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Multimode photon subtraction provides an experimentally feasible option to construct large non-Gaussian
quantum states in continuous variable quantum optics. The non-Gaussian features of the state can lead towards
the more exotic aspects of quantum theory, such as negativity of the Wigner function. However, the payoff
for states with such delicate quantum properties is their sensitivity to decoherence. In this paper, we present a
general model that treats the most important source of decoherence in a purely optical setting: losses. We use the
framework of open quantum systems and master equations to describe losses in n-photon-subtracted multimode
states, where each photon can be subtracted in an arbitrary mode. As a main result, we find that mode-dependent
losses and photon subtraction generally do not commute. In particular, the losses do not only reduce the purity
of the state, they also change the modal structure of its non-Gaussian features. We then conduct a detailed study
of single-photon subtraction from a multimode Gaussian state, which is a setting that lies within the reach of
present-day experiments.

DOI: 10.1103/PhysRevA.100.023828

I. INTRODUCTION

In a time where quantum technologies are gradually be-
coming a reality, the attention for potential physical imple-
mentations of quantum computers increases. An important
open question deals with the platform on which these quantum
information processors will ultimately be developed. Seri-
ous contenders include solid-state architectures in semi- and
superconductors [1–4], nitrogen-vacancy centers in diamond
[5,6], trapped ions [7,8], and light [9]. In general, quantum
properties within these systems are suppressed by interactions
with an uncontrollable environment, which induces decoher-
ence. Light’s resilience against such detrimental decoherence
effects thus offers an advantage when it is used to process
quantum information.

Setups that rely strongly on the use and manipulation of
individual photons are confronted with another difficulty: the
controlled generation of sufficiently large numbers of photons
[10] and the number-resolved detection [11] thereof. This
ultimately implies that it is hard to scale photonic quantum
devices. Therefore, one can alternatively resort to treating
light in the continuous variable (CV) regime. This implies
that the observables of interest are the field quadratures,
i.e., the real and imaginary parts of the complex amplitude
of the electromagnetic wave. Large entangled states can be
deterministically generated in this setting [12–17], which
can be used for measurement-based quantum computation
[18].

A crucial ingredient in universal CV quantum computation
is the ability to induce non-Gaussian statistics for quadrature
measurements. This turns out to be a challenging task from
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the experimental point of view [19–21]. An experimentally
feasible way to achieve this goal is through photon subtraction
[22–25]. This method can also be generalized to light with
many optical modes [26–31], where it can also enhance
entanglement between modes [31–34].

Even though such photon-subtracted states of light may
hold advantages for quantum information processing, such
as scalability and resilience to noise, there are also barri-
ers along the way. In order to produce and manipulate the
light, one uses a wide range of linear and nonlinear opti-
cal elements that can have unwanted side effects that lead
to a decrease of quantum properties. The most notable of
these effects is photon loss, which can arise in a variety of
ways. A notable way of modeling such losses involves the
physics of open quantum systems [35–41]. This approach
was successfully applied to study the effect of losses on
the single-mode photon-subtracted vacuum state [42]. In this
paper, we will use the open systems approach to develop a
general loss model for multimode states with an arbitrary
number of photon subtractions in arbitrary modes, hence gen-
eralizing the result of [42]. We will also show that this result
generalizes the scenario where losses are modeled through
beamsplitters.

We start, in Sec. II, by introducing the subtleties of mul-
timode quantum optics and fixing our notation. The open
system loss model is introduced in Sec. III, where we show
its equivalence to the beamsplitter model in certain sce-
narios. Our main result, describing losses in arbitrary mul-
timode photon-subtracted states, is presented in Sec. IV.
This result is then detailed in the specific context of single-
photon subtraction in Sec. V, where it leads to a specific
and simple modification of the Wigner function of [31]. In
the latter section we also illustrate our results with some
examples.
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II. MULTIMODE QUANTUM OPTICS

We first introduce the framework of continuous variables
in multimode optical systems. CV quantum optics relies
on quadratures of the electromagnetic field as the rele-
vant quantum observables. In multimode quantum optics,
the electric-field operator Ê (r, t ) is expressed in terms of a
basis {u1(r, t ), . . . , um(r, t )} of m normalized modes and their
associated amplitude and phase quadrature operators, x̂ j and
p̂ j , respectively:1

Ê (r, t ) = εc

m∑
j=1

(x̂ j + i p̂ j )u j (r, t ), (1)

where εc is a constant that carries the dimension of the
field. Moreover, because these modes energetically behave
as harmonic oscillators, the quadratures follow the canoni-
cal commutation relations [x̂ j, p̂k] = 2iδ j,k , [x̂ j, x̂k] = 0, and
[ p̂ j, p̂k] = 0.

In our present paper, it is convenient to define a general
quadrature operator Q( f ) as

Q( f ) ≡
m∑

k=1

( fk x̂k + fk+m p̂k ), (2)

where f ∈ N (R2m), with N (R2m) the set of normalized vec-
tors in the optical phase space R2m. In addition, the optical
phase space is equipped with a symplectic structure that
connects amplitude and phase quadratures of the same mode.
This symplectic structure can be represented by a matrix J that
acts on the phase space, with J2 = −1 and JT = −J . With
this symplectic structure, we can generalize the canonical
commutation relation to

[Q( f1), Q( f2)] = −2i( f1, J f2), for all f1, f2 ∈ N (R2m), (3)

where (. . . , . . .) denotes the inner product on R2m. Moreover,
this allows us to define general creation and annihilation
operators as

a†( f ) = 1
2 [Q( f ) − iQ(J f )], and a( f )

= 1
2 [Q( f ) + iQ(J f )]. (4)

Note that the symplectic transformation, induced by J , causes
a π/2 phase shift, i.e., a†(J f ) = ia†( f ). These operators play
a crucial role in describing loss processes in quantum optics.

III. OPEN SYSTEM MODEL

The framework of open quantum systems is ubiquitous in
quantum physics, as it describes how a small (typically con-
trollable) quantum system is embedded in a large (typically
uncontrollable) environment [40,41]. A common approach to
such systems uses a master equation that describes a nonuni-
tary evolution. This can ultimately capture a wide range
of phenomena, where concepts such as (non-)Gaussianity,
correlation, (non-)Markovianity, etc., play an important role.

1These uj (r, t ) are solutions to Maxwell’s equations, nor-
malized with respect to the spatial degrees of freedom, i.e.,
1
V

∫
d3r |uj (r, t )|2 = 1 for every time t .

Throughout the following section, we gradually build our
specific noise model by adding a range of assumptions that
will ultimately lead us to an analytically tractable—though
realistic—formalism.

A. Completely positive maps and the master equation

In general, we describe the effect of losses (or any coupling
to an environment) in the Heisenberg picture by a channel � :
A �→ A, where A is the algebra of observables. In our specific
case, A is generated by the quadrature operators Q( f ). The
channel � has to fulfill the following basic criteria:

�(1) = 1, (5)

�(x†x) � 0, for all x ∈ A, (6)

� is linear. (7)

It is common to strengthen (6) by adding the demand that
� is completely positive [43], i.e., that the channel can be
represented by a Kraus representation.

In order to describe our loss model, we will assume that this
channel depends on an overall parameter ξ � 0 that character-
izes the strength of the losses. Note that this does not imply
that every mode in the system has the same losses; ξ simply
acts as an overall scaling factor. It is common in open system
models that this parameter represents the evolution time of
the system (long evolution times typically imply high losses).
However, in optics time acts in a very different way than in
mechanical systems, and therefore we will simply consider ξ

as a parameter.2 We now make the additional demands on �ξ

that

�ξ=0(x) = x, for all x ∈ A, (8)

�ξ ◦ �ζ = �ξ+ζ , for all ξ, ζ � 0. (9)

Because of these properties, the channel is said to be a one-
parameter semigroup, which implies that there is a composi-
tion rule for channels (9). Note, however, that induced noise
can typically not be undone, since �ξ does not necessarily
have an inverse operation. Because the composition rule (9)
holds for all parameters ξ and ζ , this channel is a Markovian
map [40,41].

An important theorem for the generation of such com-
pletely positive semigroups was presented in [38,39]. It was
shown that completely positive semigroup �ξ can be gener-
ated through a differential equation of the form

d

dξ
�ξ (x) ≡ i[H, x] +

∑
j

(
l†

j xl j − 1

2
{l†

j l j, x}
)

, x ∈ A,

(10)

where {. . . , . . .} denotes the anticommutator. The operator
H = H† ∈ A is the system’s Hamiltonian, and l j ∈ A are

2Note that this is similar to cases where we model optical elements
through a Hamiltonian. When these Hamiltonians are exponentiated
to obtain the associated unitary transformation, time is also replaced
by a more generic parameter.
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the Lindblad operators. These Lindblad operators typically
describe the interactions between the system and its environ-
ment. The Hamiltonian, on the other hand, describes unitary
transformations on the system; it could, for example, be used
to include linear optics in a model. However, we intend to
develop a loss model, and, therefore, we set H = 0 in the
remainder of the paper.

To ultimately derive the loss model for photon-subtracted
states, we will not restrict ourselves to the Heisenberg picture.
It turns out that it is convenient to interchange between both
the Heisenberg and the Schrödinger picture. The latter in
particular allows us to understand the effect of losses on the
level of the Wigner functions. Hence, we define �� as the
Schrödinger picture equivalent of �, which is contained in
the identity

tr[ρ�(x)] = tr[��(ρ)x], (11)

which holds for all observables x ∈ A and all states ρ.
In the following section, we will identify the specific

choice of Lindblad operators that must be inserted in (10) to
obtain our loss model.

B. Losses in optical systems

General loss models have been considered in a wide range
of literature [44–48]. In the present model, we will assume
that the loss process is Gaussian, i.e., that Gaussian states are
mapped into Gaussian states [35,36,49,50]. Hence, we set the
Lindblad operators

l j = √
γ j a(h j ), h j ∈ N (R2m), (12)

where γ j denotes the loss parameter of the mode h j , that
multiplies the overall strength of the losses ξ .

Our method to analytically solve Eq. (10), and obtain
the loss channel �ξ , is based on earlier work [37] that was
explicitly adapted for the bosonic case in [51,52]. There, the
general result for the action of �ξ on a normally ordered
monomial of creation and annihilation operators is given:

�ξ [a†( f1) . . . a†( fr )a( fr+1) . . . a( fs)]

= a†(e−ξD f1) . . . a†(e−ξD fr )a(e−ξD fr+1) . . . a(e−ξD fs),

(13)

where

D =
m∑

j=1

γ j

2
(Phj + PJhj ). (14)

Here Phj is a projection operator on the phase-space vector
h j ∈ N (R2m). The formal definition of creation and annihi-
lation operators with non-normalized vectors is provided in
Appendix A. Note that 0 � exp(−ξD) � 1 for all possible
ξ � 0. We can then also find the natural property that for any
f ∈ N (R2m)

ξ > ξ ′ ⇒ �ξ [a†( f )a( f )] � �ξ ′ [a†( f )a( f )], (15)

such that the number of particles decays with increasing
values of ξ .

To conclude our discussion on the open-system approach to
losses, we show its effect on a Gaussian state ρG. Such a state

is fully characterized by its first- and second-order quadrature
correlations, tr[ρGQ( f )] and tr[ρGQ( f1)Q( f2)], respectively.
By using that Q( f ) = a( f ) + a†( f ), we find that

�ξ [Q( f )] = Q(e−ξD f ), (16)

�ξ [Q( f1)Q( f2)] = Q(e−ξD f1)Q(e−ξD f2) + (1 − e−2ξD).

(17)

We then find that the action of the loss channel on the state’s
covariance matrix V is given by

V
�ξ�→ e−ξDVe−ξD + (1 − e−2ξD) ≡ Vξ . (18)

When we then assume uniform losses (i.e., losses that are the
same in every mode) and set D = 1/2, we find that V �→
e−ξV + (1 − e−ξ )1. In other words, we are mixing a Gaussian
state with the vacuum. We will see that such a result is also
obtained when losses are modeled through a beamsplitter.

C. Equivalence to beamsplitter model

The model presented in Sec. III B can be equivalently rep-
resented by means of beamsplitters. We start this discussion
with the single-mode case. A beamsplitter mixes our mode of
interest with an auxiliary mode which is in a vacuum state. We
can describe this mixing of modes by a unitary transformation

U =
(

t −r
r t

)
, (19)

where we choose r, t ∈ R for simplicity.3 We then demand
that t2 + r2 = 1 to guarantee unitarity of the operation. With
this step we can mix the creation or annihilation operators
(a† and a, respectively) for the mode of interest with the
creation or annihilation operators (b† and b, respectively) of
the auxiliary mode. As such, the beamsplitter carries out the
mapping

a† U�→ ta† + rb†, (20)

a
U�→ ta + rb. (21)

However, the auxiliary mode is assumed to be in a vacuum
state, which extends the quantum state of the system to
ρ ⊗ |0〉〈0|, with ρ an arbitrary state for the mode of interest.
Intuitively, this implies that we must act with the vacuum
state on the creation and annihilation operators associated
with the auxiliary mode. As such, we obtain the action of
� on normally ordered products of creation and annihilation
operators:

�[(a†)ras−r] = t s(a†)ras−r . (22)

This result is in perfect agreement with the single-mode
version of (13), with t = exp(−ξγ /2).

The beamsplitter result can trivially be extended to a mul-
timode beamsplitter, which has the same transmittance and

3Generally, the entries of a beamsplitter can be complex, such that
it also changes the phase of the mode. To include such an effect in
the open system model, one must set h = 0 in (10).
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ρ OT
lOl

t1
t2

t3

t4

FIG. 1. Schematic representation of mode-dependent losses in a
multimode setting, using the beamsplitter representation. The basis
change (i.e., linear interferometer) Ol transforms the mode basis in
which the state ρ is given to the mode basis {h1, . . . , h4} in which
the losses act locally. As described in the main text, in this basis the
losses can be described by a beamsplitter model with transmittance
t j for mode hj .

reflectivity for every mode. In this case, we find that

�[a†( f1) . . . a†( fr )a( fr+1) . . . a( fs)]

= t sa†( f1) . . . a†( fr )a( fr+1) . . . a( fs). (23)

This result is also compatible with (13), with t =
exp(−ξγ /2), by setting D = γ1/2.

Full equivalence between both models is obtained by
choosing a basis of modes and selecting a distinct beamsplitter
for each one of the modes. One can then tune the transmittance
of each one of these beamsplitters at will to obtain the result
(13). In particular, one must choose the basis of modes to be
{h1, . . . , hm} and set the transmittance t j = exp(−ξγ j/2). We
will not go through the detailed derivation for this multimode
scenario, but rather present a schematic representation of the
concept in Fig. 1. In this sketch, we assume that the state
ρ is represented in a fixed mode basis, whereas the losses
occur in local modes {h1, . . . , h4}. The orthogonal symplectic
matrix Ol represents a mode basis change (i.e., a linear
interferometer) that maps the modes in which ρ is given to the

mode basis {h1, . . . , h4}. The final addition of a second basis
change, given by OT

l , serves to recast the state in the original
mode basis of the state ρ.

IV. MULTIMODE PHOTON-SUBTRACTED STATES

A. Algebraic approach

In the previous sections, we explained how the loss chan-
nel’s action on any normally ordered monomial is described
by (13). In this section, we will use this result to explain the
effect of the loss channel on a photon-subtracted state. We
will use the result in the Heisenberg picture, to obtain the
associated map in the Schrödinger picture.

We start by considering an arbitrary state ρ of the multi-
mode optical system under consideration. We can then sub-
tract photons from this state by acting on it with annihilation
operators. In the most general case, we can subtract n photons
from a set of modes g1, . . . , gn ∈ N (R2m). Note that we do
not require these modes to be orthogonal. On a formal level,
the photon-subtracted state is described by

ρ− = a(g1) . . . a(gn)ρa†(gn) . . . a†(g1)

tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]
. (24)

First, note that due to the cyclic property of the trace

tr[�ξ (x)ρ−] = tr[a†(gn) . . . a†(g1)�ξ (x)a(g1) . . . a(gn)ρ]

tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]
.

(25)

By virtue of (13), we derive the following crucial identity in
Appendix B:

a†(gn) . . . a†(g1)�ξ (x)a(g1) . . . a(gn)

= �ξ [a†(eξDgn) . . . a†(eξDg1)x a(eξDg1) . . . a(eξDgn)],

(26)

which holds for all x ∈ A. By applying the identity (11), we
then obtain

tr[x��
ξ (ρ−)] = tr[�ξ (x)ρ−]

= tr{�ξ [a†(eξDgn) . . . a†(eξDg1)x a(eξDg1) . . . a(eξDgn)]ρ}
tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]

= tr{x a(eξDg1) . . . a(eξDgn)��
ξ (ρ)a†(eξDgn) . . . a†(eξDg1)}

tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]
. (27)

Because these equalities hold for every observable x ∈ A, we find that the action of the loss channel on the state ρ− is given by

��
ξ (ρ−) = a(eξDg1) . . . a(eξDgn)��

ξ (ρ)a†(eξDgn) . . . a†(eξDg1)

tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]
. (28)

As such, we can relate the action of the loss channel on the
photon-subtracted state ρ− to the action of the loss channel
on the initial state ρ from which the photons were subtracted.
Nevertheless, we must also transform the creation and anni-
hilation operators, such that losses and photon subtraction do
not simply commute.

Even though this procedure shows how the loss channel
acts on the photon-subtracted state, it hardly provides any
insight when presented in the form (28). In particular, the
appearance of the operators a†(eξDgj ) and a(eξDgj ) can incite
confusion (see Appendix A for details). Hence, we will now
recast (28) in a more insightful expression.
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First of all, we can define the new vectors

g̃ j ≡ eξD

‖eξDgj‖g j, (29)

such that we can write that

a†(eξDgj ) = ‖eξDgj‖a†(g̃ j ), (30)

a(eξDgj ) = ‖eξDgj‖a(g̃ j ). (31)

When we insert this new notation in (28), we find the following
expression, which is one of the main results of this paper:

��
ξ (ρ−) = a(g̃1) . . . a(g̃n)��

ξ (ρ)a†(g̃n) . . . a†(g̃1)

tr[a†(g̃n) . . . a†(g̃1)a(g̃1) . . . a(g̃n)��
ξ (ρ)]

, (32)

where we used that⎛
⎝ n∏

j=1

‖eξDgj‖2

⎞
⎠tr[a†(g̃n) . . . a†(g̃1)a(g̃1) . . . a(g̃n)��

ξ (ρ)]

=
⎛
⎝ n∏

j=1

‖eξDgj‖2

⎞
⎠tr{�ξ [a†(g̃n) . . . a†(g̃1)

× a(g̃1) . . . a(g̃n)]ρ}
= tr[a†(gn) . . . a†(g1)a(g1) . . . a(gn)ρ]. (33)

This implies that subtracting n photons from a state ρ in
modes g1, . . . , gn, and subsequently having losses charac-
terized by ��

ξ , is equivalent to subtracting n photons from
the state ��

ξ (ρ) in modes g̃1, . . . , g̃n. Mode-dependent losses
can also change the mode structure of the subtracted pho-
tons. This can be of particular interest in terms of generat-
ing multimode photon-subtracted states that are more robust
against such losses. The detrimental effect of strong losses on
non-Gaussian features can be understood from the fact that
��

ξ→∞(ρ−) = |0〉〈0| in (32).
In the case where the losses are the same for all modes—

which is quite common in experiments—the expression sim-
plifies considerably. Here we have exp(ξD) = exp(ξγ /2)1,
which is equivalent to the beamsplitter model (23). One
directly obtains that g̃ j = g j for every mode in the mode
basis, such that the photon subtractions and the noise channel
commute. This means that uniform losses from a photon-
subtracted state are equivalent to subtracting photons from a
state that has undergone the same losses.

B. Conceptual approach

Section IV A makes it mathematically evident that pho-
ton subtraction and loss commute under the condition that
g̃ j = g j . In this section, we strive to provide a conceptual
explanation for these findings through the beamsplitter model
of Sec. III C. In a single-mode setup, the condition for commu-
tation between loss and photon subtraction is always fulfilled,
and, thus, it is instructive to start our conceptual treatment
with this simple case.

In the single-mode case, photon subtraction is generally
implemented using a beamsplitter with a very low reflectivity
and a photodetector, as shown in Fig. 2. The beamsplitter
reflects a minor portion of the light to the photodetector,

photon subtraction

photon subtraction

ρ
|0 |0

Λ(ρ−)

=

ρ
|0 |0

Λ(ρ−)

loss

loss

FIG. 2. Schematic representation of single-mode photon subtrac-
tion (as implemented by a highly transmitting beamsplitter) and a
photodetector, and single-mode losses (represented by a beamsplit-
ter). The top and bottom configuration are shown to be equivalent
(see main text).

which then heralds a photon-subtracted state in the transmitted
beam upon detection. This heralding procedure effectively
implements the annihilation operator. As explained in detail in
Sec. III C, the losses can be modeled by a beamsplitter, which
is also represented in Fig. 2.

To understand why the top and bottom panel of Fig. 2 give
rise to the same output state, we first focus on the bottom
panel, where the photon is subtracted after the losses occur.
Here, the state ρ is first mixed with a certain amount of
vacuum in the loss process, and, subsequently, the photode-
tector heralds the photon-subtracted state. To conceptually
understand the process, we can trace back to the origin of the
subtracted photon. Going back to the stage that implements
the losses, we see that the photon can originate either from the
initial state ρ or from the other input port of the beamsplitter
that inserts the vacuum component. However, the vacuum |0〉
is an eigenstate of the number operator that contains exactly
zero photons. Hence, the subtracted photon cannot possibly
originate from the |0〉 input in the loss beamsplitter and
must, therefore, stem from the state ρ. This means that it is
equivalent to subtracting a photon prior to the losses. Note,
furthermore, that photon subtraction is a probabilistic opera-
tion, with a higher success probability before the losses than
after. Because the final state is conditioned on a successful
detection event (hence the need to renormalize the state after
applying the annihilation operator), this difference in success
probability plays no role in the final state. This conceptually
explains Fig. 2 in agreement with the algebraic derivation of
Sec. IV A

In the multimode scenario, a significant layer of complex-
ity is added when the losses and the photon subtraction can all
act in different mode bases. In Sec. III C, we explained how
the beamsplitter point of view can be adopted when additional
basis changes are included as shown in Fig. 1. A similar type
of logic can be applied to photon subtraction in a general mode
g ∈ N (R2m) as shown in the inset of Fig. 3: the annihilation
operator a(g) can then be represented as a basis change O1
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ρ O1 O2

O1 OT
1a(g) =

OT
l

FIG. 3. Schematic representation of mode-dependent losses (see
also Fig. 1) acting on a photon-subtracted state, where we have de-
fined O2 = OT

1 Ol . Inset: Schematic representation of mode-selective
photon subtraction.

which translates the mode basis in which the multimode state
ρ is expressed to a mode basis that contains the subtraction
mode g as a basis vector. The second mode basis change OT

1
is required to revert the photon-subtracted state to the initial
mode basis. Note that O1 is certainly not unique, because there
are many mode bases that contain g.

Mode-dependent losses and mode-dependent photon sub-
traction are combined in Fig. 3. Of particular interest is the
appearance of the mode basis change O2 = OT

1 Ol , which
generally is not a trivial transformation. This transformation
makes it impossible to repeat the argument that was used in
Fig. 2 for commuting losses and photon subtraction. However,
when the losses and photon subtraction act in the same mode
basis, we find that O2 = 1. In that scenario, the logic of Fig. 2
holds, and the losses commute with the photon subtraction.

These results are conceptually interesting, but for a more
quantitative understanding we must understand the action of
the loss channel on ρ, and we must be able to calculate the
multimode photon-subtracted state. Both of these aspects are
not to be taken for granted, and therefore we focus on the
specific case of single-photon subtraction from a Gaussian
state in the following section.

V. SINGLE-PHOTON-SUBTRACTED GAUSSIAN STATES

A. General results

In this section, we focus on the effect of losses on a
Gaussian state ρG with a single photon subtracted from it.
As we mentioned in Sec. III B, Gaussian states are fully
characterized by the expectation values and pair correlations
of quadrature measurements. Here, we will assume that the
state is not displaced, such that tr[Q( f )ρG] = 0 for all f ∈
N (R2m), with the quadrature operator Q( f ) as defined in
(2). This implies that the state is fully characterized by its
covariance matrix V that captures all the pair correlations.

Photon subtraction will render the state non-Gaussian,
such that a covariance matrix alone is no longer sufficient
to describe the photon-subtracted state. In this context, it is
often convenient to use the Wigner function as general state
representation [53,54]. In the case of a nondisplaced Gaussian,

we can write the Wigner function as

WG(β ) = e− 1
2 (β,V −1β )

(2π )n
√

det V
, (34)

where β ∈ R2m is an arbitrary point in the optical phase space.
In the case of Gaussian states, the Wigner function can be
interpreted as a joint probability distribution for the outcomes
of quadrature measurements. In general, this interpretation
does not hold since the Wigner function can take negative
values. Exactly this behavior can be induced through photon
subtraction.

When a single photon is subtracted from such a Gaussian
state ρG, we write the new state as

ρ− = a(g)ρGa†(g)

tr[a†(g)a(g)ρG]
. (35)

We showed in [30,31] that the Wigner function of ρ− can be
obtained analytically, and is given by

W−(β ) = 1
2 [(β,V −1AgV

−1β ) − tr{V −1Ag} + 2]WG(β ), (36)

where WG is given by (34), and

Ag = 2
(V − 1)(Pg + PJg)(V − 1)

tr{(V − 1)(Pg + PJg)} . (37)

The matrix Ag is a rank-2 matrix, which is narrowly related to
the quadrature correlations in the photon-subtracted state.

With (32), we find that for our loss model the photon-
subtracted state is changed according to

��
ξ (ρ−) = a(g̃)��

ξ (ρG)a†(g̃)

tr[a†(g̃)a(g̃)��
ξ (ρG)]

, (38)

where g̃ = exp(ξD)g/‖ exp(ξD)g‖. The Wigner function of
this state can then directly be obtained as

W ξ
− (β ) = 1

2

[(
β,V −1

ξ Aξ
g̃V −1

ξ β
) − tr

{
V −1

ξ Aξ
g̃

} + 2
]
W ξ

G (β ),

(39)

where Vξ is given by (18), and W ξ
G is the Wigner function of

the Gaussian state upon which the loss channel has acted:

W ξ
G (β ) = e− 1

2

(
β,V −1

ξ β

)
(2π )n

√
det Vξ

. (40)

Furthermore, the non-Gaussian features are induced by the
matrix

Aξ
g̃ = 2

(Vξ − 1)(Pg̃ + PJg̃)(Vξ − 1)

tr{(Vξ − 1)(Pg̃ + PJg̃)} . (41)

It can be more convenient to recast the expression for Aξ
g̃ .

When we combine (Vξ − 1) = e−ξD(V − 1)e−ξD with g̃ =
exp(ξD)g/‖ exp(ξD)g‖, we find that we can rewrite

Aξ
g̃ = e−ξDAge−ξD, (42)

which transforms the Wigner function of the photon-
subtracted state in a lossy channel to the more insightful
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expression

W ξ
− (β ) = 1

2

[(
β,V −1

ξ e−ξDAge−ξDV −1
ξ β

)
− tr

{
V −1

ξ e−ξDAge−ξD
} + 2

]
x × W ξ

G (β ). (43)

Because all the non-Gaussian features are induced by
exp(−ξD)Ag exp(−ξD), we clearly see that these features
vanish for increasing ξ . In particular, we find that for the
limit ξ → ∞ the state converges to the vacuum (assuming that
there are no decoherence free subspaces, which is equivalent
to demanding that D is invertible).

We can use the same reasoning as in [30,31] to obtain
a more strict condition for the existence of negative values
of the Wigner function. Due to the positivity of the matrix
V −1

ξ e−ξDAge−ξDV −1
ξ , we find the necessary and sufficient

condition

tr
{
V −1

ξ e−ξDAge−ξD
}

> 2. (44)

This condition can be rewritten as(
g, eξDV −1

ξ eξDg
) + (

Jg, eξDV −1
ξ eξDJg

)
> (g, e2ξDg) + (Jg, e2ξDJg). (45)

This clearly shows that there is a loss threshold for the
negativity of the Wigner function, and that it is reached very
quickly.

B. Examples

1. First example

We illustrate the usefulness of our loss model by means
of several examples. First, we study the impact of losses on
single-mode photon-subtracted states, which leads us to a
scenario that is similar to [42]. Typically, single-mode quan-
tum optics experiments aim at optimizing the purity of the
generated quantum states, such that a squeezed vacuum with
losses accurately captures the experimental reality. However,
in general there may also be thermal noise present in the mode
(e.g., when the mode is actually entangled to other modes). In
general, we can always tune the phase reference for the phase
and amplitude quadratures such that the covariance matrix of
a Gaussian state is given by

V =
(

ns 0
0 ns−1

)
, (46)

where s describes squeezing and n describes the thermal noise.
Here, we consider photon subtraction from such a state, and
study the effect of a subsequent loss channel, governed by
parameter ξ .

Note that in the single-mode regime the loss model (39) is
considerably simplified: we find that D = 1, such that

Vξ = 1 + e−2ξ (V − 1), (47)

Aξ
g̃ = e−2ξ Ag. (48)

Losses generally have a detrimental effect on the negativity
of the Wigner function, which can directly be traced back to
(48). The effect of losses on the state’s Wigner function (39) as
evaluated in the origin of phase space is shown in Fig. 4. The
top panel shows the effect of losses on a photon-subtracted

n = 1.2

n = 1

FIG. 4. Value of a single-mode Wigner function in the origin of
phase space as a function of the strength of the losses, probed by
exp(−2ξ ) in (39). Different values of squeezing are explored (see
legend) for photon subtraction from both a pure state with n = 1 in
(46) and a noisy state with n = 1.2. The highlighted area indicates a
negative value for the Wigner function.

squeezed vacuum, i.e., n = 1. We find that, independent of the
amount of squeezing, the Wigner function is positive when
e−2ξ � 1/2. On the other hand, for all ξ with e−2ξ > 1/2,
we find that the Wigner function does reach negative values.
In other words, the the negativity of the Wigner function
vanishes at exactly 50% loss. These observations are in perfect
agreement with existing literature [42]. Furthermore, higher
squeezing values are seen to be more sensitive to noise, as the
minimal value of the Wigner function W (0, 0) increases faster
with the losses.

When setting n > 1 in (46), as in the bottom panel in Fig. 4,
we still find that the Wigner function is positive for e−2ξ �
1/2. The origin of this effect can be seen from (47): whenever
e−2ξ � 1/2, we find that more than half of the state is made
up of vacuum. However, due to the additional thermal noise, it
is no longer true that smaller amounts of noise automatically
lead to nonpositive Wigner functions. In particular, we now
find that for a fixed value of thermal noise n the Wigner
functions of photon-subtracted states with more squeezing are
more robust to losses. Hence, this is in line with the findings
in [30], where we showed the interplay between thermal
noise and squeezing. A thermal state needs to be sufficiently
squeezed for the photon subtraction to induce negativity in the
Wigner function. Moreover, in the single-mode case, g = g̃ in
(38), such that the losses and the photon subtraction commute,
and the behavior of the lossy photon-subtracted state can be
understood from the structure (47).
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ξ = 0 ξ = 1 ξ = 2

Subtraction before and a�er loss

Subtraction Single-mode loss

1

2

3
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2
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3

4

FIG. 5. Graph state (50) of four vertices (modes), with a photon subtracted in the mode associated with the red vertex (inset), probed for
different degrees ξ of losses. The single-mode reduced Wigner function is shown for each vertex k. The minimal excess kurtosis (51) in each
vertex is represented by the color code. Losses (53) act on a single vertex of the graph, as indicated in the inset (see main text for details). All
modes in the initial squeezed vacuum V0 are equally squeezed (i.e., s1 = · · · = sm) at 10 dB.

2. Second example

The situation becomes considerably more interesting when
multimode states and mode-dependent losses are considered.
We recently showed that photon subtraction from an entangled
state can affect multiple modes, which can be nicely illus-
trated by studying photon subtraction from CV graph states
[55]. In this second example, we will investigate how losses
affect these states, in particular when these losses are mode
dependent.

First, let us present a brief introduction to CV graph states.
To construct a graph state, we follow the recipe of [18],
where these states are constructed by applying a network
of CZ gates to a multimode squeezed vacuum with infinite
squeezing. In more realistic setups, one can make do with a
finite amount of squeezing [12,14,15,56–58]. Here, we follow
the formalism of [59] to describe graph states with finite
squeezing. In particular, we start from an initial multimode
squeezed vacuum with a covariance matrix

V0 = diag
(
s1, . . . , sm, s−1

1 , . . . , s−1
m

)
, (49)

upon which we act with a series of CZ gates, defined by the
unitary operation ĈZ = exp(ix̂ix̂ j ) when it is applied on modes
with labels i and j. Because both the initial state and the CZ

gate are Gaussian, we can describe the graph state fully on the
level of its covariance matrix V , which is constructed as

V = GtV0G, with G =
(
1 A
0 1

)
, (50)

where G is the symplectic transformation that describes the
application of the CZ gates, as prescribed by the graph’s
adjacency matrix A: when the component Ai j = 1, the modes
i and j are entangled by a CZ gate. By virtue of the Bloch-
Messiah decomposition [60], these states can be experimen-
tally generated starting from a set of m independent squeezed
modes upon which a change of mode basis is applied. This
procedure eliminates the need of inline squeezing to imple-
ment the CZ gates, and moves all the necessary squeezing

resources to the initial state. With an adequate squeezing spec-
trum, the graph states that are obtained by applying passive
linear optics to a set of squeezed modes can be completely
equivalent to those described in (50).

Photon subtraction from such states can, again, be de-
scribed through Eq. (36), the consequences of which are ana-
lyzed in [55] and experimentally realized in [29]. In particular,
we highlighted that the spread of non-Gaussian features can
be understood via the single-mode Wigner functions for each
one of the vertices. We follow the same strategy when we
study the impact of losses on these photon-subtracted graph
states. As these examples mainly serve as an illustration of
the most relevant phenomena, we can safely limit ourselves to
small systems: in the present case square graphs. The photon
is subtracted locally, in one of the vertices of the graph, and,
as shown in [29,55], this affects the square in its entirety.

In Figs. 5–8, we subtract the photon in the leftmost vertex.
The case where ξ = 0 corresponds to the scenario in the
absence of losses, where we clearly see that non-Gaussian
features are present in all single-mode Wigner functions.
However, it is remarkable that these features are most pro-
nounced in the vertex where the photon is subtracted, and in
its next-to-nearest neighbor. The colors of the different nodes
of the graph indicate the minimal excess kurtosis κmin( f ) in
the mode, as given by

κmin( f ) = min
θ∈[0,2π]

tr[Q( fθ )4��
ξ (ρ−)]

tr[Q( fθ )2��
ξ (ρ−)]2

− 3 (51)

where fθ = cos(θ ) f + sin(θ )J f . The minimal excess kurtosis
serves as a measure for non-Gaussianity: for Gaussian states it
is exactly zero. Values κmin( f ) > 0 indicate that the tail of the
distribution is heavier than a Gaussian distribution, whereas
κmin( f ) < 0 implies a sub-Gaussian tail [61]. As such, the
detection of a nonzero kurtosis is a sufficient condition to
probe the non-Gaussianity of the state. However, a priori
there are non-Gaussian states with a vanishing kurtosis, which
means that it is not a necessary condition. We showed [30]
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that photon-subtracted Gaussian states have a negative excess
kurtosis for at least one quadrature Q( f ), which is why, to
assess the most non-Gaussian feature, we probe the phase that
leads to the smallest, i.e., most negative, value for the kurtosis.
In particular, we find that

κmin( f ) = min
θ∈[0,2π]

−3
(

fθ , Aξ
g fθ

)2

[(
fθ , Aξ

g̃ fθ
) + (

fθ ,Vξ fθ
)]2 , (52)

making the kurtosis a direct probe of the matrix Aξ
g̃ which gov-

erns all the non-Gaussian features of the photon-subtracted
state.

Lower values for the kurtosis are indicated by darker
colours in the nodes of the graphs of Figs. 5–8. The middle
and rightmost graphs in these figures show the impact of a
loss channel, characterized by parameters ξ = 1 and 2. The
different figures represent different exemplary types of losses.
We use these examples to build an understanding for when
the loss channel and the photon subtraction commute. Note
that if the losses act before the photon subtraction we can
simply replace V with Vξ in (36) and (37) to include the losses
in the Gaussian state from which the photon is subsequently
subtracted.

In Fig. 5, we observe what happens when there is only
a single lossy mode, being the one associated to the vertex
where the photon was subtracted. We see that, independent
of the value of ξ , only the local Wigner function for the
vertex of subtraction is infected by the loss. The remainder of
the state is completely unchanged. When we consider photon
subtraction prior to the losses, this observation makes sense:
due to the no-signalling theorem we cannot alter parts of an
entangled state by performing local operations (such as local
losses) on different parts of the state.

To understand the interplay of losses and photon subtrac-
tion, it is instructive to use (14) and write

eξD =
m∑

j=1

eξ
γ j
2 (Phj + PJhj ). (53)

In the case scenario of Fig. 5, we can treat the problem in the
basis of graph vertices and set h j = (0, . . . , 0, 1, 0, . . . , 0) ≡
e j ∈ N (R2m), where the 1 occurs on the jth position. Without
loss of generality, we set γ j = δ j1, with the subtraction mode
g = d1, the first vertex of the graph (which we henceforth
refer to as “vertex 1”). Hence, we straightforwardly see that
g̃ = g in (38), which implies that losses and photon subtraction
commute. This can be better understood in the light of Fig. 3.
Because the losses and the photon subtraction occur in the
same mode, we find ourselves in a scenario where O2 = 1.
For the mode of subtraction, this implies that we can invoke
the equivalence shown in Fig. 2: the losses effectively mix
the state with a certain degree of vacuum, the subsequent
subtraction of a photon can only originate from the initial
state, and it cannot originate from the vacuum that it was
mixed in. The losses reduce the probability of subtracting a
photon, but since a photon-subtracted state is conditioned on
a successful subtraction this change in success probability is
irrelevant for the final state. Thus, when losses and photon
subtraction occur in the same mode, it is conceptually clear
that they should commute.

In Fig. 6, we show the scenario of uniform loss in all the
modes. This implies that D is a multiple of the unit matrix,
and thus there is no preferred basis to describe the losses.
To be consistent with the other cases, we set D = 1/2. This
choice makes it obvious that the losses and photon subtraction
commute.

As there is no preferred basis, we can again choose to
treat the problem in the vertex basis to gain physical in-
sight. We can interpret the losses as a combination of single-
mode loss channels, which is essentially what we mathemat-
ically achieve through (53). In this sense, we just repeat the

ξ = 0 ξ = 1 ξ = 2

Subtraction before and a�er loss

Subtraction Uniform loss

1 1 1

2 2 2

3 3 3

4 4 4

FIG. 6. Graph state (50) of four vertices (modes), with a photon subtracted in the mode associated with the red vertex (inset), probed for
different degrees ξ of losses. The single-mode reduced Wigner function is shown for each vertex k. The minimal excess kurtosis (51) in each
vertex is represented by the color code. Losses (53) act in a uniform way on all vertices, as indicated in the inset (see main text for details). All
modes in the initial squeezed vacuum V0 are equally squeezed (i.e., s1 = · · · = sm) at 10 dB.
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FIG. 7. Graph state (50) of four vertices (modes), with a photon subtracted in the mode associated with the red vertex (inset), probed for
different degrees ξ of losses. The single-mode reduced Wigner function is shown for each vertex k. The minimal excess kurtosis (51) in each
vertex is represented by the color code. Losses (53) act on a single mode that is a superposition of several vertices, as indicated in the inset
(see main text for details). All modes in the initial squeezed vacuum V0 are equally squeezed (i.e., s1 = · · · = sm) at 10 dB.

scenario of Fig. 5 for each mode. Note that, indeed, ver-
tex 1 behaves exactly the same in Figs. 5 and 6. Invok-
ing the no-signalling theorem again implies that the loss in
one vertex cannot affect anything that happens in the other
vertices. Because photon subtraction involves postselection,
it requires an action on all modes (the entire state is con-
ditioned on the outcome of a local measurement). Hence,
the argument based on no-signalling cannot be applied to
mode-selective photon subtraction [55]. However, in this case,
our argument of Sec. IV B shows that, locally, each mode
is only affected by the local loss, even when the photon
subtraction is executed after the losses. As a consequence,
we see a homogenous decay on the non-Gaussian features in
each mode, as characterized by the minimal excess kurtosis
(51).

There is no reason why the modes of the loss channel must
coincide with the graph’s vertices, and, thus, we investigate
a case of a nonlocal loss channel in Fig. 7. As in Fig. 5, we
consider only a single-mode loss, but this time the mode is
given by a balanced superposition of vertices 2, 3, and 4, i.e.,
d = (e2 + e3 + e4)/

√
3, such that d does not overlap with the

subtraction mode g. This implies that D = (Pd + PJd )/2, and
from the spectral decomposition (53) we find that g = g̃ in
(38). The losses and the photon subtraction, again, commute,
and no-signalling tells us that vertex 1, where the photon
is subtracted, remains unaffected by loss. The remaining
vertices, however, display a different behavior than what we
saw before in Fig. 6.

The most intriguing behavior is expected to be found
when, in addition, the losses act in a mode basis that has a
nontrivial overlap with the mode of subtraction. This scenario
is presented in Fig. 8, where the losses act in a single mode,
given by d = (e1 + e4)/

√
2. Again, this implies that we can

set D = (Pd + PJd )/2, and the spectral decomposition (53)
dictates that g = g̃ in (29) and (38). This implies that we can
interpret the photon-subtracted state after losses as photon
subtraction in mode g̃ from a Gaussian state with covariance

matrix Vξ , with

g̃ = eξ/2 + 1√
2(1 + eξ )

e1 + eξ/2 − 1√
2(1 + eξ )

e4. (54)

We clearly see that the mode g̃ changes with ξ and that,
indeed, g̃ = g for ξ = 0, whereas g̃ ≈ d when ξ is large. This
implies that for weak losses the state still looks similar to the
original photon-subtracted state, whereas for strong losses it
seems as if the photon was subtracted from the mode d in
which the losses are taking place. As a consequence, the loss
channel does not commute with the photon subtraction, as
shown in Fig. 8. In particular, we see that the no-signalling
condition implies that vertices 2 and 3 remain unaffected
when the losses occur after the photon subtraction.

However, the scenario changes when the losses act on the
Gaussian graph state prior to photon subtraction. As a most
profound difference, we note at the bottom of Fig. 8 that
the minimal excess kurtosis of vertices 2 and 3 is affected
when the losses act prior to the photon subtraction, in strong
contrast to the case where the photon subtraction is executed
first. Furthermore, we note that the non-Gaussian features of
vertex 4 vanish faster in the scenario where the losses act first.
This difference is a direct consequence of the fact that we are
now considering a case where O2 = 1 in the representation of
Fig. 3.

It should be emphasized that it is in practice important
to understand whether or not losses commute with photon
subtraction. In typical continuous variable experiments, one
can typically choose to incorporate the effect of losses either
at the level of the state or at the level of the detector. When
performing experiments with a Gaussian state, it is therefore
common to assume that the homodyne detection is ideal and
to characterize the state by a covariance matrix V that also
contains the effect of losses. It is then tempting to model the
subtraction of a photon from such a state by plugging this
covariance matrix V , together with the subtraction mode g,
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FIG. 8. Graph state (50) of four vertices (modes), with a photon subtracted in the mode associated with the red vertex (inset), probed for
different degrees ξ of losses. The single-mode reduced Wigner function is shown for each vertex k. The minimal excess kurtosis (51) in each
vertex is represented by the color code. Losses (53) act on a single mode that is a superposition of several vertices, as indicated in the inset
(see main text for details). Losses and photon subtraction do not commute, hence we show both scenarios: subtraction prior to losses (top) and
losses prior to subtraction (bottom). All modes in the initial squeezed vacuum V0 are equally squeezed (i.e., s1 = · · · = sm) at 10 dB.

into (36). However, our results show that this type of modeling
is incorrect; the losses that occurred at the detection stages
do not commute with photon subtraction, and therefore they
should not be included in that covariance matrix V from
which the photon is subtracted. Our results show that it is still
possible to use the lossy covariance matrix V to model the
experiment, but, to get consistent results, one should use g̃ as
the subtraction mode in the model.

Multimode quantum optics experiments are prone to mode-
dependent losses that occur at the homodyne detection stage,
for example, due to alignment problems or mode mismatch.
These effects can vary considerably for the different modes in
the chosen mode basis. Our results highlight the importance
of understanding and characterizing the losses at the detection
stage. With such a characterization, our present results can
then be used to reverse engineer the settings of a photon
subtractor. When one first characterizes that the Gaussian state
is given by the covariance matrix V (putting all the losses on
the level of the state), one can then subtract a photon in mode
g̃ from this state by tuning the mode in the photon subtractor
to g. We note that this is a way to even improve the agree-
ment between theory and experiment in experiments such
as [29].

VI. CONCLUSIONS AND OUTLOOK

In summary, we have used the framework of open quantum
systems and Lindblad equations to develop a model that de-
scribes losses from photon-subtracted quantum states of light.
As a key result, we find in Eq. (32) that a loss channel maps
an n-photon-subtracted state into a new n-photon-subtracted
state. In general, the modes of subtraction change due to the
losses as described by Eq. (32). Furthermore, we show that
the obtained results are equivalent to alternative models that
describe losses in terms of a beamsplitter that mixes the state
with a certain amount of vacuum.

The detrimental effect of the losses is illustrated in
Eqs. (39) and (42) on the level of the Wigner function of a
single-photon-subtracted Gaussian state. These results lead us
to inequality (45), that serves as a general condition for the
existence of negative values of the Wigner function. In Fig. 4,
the negativity of the Wigner function is probed for a single-
mode example, which clearly shows that losses ultimately
make the Wigner function positive.

In multimode scenarios, losses can be mode dependent.
This can lead to a considerable change in the multimode
structure of the non-Gaussian features in the state. To illus-
trate these multimode features, we consider photon-subtracted
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continuous variable graph states as an example in Figs. 5–7.
In contrast to the single-mode scenario, we find that losses do
not necessarily commute with photon subtraction. This effect
is confirmed in the example shown in Fig. 7, and emphasizes
the importance of knowing where losses occur in experimental
setups.

This paper describes in very general terms how Gaussian
losses act on photon-subtracted states. In this sense,
these results are indispensable to interpret the details of
state-of-the-art multimode photon subtraction experiments
[28,29]. Nevertheless, the outcomes of this paper also offer
interesting opportunities for the engineering of quantum
states and measurements. Indeed, a thorough understanding
of the losses in the system can help to identify the best modes
to subtract a photon and let the non-Gaussian properties
survive as long as possible. Furthermore, the understanding
of how the modal structure of the photon subtraction changes
due to the losses can be used to develop an optimal homodyne
measurement setup to extract the non-Gaussian features
of the state. The homodyne detector itself is an important
source of mode-dependent loss, which occurs after the photon
subtraction. Our presented result shows that it is inaccurate to
include these losses in the initial Gaussian state, even though
this is common practice in most continuous variable quantum
optics experiments.

A similar treatment for different sources of decoherence,
such as thermal noise, and other multimode non-Gaussian
states, such as photon-added states, is an important next step.
However, identity (26), which was crucial in the analytical
treatment of our current model, holds only for losses acting
on photon-subtracted states. To treat other states or other noise
channels, one would have to derive a new identity, based on a
modified version of (B5).

On a broader level, the results on graph states in Figs. 5–
7 may also be relevant for quantum networking and quan-
tum communication. In particular, one may consider ex-
ploiting mode-dependent losses to transfer non-Gaussian fea-
tures from one mode to another in a cleverly chosen mode
basis.

ACKNOWLEDGMENTS

This work is supported by French National Research
Agency projects COMB and SPOCQ. M.W. is funded through
Research Fellowship No. WA 3969/2-1 from the German
Research Foundation (Deutsche Forschungsgemeinschaft).
Y.-S.R. acknowledges support from the European Commis-
sion through Marie Skłodowska-Curie actions (Grant No.
708201) and from a National Research Foundation of Korea
grant funded by the Korea government Ministry of Science
and ICT (Grant No. NRF-2019R1C1C1005196). N.T. ac-
knowledges the financial support of the Institut Universitaire
de France.

APPENDIX A: THE INTERPRETATION OF OPERATORS
a†(X f ) AND a(X f ).

Throughout this paper, we regularly use expression of the
type a†(X f ) and a(X f ) for f ∈ N (R2m) and X , a 2m ×

2m matrix. These expressions may be confusing because in
general ‖X f ‖ = 1. Let us denote, for simplicity, that X f =
α ∈ R2m. Hence, one must understand how to interpret a†(α)
[the interpretation of a(α) is analogous].

Let us start by considering an arbitrary mode basis
{u1(r, t ), . . . , um(r, t )} of our system. For every one of the
modes, we have an associated creation operator a†

j that creates
a photon in the jth mode. Moreover, to these modes, we
associate a symplectic basis {e1, . . . , em, Je1, . . . Jem} of the
phase space R2m. This basis is associated to the modes in
the sense that a†(e j ) = a†

j , and applying (4) implies that

a†(Je j ) = ia†
j . We can now write

α =
m∑

j=1

[(e j, α)1 + (Je j, α)J] e j . (A1)

We can then use the linearity of a† (which follows from the
linearity of the quadrature operator Q) to find that

a†(α) =
m∑

j=1

[(e j, α) + i(Je j, α)] a†
j , (A2)

and we can then insert that α = X f , where f ∈ N (R2m) can
be associated to some mode, and obtain

a†(X f ) =
m∑

j=1

[(e j, X f ) + i(Je j, X f )] a†
j . (A3)

An alternative way of understanding a†(X f ) is by defining
a new mode, associated with f̃ = X f /‖X f ‖ ∈ N (R2m). One
then finds that a†(X f ) = ‖X f ‖a†( f̃ ). When we compare
a†( f ) to a†(X f ), we note that the action of the matrix X
both changes the mode and rescales the operator. When we
consider losses in the Heisenberg picture, it is common that
‖X f ‖ � 1, such that we effectively see a decay in photon
number, coherences, and correlations.

APPENDIX B: DERIVATION OF (26)

Here we present two different derivations for the identity

a†(gn) . . . a†(g1)�ξ (x)a(g1) . . . a(gn)

= �ξ [a†(eξDgn) . . . a†(eξDg1)x a(eξDg1) . . . a(eξDgn)],

(26)

which lies at the heart of the derivation of the noise model.
The first derivation uses the structure of the map �ξ as
given by (13). The second approach that we sketch uses the
structure of the master equation (10) with Lindblad operators
(12).
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1. Derivation via the map �ξ

Let us first use (13) to show that

a†(gn) . . . a†(g1)�ξ [a†( f1) . . . a†( fr )a( fr+1) . . . a( fs)]a(g1) . . . a(gn)

= a†(gn) . . . a†(g1)a†(e−ξD f1) . . . a†(e−ξD fr )a(e−ξD fr+1) . . . a(e−ξD fs)a(g1) . . . a(gn)

= �ξ [a†(eξDgn) . . . a†(eξDg1)a†( f1) . . . a†( fr )a( fr+1) . . . a( fs)a(eξDg1) . . . a(eξDgn)],

where we used that e−ξD is invertible and has inverse
eξD.

Because the creation and annihilation operators are genera-
tors of the algebra4 of observables A, we can approximate any
observable x ∈ A by a polynomial of creation and annihilation
operators. Through application of the canonical commutation
relations, we can then cast all terms in this polynomial in
normal order, to obtain the series expansion

x =
∞∑

n1,...,nm=0

∞∑
n′

1,...,n
′
m=0

X n1...nm

n′
1...n

′
m

(a†
1)n1 . . . (a†

m)nm (am)n′
1 . . .

× (a1)n′
m , (B1)

where a†
1, . . . , a†

m and a1, . . . , am are creation and annihilation
operators, respectively, for a randomly chosen mode basis,
and X n1...nm

n′
1...n

′
m

∈ C are the coefficients of the polynomial which
represents x ∈ A. Hence, the result in (13) can be used
to describe the full action of the channel on an arbitrary
observable x.

When we use the linearity of �ξ , it follows that for all
x ∈ A

a†(gn) . . . a†(g1)�ξ (x)a(g1) . . . a(gn)

= �ξ [a†(eξDgn) . . . a†(eξDg1)x a(eξDg1) . . . a(eξDgn)].

(26)

2. Derivation via the master equation

One may argue that some of the steps in the previous
derivation lack elegance, even though the derivation is rela-

4Note that, more accurately, they generate any operator in the Fock
representation of the algebra.

tively easy. A slightly more appealing alternative can be ob-
tained by considering the master equation (10) with Lindblad
operators (12):

d

dξ
�ξ (x) = L(x), x ∈ A, (B2)

with

L(x) =
∑

j

γ j

[
a†(h j )xa(h j ) − 1

2
{a†(h j )a(h j ), x}

]
. (B3)

We can than use the canonical commutation relation

[a( f1), a†( f2)] = ( f1, f2) + i( f1, J f2), (B4)

to obtain that

a†(g)L(x)a(g) = L[a†(g)x a(g)]

+ a†(Dg)x a(g) + a†(g)x a(Dg). (B5)

We can formally solve the master equation (B2) as �ξ =
exp(ξL), where the exponential of the superoperator is de-
fined in terms of a series expansion. Thus, we obtain that

a†(g)�ξ (x)a(g) =
∞∑

n=0

ξ n

n!
a†(g)L ◦ · · · ◦ L︸ ︷︷ ︸

×n

(x)a(g), (B6)

where we can repeatedly apply (B5) and regroup the terms.
After some straightforward calculations, we find that for all
x ∈ A

a†(gn) . . . a†(g1)�ξ (x)a(g1) . . . a(gn)

= �ξ [a†(eξDgn) . . . a†(eξDg1)x a(eξDg1) . . . a(eξDgn)], (26)

as expected.
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