anticipated at the outset, this feature is in part
surprising since quantum emitters are deeply subwavelength
structures. Intuitively, the reason for this behavior is that, in
contrast with small antennas, the quantum emitter is already
intrinsically tuned to the resonance and the interaction with
the electromagnetic field is considered a small perturbation.
Therefore, the reactive energy term only leads to a small
perturbative frequency shift.

However, this behavior changes when the strength of the
coupling to the photonic environment is increased and leads
to significant changes on the emission spectrum. In order to
elucidate the transition between the usual weak- and strong-
coupling regimes, we next introduce a first-order correction
to the emission spectrum. To this end, we take a Taylor
series expansion of 	ω(ω) around ωr . We also note in anal-
ogy with resonant antennas [4] that quantum emitters are
typically tuned to be at either a maximum or a minimum
of the dispersive decay rate, i.e., at a frequency for which
∂ω
(ωr ) � 0. The specific choice depends on whether one
is using a photonic nanostructure to accelerate or decelerate
the spontaneous emission process. Admittedly, there are other
scenarios in which the dispersion properties of the decay rate
cannot be neglected or can even be dominant. As shown in
Appendix A, this mainly leads to an asymmetric Lorentzian
line.

Here, we are mainly interested in the impact of reactive
interactions on the emission spectrum, and their ability to
control the emission bandwidth. Therefore, we introduce a
first-order correction to the emission spectrum by approxi-
mating 	ω(ω) � �ω(ωr ) + (ω − ωr )∂ω�ω(ωr ) and 
(ω) �

(ωr ). This approximation leads to the following first-order
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correction to the emission spectrum:

Sfirst
0 (ω) = A

1

(ω − ωr )2 + 1
4

(

(ωr )

1−∂ω�ω(ωr )

)2 , (19)

with A = [1 − ∂ω�ω(ωr )]−2. It is clear from Eq. (19) that
the emission spectrum still preserves a Lorentzian line shape
within this first-order correction. However, the linewidth is not
entirely determined by the decay rate, but it directly depends
on the dispersion of the frequency shift, BW first

3 dB = 
(ωr )/[1 −
∂ω�ω(ωr )]. This implies that one has an additional degree
of freedom to control the bandwidth of the quantum emitter,
opening new possibilities in the design of a quantum emitter’s
bandwidth [see Fig. 1(c)].

In order to understand what is possible and what is not
possible to do with this extra degree of freedom, it is in-
teresting to further draw analogies with classical antenna
theory. In particular, the dispersion properties of the frequency
shift, ∂ω�ω(ω) = ∂ω{2ω−1Preac(ω)}, are directly related to the
dispersion of the reactive power, i.e., ∂ωPreac(ω). Adapting the
derivations in [1,4] to our purposes, the latter can be written in
terms of field related quantities as follows (see Appendix B):

∂ωPreac = −1

2

∫
V∞

d3r [μ0|Hcl|2 + ε0 ∂ω{ωεR(r, ω)}|Ecl|2]

+ω ε0

∫
V∞

d3r εI (r, ω)Im
{
E∗

cl · ∂ωEcl
}

+μ0

∮
S∞

d� r|F(ur, ω)|2, (20)

where F(ur, ω) is the emission pattern in the far zone, i.e., in
the limit limr→∞ Ecl(r, ω) = (ei ω

c r/r) F(ur, ω).
Equation (20) provides information about the

behavior of the system in some limiting cases. For
example, if the system can be considered lossless,
i.e., when εI (r, ωr ) → 0, and nonradiating, i.e., when
F(ur, ωr ) → 0 near the resonant frequency ωr , we can write
∂ωPreac(ω) � − 1

2

∫
V∞

d3r [μ0|Hcl|2+ε0∂ω{ωεR(r, ω)}|Ecl|2].
Consequently, the frequency derivative of the reactive power
will be negative, ∂ωPreac(ω) < 0, as a manifestation of
Foster’s reactance theorem [1]. It can be readily checked that
∂ω�ω(ωr ) < 0 for such a lossless and nonradiating system.
Actually, a similar behavior is expected in most cases since
the reactive power is dominated by contributions from the
near fields. This implies that taking into account the impact
of the reactive power will predict, in most cases, a narrower
bandwidth of emission. However, for resonance frequencies
ωr near strongly radiating and/or dissipative points it is
possible to observe the reverse behavior, i.e., ∂ωPreac(ω) > 0.
This outcome in turn leads to a broadening of the bandwidth.

In general, Eq. (19) illustrates that there is an intermediate
domain between the usual weak- and strong-coupling regimes
where the emission bandwidth can be controlled not only
through the decay rate but also through the reactive power.
This provides an additional degree of freedom in controlling
the bandwidth, which can be used to either broaden or com-
press it. Thus, it offers new opportunities of engineering the
emission spectrum of quantum emitters.

IV. EXAMPLES

The basic theory introduced in the previous section can
be applied to a variety of quantum emitters and photonic
nanostructures. In the following, we provide some examples
illustrating the role of the reactive power in typical configura-
tions of quantum emitters coupled to photonic nanostructures.
As we will show, taking into account the role of the reactive
power provides a better understanding of the transition from
the weak- to the strong-coupling regime, and unveils novel
functionalities even in well-studied systems such as resonant
cavities and waveguides.

When considering the coupling of a quantum emitter to
an inhomogeneous photonic environment, it is convenient
to decompose the dyadic Green’s function G(r, r′, ω) =
Gstr (r, r′, ω) + G0(r, r′, ω) into the addition of a term associ-
ated to the modes of a structure of interest Gstr (r, r′, ω) (e.g., a
cavity or a waveguide), as well as a term G0(r, r′, ω) account-
ing for the rest of the optical modes. Common decompositions
include homogeneous and scattering parts [38,39] and cavity
and radiating modes [34], although the decomposition into
any arbitrary basis is possible. This leads to a similar de-
composition for the decay rate, 
(ω) = 
str (ω) + 
0, and fre-
quency shift, 	ω(ω) = 	ωstr (ω) + 	ω0. Here, it is typically
assumed that the interactions with the modes not of interest
are in the weak-coupling regime. This provides a frequency
shift that can be included in the emitter’s transition frequency
ω0 + 	ω0 → ω0 (i.e., the Lamb shift), and an intrinsic decay
rate 
0 that accounts for all of the radiative decay paths
different from the modes of interest. This decay rate can also
account for the nonradiative processes intrinsic to the emitter
[32–34,40], although a more sophisticated description would
be required for nonradiative processes leading to an intrinsic
non-Lorentzian spectrum (e.g., emitters with large phonon
sidebands).

In this manner, the polarization spectrum can be written as
follows:

S0(ω) = 1

[ω − ω0 − 	ωstr (ω)]2 + (
str (ω)+
0 )2

4

. (21)

A. Single-mode cavity: Transition from the weak- to the
strong-coupling regime

For illustrative purposes, we start by revisiting the popu-
lar example of coupling a quantum emitter with resonance
frequency ω0 to a high-Q single-mode cavity, characterized
by the resonant frequency ω1, linewidth 
1, and coupling
strength distinguished by the vacuum Rabi frequency Ω1 [see
Fig. 2(a)]. This configuration is a basic textbook example.
However, it will serve to illustrate how the proposed inter-
mediate regime describes the transition from the weak- to the
strong-coupling regime. First, we note that for a moderate-Q
cavity (ω1 
 
1) the decay rate and frequency shift can be
approximated by [41] (see also Appendix C)

	ωstr (ω) − i

str (ω)

2
= Ω2

1

4

1

ω − ω1 + i 
1
2

. (22)

This model can describe a large number of emitter-
cavity configurations. Here, we select parameters typical of a
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FIG. 2. (a) Sketch of the single-mode cavity geometry: A quantum emitter with transition frequency ω0 and intrinsic decay rate 
0 =
10−6ω0 is coupled to a single-mode cavity with resonance frequency ω1 = ω0, linewidth 
1 = 10−4ω0, and coupling strength �1. (b) Dispersive
frequency shift 	ωstr (ω) and decay rate 
str (ω) normalized to their maximum value �2

1/
1. (c) 3-dB emission bandwidth, normalized to the
intrinsic decay rate 
0, as a function of the normalized coupling strength �1/
1. Comparison between the predictions for the full spectrum
S0(ω) and zeroth-order S0th

0 (ω) and first-order S1st
0 (ω) approximations. (d) Normalized emission spectrum for coupling strengths �1 = 0.2 
1,

0.5 
1, and 0.8 
1.

quantum dot coupled to a photonic crystal cavity, including
a moderate-Q resonator with 
1 = 10−4ω0, well within the
range of known optical cavities (see, e.g., [42]), and an intrin-
sic linewidth 
0 = 10−6ω0 typical of quantum dots (see, e.g.,
[41], Fig. 5). Coupling strengths �1 enabling the observation
of the strong-coupling regime have been reported in a number
of experiments (see, e.g., [43]).

Figure 2(b) represents the decay rate 
str (ω) and frequency
shift 	ωstr (ω), confirming that the dispersion is character-
ized by the Lorentzian line of the cavity. As anticipated,
the frequency derivative of the frequency shift is negative at
most frequencies, i.e., ∂ω	ωstr (ω) < 0. However, this trend
is reversed near the resonance: ω ∼ ω0, where we observe
∂ω	ωstr (ω) > 0. Therefore, we can anticipate that as the
coupling strength of an emitter tuned to the cavity resonance
is increased the bandwidth will tend to be broadened with
respect to what could be expected from the zeroth-order
approximation (weak-coupling regime) simply by looking at
the dispersion of the reactive term 	ωstr (ω). In this manner,
considering the impact of the dispersion of the reactive power
provides additional insight into the transition from the weak-
to the strong-coupling regime.

This point is more clearly illustrated in Fig. 2(c), which
depicts the 3-dB bandwidth as a function of the coupling
strength. It also compares the bandwidth predicted within the
zeroth-order [Eq. (18)] and first-order [Eq. (19)] approxima-
tions. For small coupling strengths: �1 < 0.3 
1, the 3-dB
bandwidth is correctly predicted by all three formulations.
However, for larger coupling strengths, the common zeroth-
order approximation provides a pessimistic prediction of the
bandwidth, i.e., it fails to account for the broadening induced

by the dispersion of the reactive power. Our first-order correc-
tion correctly predicts the bandwidth for an extended regime
up to roughly �1 ∼ 0.7 
1. For larger coupling strengths, the
system enters into the strong-coupling regime, and the spec-
trum is characterized by the well-known two-peaked spectrum
usually referred to as Rabi splitting [see Fig. 2(d)].

B. Two-mode cavity: Highly efficient narrow-band source

Next we move to the more interesting question of whether
the additional degree of freedom provided by the reactive
power can be leveraged to introduce photon sources with
novel functionalities. We illustrate this point by analyzing a
two-mode resonant cavity and show how this simple structure
can be utilized to enable the design of highly efficient narrow-
band sources. Typically, the emission efficiency (quantum
yield or beta factor) is defined as the ratio between the de-
sired and total decay rates: η = 
str (ω0)/[
str (ω0) + 
0] [40].
Usually, efficient photon sources are designed by enhancing
the decay rate of the desired channels by means of coupling
to photonic nanostructures, i.e., to ensure that 
str (ω0) 


0. For this reason, increasing the efficiency is intrinsically
associated with bandwidth enlargement. In turn, this feature
hinders the design of highly efficient but narrow-band photon
sources.

However, highly efficient but narrow-band single-photon
sources would be of great interest for a number of applica-
tions. For example, bandwidth compression has been shown
to help in generating indistinguishable photons, particularly
when different physical systems are interfaced [44]. Narrow-
band sources are of natural interest for metrology systems, and
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FIG. 3. (a) Sketch of the two-mode cavity geometry: A quantum emitter with transition frequency ω0 and intrinsic decay rate 
0 = 10−6ω0

is coupled to two single-mode cavities the resonance frequencies of which are ω1 = ω0 + ω	 and ω0 − ω	. The detuning parameter ω	 =
5 
1, the linewidth 
1 = 
2 = 10−4ω0, and the coupling strength �1 = �2. (b) Dispersive frequency shift 	ωstr (ω) and decay rate 
str (ω)
normalized to their maximum value �2

1/
1. (c) Comparison between the predictions for the full spectrum S0(ω) and zeroth-order S0th
0 (ω) and

first-order S1st
0 (ω) approximations. Left: 3-dB emission bandwidth normalized to the intrinsic decay rate 
0. Right: Efficiency η as a function

of the coupling parameter ζ = (�1/ω	)2 /2. (d) Normalized spectrum for the coupling parameters ζ = 0.3, 0.4, and 0.5. For reference, the
zeroth-order approximation is included as a dashed curve.

they would also facilitate spectroscopy with nonclassical light,
by interrogating biological or chemical samples with high
spectral precision and/or by enhancing the emission from a
molecular transition while avoiding the spectral overlap with
neighboring transitions. They would also expedite frequency-
division multiplexing in quantum communications.

Managing the reactive power can provide a pathway to
circumvent the direct relationship between efficiency and
narrow-band operation. To illustrate this point, we consider
a quantum emitter coupled to a cavity supporting two non-
interacting modes (or coupled to two different cavities) as
depicted in Fig. 3(a). For the sake of simplicity, we assume
that both resonant modes have similar characteristics in terms
of coupling strengths, �1 = �2, and quality factors 
1 = 
2,
but their resonant frequencies are detuned from the transition
frequency of the emitter by symmetric shifts ω1 = ω0 − ω	

and ω2 = ω0 + ω	, respectively. For this configuration, the
frequency shift and decay rate can be written as follows:

	ωstr (ω) − i

str (ω)

2

= Ω2
1

4

(
1

ω − ω0 + ω	 + i 
1
2

+ 1

ω − ω0 − ω	 + i 
1
2

)
.

(23)

The associated dispersion properties of the decay rate and
frequency shift are depicted in Fig. 3(b). These results show
how the response of the system is characterized by the super-
position of two Lorentzian lines, each corresponding to one of

the two uncoupled resonant modes. Interestingly, we observe

str (ω0) � ζ 
1, 	ωstr (ω0) = 0, and ∂ω	ωstr (ω0) � −ζ at
the emitter transition frequency, where we have defined the
normalized coupling parameter ζ = (�1/ω	)2/2. Therefore,
this configuration allows for simultaneously enhancing the
efficiency by increasing the decay rate, while compressing the
bandwidth by the action of the reactive power.

This effect is illustrated in Fig. 3(c), which depicts the
3-dB bandwidth and efficiency of the emitter as functions of
the coupling factor ζ . The figure shows that, as the coupling
factor increases, the emission bandwidth becomes narrower
than the one predicted within the zeroth-order approximation.
For example, we have η � 0.98 at ζ = 0.5, while exhibiting a
bandwidth that is 33% smaller than the one predicted purely
based on the decay rate. Again, we have used parameter values
typical of a quantum dot coupled to a photonic crystal cavity
(
1 = 10−4ω0, ω	 = 5 
1, 
0 = 10−6ω0). Sweeping the cou-
pling parameter ζ from 0 to 0.5 in this example corresponds
to varying the coupling strength �1/
1 from 0 to 5. Values of
�1/
1 = 2.1 [45], �1/
1 = 2.7 [46], and �1/
1 = 6.4 [47]
have been demonstrated for quantum dots coupled to photonic
crystal cavities with similar quality factors.

In this configuration, the first-order correction provides
a very accurate prediction of the 3-dB bandwidth for the
entire studied parameter range. This effect is justified by
the fact that ∂2

ω	ωstr (ω0) = 0, which substantially increases
the domain of validity of the first-order correction to the
emission spectrum. The normalized spectrum for the coupling
parameters ζ = 0.3, 0.4, and 0.5 is reported in Fig. 3(d),
which confirms that the spectrum remains Lorentzian but
with a bandwidth narrower than the prediction of the
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FIG. 4. Normalized emission spectrum for the configuration
studied in Fig. 3, but for extended coupling parameters, ζ = 0.5,
0.75, and 1.

zeroth-order approximation (shown as a dashed line). Ulti-
mately, the first-order correction to the emission spectrum
will lose its validity when the coupling strength is large
enough to enter into the strong-coupling regime, characterized
by the presence of multiple emission peaks. This effect is
illustrated in Fig. 4, which shows the emission spectrum for
an extended range of frequencies and coupling strengths.
The figure illustrates how for coupling strengths larger than
those studied in Fig. 3 additional peaks would appear in the
emission spectrum, signaling the ascension into the strong-
coupling regime.

It would be expected that additional functionalities will
always come at some cost. In this case, the efficiency achieved
for a given cavity system will be smaller than if the emit-
ter was tuned at resonance with the cavity. However, once
the quality of the cavity system is high enough so that the
efficiency at resonance would become saturated, our results
demonstrate that one can achieve a significant bandwidth
compression while maintaining a high efficiency. In general,
this result sets the basis for the design of highly efficient

but narrow-band single-photon sources. Future evolutions of
this concept might include many other configurations, for
instance, coupled cavities and asymmetric systems, as well
as the optimization of the involved parameters, e.g., the qual-
ity factors and resonant frequencies of the cavities. These
advanced design efforts are beyond the scope of the present
investigation.

C. Multimode waveguide: Sub-non-radiative linewidth

The possibility of compressing the bandwidth by managing
the reactive power poses the question of how narrow the
bandwidth of an initially excited quantum emitter could be
theoretically. Typically, one can narrow the bandwidth of a
quantum emitter by reducing its decay rate, e.g., by using
a closed cavity [48] or a photonic crystal exhibiting a band
gap [49,50]. However, both approaches come with the cost of
sacrificing efficiency, and, ultimately, this narrowing process
stops when the linewidth becomes dominated by nonradia-
tive processes. However, the additional degree of freedom
provided by reactive interactions can allow us to circumvent
this limit, potentially getting access to sub-non-radiative loss
linewidths, even when the emitter is incoherently excited.

We illustrate this possibility by examining a quantum
emitter coupled to a multimode waveguide as schematically
depicted in Fig. 5(a). For this configuration, the dispersive
decay rate and frequency shift can be written as [41,51]

	ωstr (ω) − i

str (ω)

2
= −i ω

∑
m

αm ngm(ω), (24)

where αm is the coupling parameter to the mth mode. It
includes, for instance, the effects of the overlap of the emit-
ter’s current distribution with the mode’s field profile and
its effective volume. The group index of the mth mode is

κ

Г00

Г0

0

+1

κ +1

κ

κ +1

κ

κ +1

κ

κ +1
+1

FIG. 5. (a) Sketch of the multimode waveguide geometry: A quantum emitter with transition frequency ω0 and intrinsic decay rate 
0

decays into m modes of a photonic waveguide with coupling factors αm. Potential implementation is based on a coupled resonator optical
waveguide (CROW). (b) Dispersion diagram of the CROW. (c) Dispersive frequency shift 	ωstr (ω) and decay rate 
str (ω) normalized to its
absolute value at the center of the first band 
str (ω1)/2 = α1 ω1 ng1(ω1). (d) 3-dB emission bandwidth normalized to the intrinsic decay rate 
0

as a function of the coupling parameter α1 = α2. (e) Normalized spectrum for the coupling parameters α1 = 0, 0.00005, and 0.0001.
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ngm(ω) = c/vgm(ω), where vgm(ω) is the associated group
velocity.

It is clear from Eq. (24) that engineering the dispersion
properties of the group index ngm(ω) empowers the design of
different light-matter interactions within optical waveguides.
To focus our discussion, we consider a coupled resonator
optical waveguide (CROW) illustrated in Fig. 5(a) [52,53].
The dispersion relation of a CROW waveguide within the
tight-binding approximation can be described as a set of m
passbands [52,53] the individual dispersion relations ω(k) =
ωm + κmcos(kd ) of which are centered around the resonance
frequencies of the cavity ωm and the bandwidths of which are
equal to two times their coupling rates: 2κm. The group index
associated with each of these modes is then given by ngm(ω) =
ngm0/

√
1 − (ω − ωm)2/κ2

m, with ngm0 being the group index
at the center of its passband [54]. We consider the impact
of two bands located around the emitter’s transition fre-
quency, and set the band parameters to ω1 = 0.9975 ω0, ω2 =
1.0025 ω0, κ1 = κ2 = 0.00158 ω0, and ngm0 = 15. Thus, our
model matches the band structure and group index reported in
CROW waveguide experiments [55] [see Fig. 5(b)].

Figure 5(c) presents the corresponding dispersive fre-
quency shift 	ωstr (ω) and decay rate 
str (ω). They serve to
illustrate some of the salient features of the light-matter inter-
actions within dispersive waveguides. For example, the decay
rate is strongly enhanced near the edges of the passbands since
it is associated with a large group index, i.e., a near-zero group
velocity [41]. Similarly, the medium-assisted Lamb shift is
enhanced at the side of the band edge that lies within the
band gap [29]. On the other hand, the decay rate is strongly
suppressed within the band gaps, leading to an inhibition
of the spontaneous emission [49,50] and the formation of
long-lived bound states [56–58].

Simultaneously, Fig. 5(c) suggests new opportunities asso-
ciated with the management of the reactive power within the
band gap. For example, we note that if an emitter tuned within
the band gap has a nonzero intrinsic decay rate 
0 then the
dynamics of the quantum emitter would still be dominated by
an exponential relaxation through the channels external to the
waveguide system. This feature is true even if 
str (ω0) = 0. In
such a case, the emission spectrum would be expected to be
a Lorentzian line with a 3-dB bandwidth 
0. However, at the
center of the band gap, we have 	ωstr (ω) = 0 and a negative
frequency derivative ∂ω	ωstr (ω) < 0. These are the necessary
ingredients for bandwidth compression beyond that induced
by an inhibition of spontaneous emission. This effect is shown
in Figs. 5(d) and 5(e) in which the quantum emitter 3-dB
bandwidth and emission spectrum are depicted as functions of
the coupling parameter α1 = α2. As expected, the bandwidth
is identical to the intrinsic decay rate 
0 for small coupling
parameters α1 ∼ 0. On the other hand, it is compressed be-
yond this limit as the coupling parameter strengthens and the
zeroth-order approximation is no longer valid. This bandwidth
compression effect is found to monotonically increase along
with the coupling. However, the first-order corrections will
lose their validity for large coupling parameters, i.e., as the
system enters into the strong-coupling regime and additional
emission peaks appear (see Fig. 4). Again, different param-
eters of the system, e.g., the separation and width of the

propagating bands, could be optimized to achieve a better
performance for specific waveguide implementations and/or
particular applications. Other structures exhibiting a band
gap, such as photonic crystal [59] and metamaterial [60,61]
waveguides, could also be considered.

In general, these results demonstrate the real possibility of
using a photonic nanostructure to compress the bandwidth
of a quantum emitter beyond the limit of its nonradiative
linewidth. It is worth remarking that the so-called subnatural
linewidth photon emission based on resonance fluorescence
operating in Heitler’s regime has been reported [62–64]. How-
ever, recent theoretical developments indicate that subnatural
linewidth and antibunching cannot be observed simultane-
ously in this configuration unless the coherent part of the
emitted light is reduced by destructive interference with an
external coherent signal [65]. The operating principle of our
configuration is entirely different. First, since it is not based
on resonance fluorescence, it does not involve the illumination
of the emitter with a continuous-wave laser. Consequently, it
does not require the exact compensation of different terms in
order to guarantee antibunching. Second, our proposed system
is consistent with incoherent pumping and is thus compatible
with electronically driven devices. In fact, if the intrinsic de-
cay rate 
0 is dominated by a radiative component (outside the
waveguide system), our system would allow for on-demand
operation. Finally, achieving an intrinsic line narrower than
the width associated with the nonradiative losses might have
important implications in the dynamics of different decoher-
ence channels beyond manipulating the emission bandwidths
of quantum emitters.

V. CONCLUSIONS

Our results demonstrate that reactive interactions can be
exploited as an additional degree of freedom in controlling
the bandwidth of quantum emitters. This degree of freedom
can be used either in the compression or in the expansion
of the bandwidth, while maintaining a Lorentzian spectrum.
Being able to control the bandwidth of emission beyond the
manipulation of its decay rate provides a finer control and
offers new possibilities. For instance, it is possible to elude
a direct relationship between the bandwidth and efficiency.
This feature facilitates the design of efficient quantum emitters
preserving a narrow bandwidth. It also enables the compres-
sion of the source’s bandwidth beyond limits imposed by
nonradiative decay rates intrinsic to the emitter. We have
outlined the basic theory and presented examples associated
with applications involving resonant cavities and waveguides.
This basic theory and these configurations could be imple-
mented through a variety of systems, including different quan-
tum emitters (cold atoms, ions, quantum dots, color centers,
etc.), multiple emitters, resonant cavities (defect cavity modes
in photonic crystals, nanopillar cavities, whispering gallery
modes, plasmonic cavities, etc.), and/or photonic crystal and
metamaterial waveguides. Many other configurations, e.g.,
coupled cavities, nanoparticle systems, and waveguides with
different dispersion profiles, could also be explored. In gen-
eral, our results take inspiration from classic antenna theory to
provide a perspective on the interactions of quantum emitters
with their photonic environments. Moreover, they may find
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important applications in the development of nonclassical
light sources.
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APPENDIX A: IMPACT OF THE DISPERSION OF THE
DECAY RATE IN THE EMISSION SPECTRUM

This paper mainly focuses on studying the impact of reac-
tive interactions on the bandwidth of quantum emitters. How-
ever, for the sake of completeness, here we discuss the impact
of the dispersion of the decay rate on the emission spectrum.
To this end, a first-order correction to the emission spectrum,
including the impact of the dispersion of the decay rate, can
be found by approximating 	ω(ω) � 	ω(ωr ) and 
(ω) �

(ωr ) + ∂ω
(ωr )(ω − ωr ), around the resonance frequency,
and leading to

Sfirst
0,
 (ω) = 1

(ω − ωr )2 + 
2(ωr )
4 [1 + C
 (ω − ωr )]

, (A1)

with C
 = 2∂ω
(ωr )/
(ωr ). It is clear from Eq. (A1) that
this correction introduces an additional term proportional
to (ω − ωr ), which changes sign around ωr . Therefore, we
conclude that the first-order effect of the dispersion of the
decay rate is inducing an asymmetry on the Lorentzian line.

If we simultaneously consider a first-order correction of
both the decay rate and the frequency shift, the spectrum can
be written as follows:

Sfirst
0,
,	ω = 1

C2
	

1

(ω − ωr )2 + 
2(ωr )
4C2

	

[1 + C
 (ω − ωr )]
, (A2)

with the definition C	 = 1 − ∂ω	ω(ωr ). It can be concluded
from Eq. (A2) that the resulting spectrum will again be an
asymmetric line. However, the overall width of this asym-
metric line will then be controlled by the dispersion of the
frequency shift (reactive interactions) via the C	 parameter.
Therefore, we expect that our findings could be extended even
to configurations where the dispersion of the decay rate cannot
be neglected.

APPENDIX B: DISPERSION PROPERTIES OF THE
REACTIVE POWER: DERIVATION OF EQ. (20)

In this Appendix we provide the derivation of Eq. (20) of
the main text, i.e., an expression of the frequency derivative
of the reactive power in terms of field quantities. To this end,
we adapt previous results of antenna theory [1,4] to our case
with a fixed current distribution. Our starting point is the time-
harmonic Maxwell curl equations for the classical electric and
magnetic vector fields

∇ × E(r, ω) = iωμ0H(r, ω), (B1)

∇ × H(r, ω) = −iωε0ε(r, ω)E(r, ω) + j(r) (B2)

and their frequency derivatives

∇ × ∂ωE(r, ω) = iμ0H(r, ω) + iωμ0∂ωH(r, ω), (B3)

∇ × ∂ωH(r, ω) = −iε0∂ω{ωε(r, ω)}E(r, ω)

− iωε0ε(r, ω)∂ωE(r, ω). (B4)

The explicit spatial and frequency dependencies of the field
and permittivity quantities are omitted hereafter to alleviate
the notation. Next, we construct a variation of Poynting’s
theorem by substracting ∇ · (∂ωE × H∗) and ∇ · (E × ∂ωH∗),
and taking the imaginary part, so that we can write

Im∇ · (∂ωE × H∗ − E × ∂ωH∗)

= −Im{j∗ · ∂ωE} + μ0|H|2 + ε0∂ω{ωεR}|E|2
−2ωε0εI Im{∂ωE∗ · E}. (B5)

In this manner, we can compute the frequency derivative of
the reactive power by integrating (B5) over an asymptotically
large volume V∞ bounded by the surface S∞:

∂ωPreac(ω) = −1

2

∫
V∞

d3r Im{j∗ · ∂ωE}

= −1

2

∫
V∞

d3r[μ0|H|2 + ε0∂ω{ωεR}|E|2]

+ωε0

∫
V∞

d3r εI Im{∂ωE∗ · E}

+ 1

2
Im

∮
S∞

dS · (∂ωE × H∗ − E × ∂ωH∗).

(B6)

We simplify the last term by noting that the surface integral
is taken in the far zone of the sources j(r). Therefore, we can
write the following limits for the electric and magnetic fields:

lim
r→∞ E = ei ω

c r

r
F(ur ), (B7)

lim
r→∞ H = 1

η0

ei ω
c r

r
ur × F(ur ), (B8)

where F(ur ) is the emission pattern in the far zone, and for
their frequency derivatives

lim
r→∞ ∂ωE = i

c
F(ur ) ei ω

c r, (B9)

lim
r→∞ ∂ωH = i

c

1

η0
ur × F(ur ) ei ω

c r . (B10)

By using these limits, the last term in (B6) reduces to

1

2
Im

∮
S∞

dS · (∂ωE × H∗ − E × ∂ωH∗)

= μ0

∮
S∞

d� r|F(ur )|2. (B11)

Finally, introducing (B11) into (B6), one recovers Eq. (20)
of the main text.
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APPENDIX C: HIGH QUALITY FACTOR
APPROXIMATION FOR THE INTERACTION WITH

A SINGLE-MODE CAVITY

Here we provide additional details on the expression used
to model the interaction energy term for a quantum emitter
coupled to a single-mode cavity, i.e., Eq. (22) of the main text.
In particular, we consider a single-mode cavity with resonant
frequency ω1, decay rate 
1, and normalized mode function
u1(r). The dyadic Green’s function of this system can be
written as follows [41]:

G(r, r′, ω) = −ω2 u1(r)u∗
1(r′)

ω2 − ω2
1 + iω
1

. (C1)

This expression is commonly used to model the interaction
between a quantum emitter and a single-mode cavity. How-
ever, a simpler but very accurate expression can be obtained
by taking the narrow-band approximation: ω2 − ω2

1 + iω
1 �
2(ω − ω1 + i
1/2) in the denominator and ω2 � ω2

1 in the nu-
merator. In this manner, the dyadic Green’s function reduces

to

G(r, r′, ω) � −ω2
1

2

u1(r)u∗
1(r′)

ω − ω1 + i 
1
2

. (C2)

Consequently, following the definition of the dispersive
frequency shift and decay rate in Eq. (14), we find

�ω(ω) − i

(ω)

2

= 1

ω − ω1 + i 
1
2

μ0ω
2
1

2h̄

∣∣∣∣∫ d3r j∗ge(r) · u1(r)

∣∣∣∣2

, (C3)

which is identical to the expression used in the main text, with
the definition of the coupling strength:

�2
1 = 2μ0ω

2
1

h̄

∣∣∣∣∫ d3r j∗ge(r) · u1(r)

∣∣∣∣2

. (C4)

We remark that this approximation is extremely accurate
even for cavities with much smaller 
1/ω1 ratios than those
considered in the paper.
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