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Green’s-function formulation for studying the backaction cooling of a levitated nanosphere in an
arbitrary structure
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In this paper, we present a formulation based on the Green’s function to study the backaction cooling of a
levitated nanosphere in an arbitrary structure. This formulation has enabled us to study the dynamical backaction
effect and the possibility of cooling in the absence of a cavity or when the nanosphere is trapped outside a cavity
and excites a continuum of electromagnetic modes. We also investigate the roles of the Stokes and anti-Stokes
processes, separately, and show that the anti-Stokes process is not necessarily the sole cooling agent. This is in
sheer contrast with the intracavity cooling scenario.
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I. INTRODUCTION

The past decade has witnessed a growing interest in op-
tomechanical systems based on levitated nanoparticles [1–6].
This surge of interest is attributable to the fact that levitated
nanoparticles do not need mechanical support in ultrahigh
vacuum and thus actualize having mechanical resonance with
a high quality factor [1,2]. Numerous attempts have been
made to cool the center of mass motion of a levitated nanopar-
ticle down to microkelvin temperatures by applying active
optical feedback [7–10], or by using dynamical backaction
which is sometimes referred to as the passive cooling [1,2].
Ground-state cooling that might be thus achieved is of much
importance because it can enhance the sensitivity of force
measurements [11–15], facilitate the observation of quantum
behavior on macroscopic scale, and generate nonclassical
light-matter states [1–3]. To passively cool the motion of
submicron particles, high finesse cavities are usually needed
[1,2]. In such a case, an external tweezer can be employed to
trap the nanoparticle inside the cavity [2], or two driven modes
of the cavity can be used to trap and cool the motion of the
nanoparticle at the same time. This latter scheme is referred
to as the self-trapping scheme [1,16,17]. Recently, it has been
shown that use of the coupled cavities is advantageous to
cool the motion of nanoparticles in the resolved sideband
regime [18], and can provide ground state cooling in the
unresolved sideband regime [19]. Furthermore, cooling of
charged nanoparticles using a Paul trap has been recently
reported which thwarts instabilities that might occur in optical
traps at very low pressures [20,21].

Dynamics of cavity-assisted optomechanical systems are
conventionally studied by Hamiltonian formulation [1,16],
which is more undemanding when the nanoparticle interacts
predominantly with only a small number of discrete resonance
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modes within a high-quality cavity. Studying the dynamics of
the nanoparticle motion in the presence of a continuum of
electromagnetic modes in a cavityless structure or outside a
cavity becomes burdensome if one wishes to apply the con-
ventional Hamiltonian formulation. In such a case, it would be
more beneficial to employ the Green’s-function formulation
to study the dynamics of the trapped nanoparticle motion be-
cause the Green’s function encompasses the whole spectrum
of eigenmodes supported by the electromagnetic structure in
which the nanoparticle motion is to be cooled down. It is
worth noting that studying the static backaction effects on the
time-averaged force exerted upon Rayleigh particles has been
recently reported by using the Green’s-function formulation
[22].

In this paper, we present a formulation based on the
Green’s-function to study the dynamical effects of the elec-
tromagnetic backaction on the center-of-mass motion of a
levitated nanosphere. This formulation enables us to study
cooling of a levitated nanosphere in a cavityless structure or
outside a cavity. We apply the proposed formulation to study
cooling of a levitated nanosphere at the center of a spheri-
cal reflector using a monochromatic incident electromagnetic
field. The spherical reflector can be either an ideal mirror or
a high-quality cavity. We show that the optical cooling rate
depends strongly on the radius of the spherical reflector, and
cooling rates of up to 1 MHz are conceivable if the spherical
reflector forms a high-quality cavity. In sheer contrast to the
case of intracavity cooling in which the anti-Stokes process is
always responsible for the cooling, we show that under certain
circumstances the Stokes process might cool the nanosphere’s
motion.

The organization of this paper is as follows: In Sec. II the
mathematical formulation to model the dynamical backaction
effect based on the Green’s function is presented and the
cooling rate expressions are also derived. In Sec. III, as a
numerical example, we investigate the cooling of a levitated
nanosphere at the center of a spherical reflector. The conclu-
sions are made in Sec. IV.
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II. FORMULATION

To investigate the dynamics of the nanosphere’s motion
around its equilibrium position in the presence of a monochro-
matic incident electromagnetic field, we consider the position
of the nanosphere as

r′(t ) = rp + δr(t ), (1)

where rp is the equilibrium position of the nanosphere, and
δr(t ) is the small fluctuation of the nanosphere’s position
around rp.

The electric field at an arbitrary point r when the
nanosphere is at r′ can be expressed as

E (r, r′; t ) = 1
2 E(r, r′; t )e−iωLt + c.c., (2)

where ωL is the frequency of the incident electromagnetic
field, and E(r, r′; t ) is the complex amplitude of the electric
field, given by

E(r, r′; t ) = E0(r) +
∫ ↔

Gs(r, r′; t − t ′) · p(r′; t ′)eiωL (t−t ′ )dt ′.

(3)

Here, E0 is the electric field in the absence of the nanosphere.
The second term in the above equation is the scattered field
due to the radiation of the nanosphere which is referred to
as the backaction field. It should be noted that

↔
Gs is the

scattering Green’s function of the structure, and p is the
complex amplitude of the nanosphere’s equivalent electric
dipole moment which can be obtained from

p(r′; t ) = αE(r′, r′; t ), (4)

where α is the free space polarizability of the nanosphere,
given by

α = 4πε0R3
p

εp − 1

εp + 2
(5)

in which Rp and εp are the radius and relative permittivity
of the nanosphere, respectively. It is worth noting that the
validity of Eqs. (4) and (5) is subject to two approximations:
first, we neglect the impact of the nanosphere’s motion on
the free space polarizability of the nanosphere and second,
the dispersion of the nanosphere polarizability should be
insignificant. The former holds true because the optical time
scale is much shorter than the mechanical time scale and thus
the mechanical motion appears as nearly frozen to the optical
field. The latter remains valid because the radiation reaction is
usually negligible. [22].

Then, by linearizing the above expressions with respect to
δr, it can be easily shown that

E(r, r′; t ) � Ē(r, rp) + δE(r, r′; t ), (6)

where Ē(r, rp) is the averaged electric field seen by the
nanosphere, given by

Ē(r, rp) = E0(r) + ↔
Gs(r, rp; ωL ) · p(rp) (7)

and δE(r, r′; t ) is the linearized fluctuation of the electric field
due to the motion of the nanosphere, which can be written as

δE(r, r′; t ) = 1

2π

∫
δr(ω) · ↔

M(r, rp; ωL, ω)e−iωt dω. (8)

In this expression,

Mi j (r, rp; ωL, ω) = ∂ ′
i Gsjk (r, rp; ωL + ω)pk (rp)

+ Gsjk (r, rp; ωL + ω)αeffkl (rp; ωL + ω)

× [∂iE0l (rp) + ∂iGslm (rp, rp; ωL )pm(rp)

+ ∂ ′
i Gslm (rp, rp; ωL + ω)pm(rp)] (9)

is the optomechanical transfer function of the system, and
p(rp) = α

↔
eff (rp; ωL ) · E0(rp) is the averaged electric dipole

moment in which

α
↔

eff (rp; ω) = α[I
↔ − α

↔
Gs(rp, rp; ω)]−1 (10)

is the effective polarizability of the nanosphere [22]. Now
the backaction has an insignificant effect on trapping of the
nanosphere, i.e., Ē(r, rp) � E0(r), when ||α↔

Gs|| � 1, and E0

is sufficiently confined. In such a case, the optomechanical
transfer function can be further simplified to

Mi j (r, rp; ωL, ω) �α∂ ′
i Gsjk (r, rp; ωL + ω)E0k (rp)

+ αGsjk (r, rp; ωL + ω)∂iE0k (rp). (11)

It should be noted that even though we can neglect the
impact of the scattering Green’s function on the trapping of
the nanosphere, we cannot necessarily neglect its significant
effect on the optomechanical transfer function which can play
a significant role in cooling the nanosphere’s motion.

The mechanical motion of the nanosphere around its equi-
librium position is governed by

m
d2r′

dt2
= Fem − m�m

dr′

dt
+ ξ(t ), (12)

where

Fem = 1

2
Re

[
α

∑
k

Ek∇E∗
k

]
(13)

is the electromagnetic force exerted upon the nanosphere
under the rotating wave approximation [23]. Here, m is the
mass of the nanosphere, and �m is the mechanical damping
rate. Furthermore, ξ(t ) stands for the thermal noise whose
correlation is given by

〈ξi(t )ξ j (t
′)〉 = 2m�mkBT δi jδ(t − t ′), (14)

where δi j is the Kronecker delta function, kB is the Boltzmann
constant, and T is the ambient temperature [18]. Then, the
linearized equation of motion of the nanosphere can be written
as

m
d2

dt2
δr = 1

2
(δr · ∇)Re

[
α

∑
k

Ēk∇Ē∗
k

]

+ 1

2
Re

[
α

∑
k

(δEk∇Ē∗
k + Ēk∇δE∗

k )

]

− m�m
d

dt
δr + ξ (15)
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and thereby the mechanical response of the system is given by

[χ−1]i j = m
(
ω2

mi j
− ω2δi j − iω�mδi j

)
− 1

4α[M jk (rp, rp; ωL, ω)∂iĒ
∗
k +M∗

jk (rp, rp; ωL,−ω)∂iĒk]

− 1
4α[Ē∗

k ∂iM jk (rp, rp; ωL, ω)+Ēk∂iM∗
jk (rp, rp; ωL,−ω)],

(16)

where

ωmi j =
[

1

2m
Re

[
α∂ j

∑
k

Ēk∂iĒ
∗
k

]]1/2

(17)

is the tensor of the mechanical frequency. In the weak-
coupling regime, when the mechanical response of the system
can be approximated by a Lorentzian line shape, the optical
cooling rate tensor can be defined as

�opti j
= �Si j + �Ai j (18)

in which

�Si j = α

4mωmii

Im
[
Ēk∂iM∗

jk

(
rp, rp; ωL,−ωmii

)
+ M∗

jk

(
rp, rp; ωL,−ωmii

)
∂iĒk

]
(19)

and

�Ai j = α

4mωmii

Im
[
M jk

(
rp, rp; ωL, ωmii

)
∂iĒ

∗
k

+ Ē∗
k ∂iM jk

(
rp, rp; ωL, ωmii

)]
(20)

are the rates of the Stokes and anti-Stokes processes, respec-
tively.

First, we apply the proposed formulation to investigate the
cooling of a levitated nanosphere in a high-quality cavity.
We assume that the nanosphere is trapped by an external
tweezer at rp, and is cooled by a discrete resonant mode of
the cavity. Thus, the electric field inside the cavity can be
approximated by a single resonant mode E0 = Einu(r), where
Ein is the amplitude of the mode, and u(r) is its normalized
electric-field profile. The scattering Green’s function can then
be approximated by

Gs(r, r′; ω) = iω

2ε0Vm

u(r)u∗(r′)
κ
2 + i(ωc − ω)

, (21)

where ωc and κ are the resonance frequency and decay rate
of the resonant mode, respectively, and Vm is its mode volume
[22]. Hence, the Stokes and anti-Stokes rates are given by

�Si j = −�(
κ
2

)2 + (
� − ωmii

)2 ∂i|rp∂ j|rp, (22)

�Ai j = �(
κ
2

)2 + (
� + ωmii

)2 ∂i|rp∂ j|rp (23)

in which � = ωL − ωc is the detuning,  = |u(r)|2 is the
intensity profile of the resonant mode, and � = α2|Ein|2ωLκ

16mωmii ε0Vm
.

As expected, Eqs. (22) and (23) show that in the conven-
tional intracavity cooling scheme the Stokes and anti-Stokes
processes will indeed heat and cool the nanosphere’s motion,
respectively. However, the complexity of Eqs. (19) and (20)
begs the question of whether it is generally true that the

heating and cooling are caused by the Stokes and anti-Stokes
processes; respectively, particularly when there is a continuum
of electromagnetic modes at play. In the following, we present
cases in which the cooling of the nanosphere’s motion is
caused by the Stokes process.

III. NUMERICAL EXAMPLES

In this section, we apply the proposed formulation to
study the cooling of a levitated nanosphere at the center of a
spherical reflector. A fused silica nanosphere whose radius is
Rp = 100 nm, and has a relative permittivity of εp = 2.1 with
the mass density of ρm = 2201 kg m−3 is trapped by an optical
tweezer. The optical tweezer is an x-polarized Gaussian beam
which propagates along the y direction, has a beam waist
of w0 = 2λ0, and is of intensity I0. The wavelength of the
Gaussian beam is λ0 = 1064 nm, and its intensity is I0/w

2
0 =

2 W μm−4 which provides the trapping frequency of 352 kHz.
In accordance with Fig. 1, the trapping position is at the
center of either a single spherical mirror of radius R0 or two
concentric spherical mirrors whose radii are R0 and R0 + d . In
both scenarios, the central angle of the apparatus is θ0 = π/3.
It is worth noting that the reflectivity of the second scenario
is frequency selective because two concentric spherical reflec-
tors establish a resonator. This proves beneficial to the cooling
process even though the nanosphere is trapped outside of the
established cavity and thus does not follow the dynamics of
a nanosphere trapped inside a Fabry-Perot resonator whose
Stokes and anti-Stokes rates are given by Eqs. (22) and (23),
respectively.

In Fig. 1, the impact of the spherical reflector on the
trapping of the nanosphere is negligible, and the particle will
be trapped at the center of the Gaussian beam, i.e., rp = 0.
After some algebraic manipulations, it can be shown that in
the weak-coupling regime, the Stokes and anti-Stokes rates
can be simplified to

�Sij = 1

4mωmii

|α|2|E0x |2Im
[
∂i∂

′
jG

∗
sxx

(
ωL − ωmii

)]
(24)

and

�Aij = 1

4mωmii

|α|2|E0x |2Im
[
∂i∂

′
jGsxx

(
ωL + ωmii

)]
(25)

respectively. Now, using the physical optics approximation, it
can be easily shown that

∂i∂
′
jGsxx (ω) � iω5

8πε0c5
ρ(ω)e2iωR/c

× (0.126δxx + 0.181δyy + 0.419δzz ) (26)

for θ0 = π/3. In the above expression, ρ(ω) is the reflection
coefficient of the structure. It is clear that ρ(ω) = −1 when
the structure is made of a single spherical mirror, and ρ(ω) =
ρ0[1 − exp( 2iωd

c )]/[1 − ρ2
0 exp( 2iωd

c )] when it is made of two
concentric spherical reflectors. In this latter expression, ρ0

is the reflection coefficient of each reflector, and d is the
difference between the radii of the inner and outer spherical
reflectors. According to Eq. (26) it can be figured out that the
cooling rate tensor is diagonal, and its diagonal entries have
the same profile. Hence, in the following we just investigate
the cooling rates along the z direction, i.e., �zz.
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Figure 2(a) shows the optical cooling rate when the struc-
ture is made of a single spherical mirror in accordance with
Fig. 1(a). In this figure the radius of the spherical mirror is
R = Nλ0 + δR where N is an integer and δR determines the
phase of the scattering Green’s function. The cooling rate
at δR = 0.125λ0 can be as high as 3.7 kHz for N = 105. In
Fig. 2(b) the rates of the Stokes and anti-Stokes processes
are plotted separately. This figure shows that the anti-Stokes
process cools the nanosphere’s motion only when 0.125λ0 <

δR < 0.375λ0. Otherwise, and in sheer contrast to what is
expected, the Stokes process is responsible for the cooling.
It is worth noting that the cooling rate grows by increasing
N , and can reach 2.3 MHz when N � λm/2λ0 in which λm =
2πc/ωm is the mechanical wavelength. However, this is not
feasible because the spherical mirror would be extremely large
for such a scenario.

Figure 3 shows the optical cooling rate when the struc-
ture is made of two concentric reflectors in accordance

FIG. 1. Schematic of the proposed system. An optical tweezer
made of a Gaussian beam traps a nanosphere at the center of (a) a
single spherical mirror, (b) two concentric spherical reflectors.
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FIG. 2. (a) The optical cooling rate, and (b) the Stokes and anti-
Stokes rates vs δR for the case of spherical mirror for N = 105.

with Fig. 1(b). In this figure, ρ0 = 0.99996 and d = 1 cm
which provides a high-frequency selective reflection around
ω0/2π = 300 THz, and � = ω − ω0 is the detuning of
the drive frequency from ω0. This figure shows that the
nanosphere’s motion can be cooled at both negative and
positive frequency detuning depending on the value of δR.

FIG. 3. The optical cooling rate for the case of two concentric
spherical reflectors. This figure is separated into different regions: (I)
both Stokes and anti-Stokes processes are cooling; (II) both Stokes
and anti-Stokes processes are heating (III); Stokes is heating and anti-
Stokes is cooling; (IV) Stokes is cooling and anti-Stokes is heating.
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Furthermore, the contributions of the Stokes and anti-Stokes
processes in cooling or heating of the nanosphere’s motion
are looked into and four different regions are distinguished.
Interestingly, we can find conditions under which both the
Stokes and anti-Stokes processes cool the nanosphere’s mo-
tion, simultaneously, and it is worth noting that the optimum
cooling lies in this regime.

IV. CONCLUSION

In conclusion, we have presented a formulation for
studying the dynamical backaction cooling of a levitated

nanosphere based on the Green’s function of the structure.
This formulation enables us to study the center of mass cool-
ing of a levitated nanosphere in a cavityless structure, or in
the extra-cavity scenario. We have shown that this formulation
reaches the same results as the Hamiltonian formulation for
the case of the intracavity cooling. We have also shown that
the anti-Stokes process is not necessarily always the sole cool-
ing agent whenever the Green’s function of the structure can
no longer be approximated by retaining only one eigenmode
of the system, i.e., when the structure is cavityless or is excited
from outside of the cavity. In the latter case, the red detuning
of the structure is no longer a must.

[1] D. E. Chang, C. Regal, S. Papp, D. Wilson, J. Ye, O. Painter,
H. J. Kimble, and P. Zoller, Cavity opto-mechanics using an
optically levitated nanosphere, Proc. Natl. Acad. Sci. USA 107,
1005 (2010).

[2] O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, Toward
quantum superposition of living organisms, New J. Phys. 12,
033015 (2010).

[3] O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N.
Kiesel, M. Aspelmeyer, and J. I. Cirac, Optically levitating
dielectrics in the quantum regime: Theory and protocols, Phys.
Rev. A 83, 013803 (2011).

[4] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M.
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