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Generalized Hanbury Brown–Twiss effect and Stokes scintillations in the focal plane of a lens
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We explore the recently introduced concept of a generalized Hanbury Brown–Twiss (HBT) effect as applied
to the focal plane of a lens that is used to focus a random electromagnetic beam. We find that the strength of the
HBT correlation can be increased by the lens. Furthermore, the associated Stokes scintillations of the focused
field display a surprisingly complicated spatial behavior. We illustrate, using the sum rules for scintillations and
correlations, how focused fields can be tuned for different applications.
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I. INTRODUCTION

The Hanbury Brown–Twiss (HBT) effect, named after its
two discoverers, was originally applied to astronomy [1–3].
From the observed correlation of the intensity fluctuations
at two detectors the angular size of radio stars could be
determined. The original application assumed scalar fields
originating from distant sources. Since then, other researchers
have extended the HBT effect to vector fields and to observa-
tion points that are not necessarily in the far zone [4–13]. Re-
cently, a polarization-resolved version of the HBT effect was
studied in [14]. There it was found that the effect is just one
manifestation of many possible correlations of fluctuations
of the four Stokes parameters. In a similar vein, the concept
of scintillation was also extended using the more general
notion of Stokes fluctuations. This framework has since been
used to study these correlations in random electromagnetic
beams [15].

The classical treatment of the focusing of light assumes
a deterministic wave field [16]. However, when the field is
random, the intensity distribution [17,18], the state of coher-
ence [19,20], and the degree of polarization [21] in the focal
region are strongly affected. Moreover, the Stokes parameters,
which describe the state of polarization of the focused field,
then become stochastic quantities. The first Stokes parameter,
denoted by S0, describes the total intensity. That means that
the correlation of the fluctuations of S0 are identical to the
HBT effect. Likewise, the variance of S0 is equivalent to the
scintillation of the field. Extending the notion of fluctuation
correlations and variances to all four Stokes parameters, as

was done in [14], has led to the insight that (a) these corre-
lations can all be described by a single formula and (b) the
correlations and scintillations are not independent, but rather
satisfy certain sum rules. In this study we consider the HBT
effect and the scintillation, together with their generalized
versions, for the case of a random electromagnetic beam that
is focused by a thin paraxial lens. We find that the distribution
of the Stokes scintillations has a complicated structure and
show that whereas the HBT correlation can be increased
by the lens, the other Stokes fluctuation correlations can be
decreased. Also, it is illustrated how the sum rules can be
applied to design focused fields in which certain scintillations
or correlations are suppressed.

II. STOKES PARAMETERS AND THEIR FLUCTUATIONS

The state of polarization of an electromagnetic beam at
position r and at frequency ω can be characterized by the
four spectral Stokes parameters, denoted by Sn(r, ω), with
n = 0, 1, 2, 3. A more complete characterization of such a
beam, which also describes its two-point coherence proper-
ties, is provided by the cross-spectral density matrix, which is
defined as [22]

W (r1, r2, ω) =
(

Wxx Wxy

Wyx Wyy

)
, (1)

where all the matrix elements are functions of the same three
variables and are given by the expression

Wi j (r1, r2, ω) = 〈E∗
i (r1, ω)Ej (r2, ω)〉 (i, j = x, y). (2)
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The angular brackets indicate an average taken over an ensem-
ble of beam realizations. The expectation value of the Stokes
parameters can be expressed in terms of the cross-spectral
density matrix, evaluated at coincident points, as follows [22]:

〈S0(r, ω)〉 = Wxx(r, r, ω) + Wyy(r, r, ω), (3a)

〈S1(r, ω)〉 = Wxx(r, r, ω) − Wyy(r, r, ω), (3b)

〈S2(r, ω)〉 = Wxy(r, r, ω) + Wyx(r, r, ω), (3c)

〈S3(r, ω)〉 = i[Wyx(r, r, ω) − Wxy(r, r, ω)]. (3d)

The fluctuation of each Stokes parameter around its aver-
age value is defined as

�Sn(r, ω) = Sn(r, ω) − 〈Sn(r, ω)〉 (n = 0, 1, 2, 3), (4)

where Sn(r, ω) is the spectral Stokes parameter pertaining to a
single realization of the beam. The 4 × 4 matrix C(r1, r2, ω),
which describes all possible pairs of correlations between the
various Stokes fluctuations, is defined as [14]

Cnm(r1, r2, ω) ≡ 〈�Sn(r1, ω)�Sm(r2, ω)〉
with (n, m = 0, 1, 2, 3). (5)

Under the assumption that the source that generates the beam
is governed by Gaussian statistics, the 16 elements of this
Stokes fluctuation correlation matrix can be expressed in
terms of the cross-spectral density matrix as

Cnm(r1, r2, ω) =
∑

ab

∑
cd

σ n
abσ

m
cdWad (r1, r2, ω)W ∗

bc(r1, r2, ω)

with (a, b, c, d = x, y), (6)

where σ0 denotes the 2 × 2 identity matrix and the three Pauli
spin matrices are defined as

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
. (7)

For example, we find for the element C23 that

C23(r1, r2) =
∑

ab

∑
cd

σ 2
abσ

3
cdWad (r1, r2)W ∗

bc(r1, r2) (8)

= i[Wxx(r1, r2)W ∗
yy(r1, r2) + Wyx(r1, r2)W ∗

xy(r1, r2)]

− i[W ∗
xx(r1, r2)Wyy(r1, r2) + W ∗

yx(r1, r2)Wxy(r1, r2)] (9)

= −2 Im[Wxx(r1, r2)W ∗
yy(r1, r2) + Wyx(r1, r2)W ∗

xy(r1, r2)]
(10)

= 2 Im[W ∗
xx(r1, r2)Wyy(r1, r2) + Wxy(r1, r2)W ∗

yx(r1, r2)],
(11)

where for brevity the ω dependence of the various quantities
has been suppressed. Likewise, it is derived from Eq. (6) that
the HBT coefficient, which describes the correlation of the
total intensity fluctuation �S0 at two points, is given by the
expression

C00(r1, r2) = |Wxx(r1, r2)|2 + |Wxy(r1, r2)|2
+ |Wyx(r1, r2)|2 + |Wyy(r1, r2)|2. (12)

Because of the nature of the Pauli spin matrices, all elements
of the C matrix consist of a sum of four, rather than 16, terms.
We emphasize that while the correlations of the fluctuations

of the Stokes parameters are given by Eq. (6), the Stokes
parameters themselves are related by the inequality [22]

〈S1(r)〉2 + 〈S2(r)〉2 + 〈S3(r)〉2 � 〈S0(r)〉2. (13)

The equal sign holds only for the case of a fully polarized
beam.

When the two spatial arguments of the C matrix coincide,
it reduces to the Stokes scintillation matrix D, i.e.,

Dnm(r) ≡ Cnm(r, r). (14)

It is useful to introduce a normalized version of the C and the
D matrices, both indicated by the superscript N , by defining

CN
nm(r1, r2) = Cnm(r1, r2)

〈S0(r1)〉〈S0(r2)〉 , (15)

DN
nm(r) = Dnm(r)

〈S0(r)〉2
. (16)

It was shown in [14] that the trace of the normalized C matrix
has a clear physical meaning, namely,

3∑
n=0

CN
nn(r1, r2) = 2|η(r1, r2)|2. (17)

In Eq. (17) the quantity η(r1, r2) denotes the spectral degree
of coherence, which is defined as [22]

η(r1, r2) = Tr W(r1, r2)√
Tr W(r1, r1)Tr W(r2, r2)

. (18)

(Note that this definition of the spectral degree of coherence
differs from the one presented in [12]). The modulus of
η(r1, r2) is related to the visibility of the interference fringes
in Young’s experiment with the two pinholes located at r1 and
r2. Since η(r, r) = 1, it follows immediately that the diagonal
elements of the normalized D matrix are not independent but
are related by the sum rule

3∑
n=0

DN
nn(r) = 2. (19)

The first diagonal element DN
00(r) is the usual scintillation

coefficient or, equivalently, the square of the scintillation
index [23]. Under the assumption of Gaussian statistics, its
bounds are [24]

1
2 � DN

00(r) � 1. (20)

Bounds for CN
00 were discussed in [13].

We note that both the Stokes fluctuations and the Stokes
scintillations can be measured using a narrow-band spectral
filter together with a division-of-amplitude photopolarimeter
(see, for example, [25] and the references therein).

III. FOCUSING GAUSSIAN SCHELL-MODEL BEAMS

It is well known that a thin converging paraxial lens acts
like a Fourier transformer for scalar fields. To be more precise,
the field in the back focal plane is proportional to the Fourier
transform of the field in the front focal plane [26]. A similar
relation holds for the elements of the cross-spectral density
matrix of an electromagnetic beam that is focused by such a
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lens [27], i.e.,

W ( f )
i j (ρ1, ρ2) = 1

λ2 f 2
W̃ (in)

i j (−kρ1/ f , kρ2/ f ) (i, j = x, y).

(21)
Here the superscripts (in) and ( f ) indicate the front focal
plane and the back focal plane, respectively, and the vectors
ρ = (x, y) describe a position in a plane that is transverse
to the central axis, which is taken to be the z axis. Fur-
thermore, the wave number k = 2π/λ, with λ the free-space
wavelength, and f denotes the focal length. The spatial four-
dimensional Fourier transform is defined as

W̃ (in)
i j (p, q) =

∫∫ ∞

−∞
W (in)

i j (ρ′, ρ′′) exp[−i(p · ρ′

+ q · ρ′′)]d2ρ ′d2ρ ′′. (22)

Recently, Eq. (21) has been used to examine the effect of
focusing on the degree of polarization [21,27]. Here we will
apply it to the case of a partially coherent Gaussian Schell-
model (GSM) beam and study the fluctuations of the various
Stokes parameters and their correlations in the back focal
plane of a thin paraxial lens. We assume that a source that
generates a GSM beam is located in the front focal plane of
the lens. The elements of the cross-spectral density matrix,
which was introduced in Eq. (1), are then given by the
expression [22]

W (in)
i j (ρ′, ρ′′) = AiAjBi j exp

[
−

(
ρ ′2

4σ 2
i

+ ρ ′′2

4σ 2
j

)]

× exp

[
− (ρ′′ − ρ′)2

2δ2
i j

]
. (23)

Here Ai denotes the spectral amplitude of Ei and Bi j describes
the correlation of Ei and Ej . The symbols σi and δi j represent
effective spatial widths and coherence radii, respectively. The
parameters have to satisfy several constraints, i.e.,

Bxx = Byy = 1, (24)

Bxy = B∗
yx, (25)

Bxy = |Bxy|eiφ where |Bxy| � 1, φ ∈ R, (26)

δxy = δyx. (27)

Furthermore, the so-called realizability conditions are [28]√
δ2

xx + δ2
yy

2
� δxy �

√
δxxδyy

|Bxy| . (28)

This expression implies an upper bound for the modulus of
Bxy, namely,

|Bxy| � 2

δxx/δyy + δyy/δxx
. (29)

We restrict ourselves to the case that the two effective widths
are identical, i.e., σx = σy = σ . Then the source will generate
a beamlike field if [29]

1

4σ 2
+ 1

δ2
xx


 2π2

λ2
,

1

4σ 2
+ 1

δ2
yy


 2π2

λ2
. (30)

On changing to sum and difference variables

R+ = ρ′ + ρ′′

2
, (31)

R− = ρ′′ − ρ′, (32)

we find that the spatial Fourier transform of the cross-spectral
density matrix (23) is given by the expression

W̃ (in)
i j (p, q) = AiAjBi j

∫ ∞

−∞
exp[−R2

+/2σ 2] exp[−iR+ · (q + p)]d2R+
∫ ∞

−∞
exp

[ − R2
−/2�2

i j

]
exp[−iR− · (q − p)/2]d2R−

= 4π2AiAjBi jσ
2�2

i j exp[−σ 2(q + p)2/2] exp
[ − �2

i j (q − p)2
/

8
]
, (33)

where

1

�2
i j

= 1

δ2
i j

+ 1

4σ 2
. (34)

On substituting this into Eq. (21) we find that

W ( f )
i j (ρ1, ρ2) = 4π2AiAjBi jσ

2�2
i j

λ2 f 2
exp

[
−σ 2k2

2 f 2
(ρ2 − ρ1)2

]

× exp

[
−�2

i jk
2

8 f 2
(ρ1 + ρ2)2

]
. (35)

We will use this result in Eq. (6) to obtain expressions for
the correlation of the Stokes fluctuations and the Stokes
scintillations in the back focal plane.

IV. STOKES SCINTILLATIONS

For the four diagonal elements of the Stokes scintillation
matrix we have from Eq. (6) and the definition (14) that

D00(ρ) = |Wxx(ρ, ρ)|2 + |Wxy(ρ, ρ)|2
+ |Wyx(ρ, ρ)|2 + |Wyy(ρ, ρ)|2, (36a)

D11(ρ) = |Wxx(ρ, ρ)|2 − |Wxy(ρ, ρ)|2
− |Wyx(ρ, ρ)|2 + |Wyy(ρ, ρ)|2, (36b)

D22(ρ) = 2 Re[Wxx(ρ, ρ)W ∗
yy(ρ, ρ)

+Wxy(ρ, ρ)W ∗
yx(ρ, ρ)], (36c)

D33(ρ) = 2 Re[Wxx(ρ, ρ)W ∗
yy(ρ, ρ)

−Wxy(ρ, ρ)W ∗
yx(ρ, ρ)]. (36d)
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On making use of Eq. (23) in these expressions, while
setting σx = σy = σ , we find for the normalized Stokes scin-
tillations in the front focal plane of the lens the formulas

DN (in)
00 = A4

x + A4
y + 2A2

xA2
y |Bxy|2(

A2
x + A2

y

)2 , (37a)

DN (in)
11 = A4

x + A4
y − 2A2

xA2
y |Bxy|2(

A2
x + A2

y

)2 , (37b)

DN (in)
22 = 2A2

xA2
y[1 + |Bxy|2 cos(2φ)](

A2
x + A2

y

)2 , (37c)

DN (in)
33 = 2A2

xA2
y[1 − |Bxy|2 cos(2φ)](

A2
x + A2

y

)2 . (37d)

We note that these four expressions are all uniform, i.e.,
the four Stokes scintillations are independent of the transverse
position ρ. It is easily verified that they obey the sum rule
expressed by Eq. (19), namely,

3∑
n=0

DN (in)
nn = 2. (38)

The Stokes scintillations in the back focal plane can be
obtained by substituting from Eq. (35) into Eqs. (36a)–(36d).
This gives

DN ( f )
00 (ρ) = [

A4
x�

4
xx exp

(−�2
xxk2ρ2

/
f 2

) + A4
y�

4
yy

× exp
(−�2

yyk2ρ2
/

f 2
) + 2A2

xA2
y�

4
xy|Bxy|2

× exp
(−�2

xyk2ρ2/ f 2)]/�2(ρ), (39a)

DN ( f )
11 (ρ) = [

A4
x�

4
xx exp

(−�2
xxk2ρ2

/
f 2

) + A4
y�

4
yy

× exp
(−�2

yyk2ρ2
/

f 2
) − 2A2

xA2
y�

4
xy|Bxy|2

× exp
(−�2

xyk2ρ2/ f 2)]/�2(ρ), (39b)

DN ( f )
22 (ρ) = 2A2

xA2
y

{
�2

xx�
2
yy exp

[ − (
�2

xx + �2
yy

)
k2ρ2

/
2 f 2

]
+�4

xy|Bxy|2 cos(2φ)

× exp
(−�2

xyk2ρ2
/

f 2
)}/

�2(ρ), (39c)

DN ( f )
33 (ρ) = 2A2

xA2
y

{
�2

xx�
2
yy exp

[ − (
�2

xx + �2
yy

)
k2ρ2

/
2 f 2

]
−�4

xy|Bxy|2 cos(2φ)

× exp
(−�2

xyk2ρ2
/

f 2
)}/

�2(ρ), (39d)

where

�(ρ) = A2
x�

2
xx exp

(−�2
xxk2ρ2

/
2 f 2

)
+ A2

y�
2
yy exp

(−�2
yyk2ρ2

/
2 f 2

)
. (40)

These scintillation coefficients are, in contrast to their coun-
terparts in the front focal plane, not uniform but clearly
depend on the radial distance ρ. An example is shown in
Fig. 1. The four scintillation coefficients display strikingly
different behavior. For example, the “traditional” scintillation
coefficient DN ( f )

00 , represented by the solid blue curve, is larger
at the geometrical focus (ρ = 0) than its twin in the front
focal plane, DN (in)

00 (dashed blue curve), namely, 0.84 vs 0.61.

Dnn        (   )N ( f )

(   m)
5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

FIG. 1. The four scintillation coefficients DN ( f )
nn (ρ ) in the back

focal plane. The upper (at the left-hand side of the plot) solid curve
blue represents DN ( f )

00 (ρ ); the upper dashed blue line is its counterpart
in the front focal plane DN (in)

00 . The solid green curve (second from
top) is for DN ( f )

11 (ρ ); the dashed green line (second from top) is for
DN (in)

11 . The lowest solid orange curve depicts DN ( f )
22 (ρ ); the lowest

dashed orange line shows DN (in)
22 . The third solid (red) curve from

the top represents DN ( f )
33 (ρ ), whereas the red dashed line (third from

the top) represents DN (in)
33 . The dash-dotted black curve is the spectral

density. In this example f = 25 cm, λ = 632.8 nm, Ax = 1, Ay =
1.5, σ = 1 cm, |Bxy| = 0.3, φ = π/3, δxx = 2.5 mm, δyy = 4.0 mm,
and δxy = 4.5 mm.

The value of DN ( f )
00 gradually decreases to about 0.5 and then

increases to unity. This is in marked contrast to, for example,
DN ( f )

33 , which is shown as the solid red curve. This coefficient
at the geometrical focus is less than DN (in)

33 (0.29 vs 0.44),
and it first increases before eventually tending to zero. In
Eqs. (39a) and (39b) the third term decreases much faster with
increasing ρ than the first two terms. That means that when
ρ > 16 μm the curves for DN ( f )

00 and DN ( f )
11 overlap. The same

applies for the second term that occurs in the expressions for
DN ( f )

22 and DN ( f )
33 .

It is straightforward to verify that the scintillation coeffi-
cients in the back focal plane again satisfy the sum rule given
by Eq. (19), namely,

3∑
n=0

DN ( f )
nn (ρ) = 2. (41)

This sum rule opens up the intriguing possibility of what we
might term, in analogy to a well-known concept in quantum
optics [30], scintillation squeezing. By changing the param-
eters of the incident beam, the scintillation of one particular
Stokes parameter of the focused field can be decreased while
changing those of the others. In this process their total sum re-
mains fixed at 2. It should be noted that, under the assumption
of Gaussian statistics, the traditional scintillation coefficient
DN ( f )

00 is bounded, namely [24],

1
2 � DN ( f )

00 � 1, (42)

which obviously limits scintillation squeezing.
Table I illustrates the process of squeezing. The four Stokes

scintillations at the geometrical focus are shown for various
values of |Bxy|, the modulus of the correlation coefficient that
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TABLE I. Scintillation squeezing. In this example the parameters
are taken as Ax = Ay = 1, λ = 632.8 nm, σ = 5 mm, φ = π/3,
δxx = 3.0 mm, δyy = 3.5 mm, and δxy = 5.0 mm.

Scintillation
at focus |Bxy| = 0.41 |Bxy| = 0.2 |Bxy| = 0

DN ( f )
00 0.88 0.60 0.51

DN ( f )
11 0.14 0.42 0.51

DN ( f )
22 0.31 0.45 0.49

DN ( f )
33 0.67 0.53 0.49

sum 2 2 2

was defined in Eq. (23). In the table this modulus ranges
from zero to the upper bound given by Eq. (29). It is seen
that DN ( f )

00 can be lowered significantly by decreasing |Bxy|.
However, this leads to an increase of the second coefficient
DN ( f )

11 . A similar trade-off occurs for the other two Stokes
scintillation coefficients. Changing |Bxy| is of course just one
way to squeeze the Stokes scintillations. Another example
is presented in Table II, where the on-axis scintillations are
shown for selected values of the coherence radius δxx. It is
seen that whereas DN ( f )

11 can be changed substantially, this is
not the case for DN ( f )

22 .
By tuning the various source parameters, one can design a

focused field in which the fluctuations of a prescribed Stokes
parameter are minimized. For example, partially coherent
light is sometimes used to reduce unwanted speckle (see
[31]). If such light is focused onto a chiral object that is
particularly sensitive to one type of circular polarization, it
may be advantageous to minimize the scintillation of S3.

Whereas the examples of the diagonal Stokes scintillations
DN ( f )

nn (ρ) that we discussed so far are all positive valued, this
is not always the case for the off-diagonal scintillations. For
example, from Eq. (11) we find, on setting r1 = r2 and using
Eq. (35), that

DN ( f )
23 (ρ) = 2A2

xA2
y�

4
xy|Bxy|2 sin(2φ)

× exp
(−�2

xyk2ρ2
/

f 2
)
/�2(ρ). (43)

Clearly, this coefficient is negative whenever sin(2φ) < 0.

TABLE II. Scintillation squeezing. The parameters are taken
as Ax = Ay = 1, |Bxy| = 0.5, λ = 632.8 nm, σ = 5 mm, φ = π/3,
δyy = 3.5 mm, and δxy = 5.0 mm.

Scintillation
at focus δxx = 4 mm δxx = 5 mm δxx = 6 mm

DN ( f )
00 0.83 0.75 0.73

DN ( f )
11 0.18 0.33 0.44

DN ( f )
22 0.33 0.35 0.34

DN ( f )
33 0.66 0.56 0.48

sum 2 2 2

V. STOKES FLUCTUATION CORRELATIONS

In order to study the Hanbury Brown–Twiss effect in
its generalized form, we use Eqs. (6) and (15). We restrict
ourselves to the four diagonal correlations. Taking the first
reference point to be on the z axis (ρ1 = 0) and setting σx =
σy = σ , we find from Eq. (23) for the HBT coefficients in the
front focal plane the expressions

CN (in)
00 (0, ρ2) = [

A4
x exp

(−ρ2
2

/
δ2

xx

) + A4
y exp

(−ρ2
2

/
δ2

yy

)
+ 2A2

xA2
y |Bxy|2 exp

(−ρ2
2

/
δ2

xy

)]/(
A2

x + A2
y

)2
,

(44a)

CN (in)
11 (0, ρ2) = [

A4
x exp

(−ρ2
2

/
δ2

xx

) + A4
y exp

(−ρ2
2

/
δ2

yy

)
− 2A2

xA2
y |Bxy|2 exp

(−ρ2
2

/
δ2

xy

)]/(
A2

x + A2
y

)2
,

(44b)

CN (in)
22 (0, ρ2) = 2A2

xA2
y

{
exp

[
− ρ2

2

2

(
1

δ2
xx

+ 1

δ2
yy

)]

+ |Bxy|2 cos(2φ)

× exp

(
− ρ2

2

δ2
xy

)}/(
A2

x + A2
y

)2
, (44c)

CN (in)
33 (0, ρ2) = 2A2

xA2
y

{
exp

[
− ρ2

2

2

(
1

δ2
xx

+ 1

δ2
yy

)]

− |Bxy|2 cos(2φ)

× exp

(
− ρ2

2

δ2
xy

)}/(
A2

x + A2
y

)2
. (44d)

The Stokes fluctuation correlations in the front focal plane
are shown in Fig. 2 for the same values of the parameters as in
Fig. 1. The first of these coefficients, CN (in)

00 (0, ρ2), represented
by the blue curve, is the traditional Hanbury Brown–Twiss
coefficient. That is, it describes the correlation of the intensity

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 (mm)

Cnn         (0,     )N (in)
2

FIG. 2. The four diagonal Stokes fluctuation correlations
CN (in)

nn (0, ρ2) in the front focal plane. The blue (top) curve represents
CN (in)

00 (0, ρ2), the green curve (second from top) shows CN (in)
11 (0, ρ2),

the orange (bottom) curve is for CN (in)
22 (0, ρ2), and the red curve (third

from top) is for CN (in)
33 (0, ρ2). The parameters are the same as in

Fig. 1. Notice that the horizontal scale is now in millimeters rather
than in microns.
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Cnn      (0,    )N ( f ) 
2

2 (   m)

FIG. 3. The four Stokes fluctuation correlations CN ( f )
nn (0, ρ2) in

the back focal plane of the lens. The blue (top) curve represents
CN ( f )

00 (0, ρ2), the green (second) curve is for CN ( f )
11 (0, ρ2), the orange

(bottom) curve shows CN ( f )
22 (0, ρ2), and the red curve (third from the

top) is for CN ( f )
33 (0, ρ2). The parameters are the same as in Fig. 1.

fluctuations in the front focal plane between the central axis
and a point at a radial distance ρ2.

In order to see the effect of focusing on these correlations
we substitute from Eq. (35) into Eqs. (6) and (15) and again set
ρ1 = 0. This gives us, for the Stokes fluctuation correlations
in the back focal plane, the four expressions

CN ( f )
00 (0, ρ2) = [

A4
x�

4
xx exp

(−2βxxρ
2
2

) + A4
y�

4
yy

× exp
(−2βyyρ

2
2

) + 2A2
xA2

y�
4
xy|Bxy|2

× exp
(−2βxyρ

2
2

)]/
�(0)�(ρ2), (45a)

CN ( f )
11 (0, ρ2) = [

A4
x�

4
xx exp

(−2βxxρ
2
2

) + A4
y�

4
yy

× exp
(−2βyyρ

2
2

) − 2A2
xA2

y�
4
xy|Bxy|2

× exp
(−2βxyρ

2
2

)]/
�(0)�(ρ2), (45b)

CN ( f )
22 (0, ρ2) = 2A2

xA2
y

{
�2

xx�
2
yy exp

[ − (
βxx + βyy

)
ρ2

2

]
+�4

xy|Bxy|2 cos(2φ)

× exp
(−2βxyρ

2
2

)}/
�(0)�(ρ2), (45c)

CN ( f )
33 (0, ρ2) = 2A2

xA2
y

{
�2

xx�
2
yy exp

[ − (
βxx + βyy

)
ρ2

2

]
−�4

xy|Bxy|2 cos(2φ)

× exp
(−2βxyρ

2
2

)}/
�(0)�(ρ2), (45d)

where

βi j ≡ k2

f 2

(
σ 2

2
+ �2

i j

8

)
, (46)

with the function �(ρ) defined above in Eq. (40). We note
that, unlike the correlations of the incident field given by
Eqs. (44a)–(44d), the correlations in the focal plane depend
on the effective source width σ via the parameter βi j . The first
coefficient CN ( f )

00 (0, ρ2) represents the usual Hanbury Brown–
Twiss coefficient in the focal plane. All four correlations are
illustrated in Fig. 3. In this example the HBT correlations are

C00      (0,    )N ( f ) 
2

2 (   m)

FIG. 4. Classical HBT correlation CN ( f )
00 (0, ρ2) in the back focal

plane for selected values of the coherence radius δxx . The curves,
from top to bottom, represent the case δxx = 2 mm (blue), δxx = 3
mm (green), and δxx = 4 mm (orange). The other parameters are the
same as in Fig. 1.

seen to drop off significantly faster than the Stokes scintilla-
tions that are plotted in Fig. 1.

On comparing Figs. 2 and 3 it is seen that whereas the
width of the different correlations in the front focal plane is
on the order of millimeters, in the back focal plane it is on
the order of microns. That the action of the lens dramatically
shortens the effective correlation widths is of course to be
expected. However, quite surprising is the effect on the max-
imum value of the correlations that occurs on the z axis near
ρ2 = 0. Whereas the first two correlations CN ( f )

00 and CN ( f )
11 are

stronger after the focusing process, the opposite is true for
CN ( f )

22 and CN ( f )
33 . These are both weaker than their counterparts

in the front focal plane. This unexpected effect is due to the
fact that each cross-spectral density matrix element is affected
differently by the lens, as can be seen from Eq. (21). The four
HBT correlations, which are combinations of these elements,
are therefore all transformed differently by the focusing.

The traditional HBT correlation in the focal plane CN ( f )
00

depends in a complicated way on the different source param-
eters, as can be seen from Eq. (45a). This dependence is illus-
trated in Fig. 4, where the normalized correlation coefficient
is plotted for several choices of the coherence radius δxx. It is
seen that the correlation of the intensity fluctuations decreases
when this radius is increased.

Just like the generalized scintillations that were discussed
in Sec. IV, the diagonal Stokes fluctuation correlations also
satisfy a sum rule, namely, Eq. (17). According to this equa-
tion, the sum of the correlations is equal to two times the
modulus of η(r1, r2), the spectral degree of coherence. It is
clear from the definition of this quantity that it is described
only by the diagonal elements of the cross-spectral density
matrix W(r1, r2). Therefore, it is independent of the coef-
ficient Bxy and the correlation radius δxy that are defined in
Eq. (23). However, the diagonal Stokes fluctuation correla-
tions CN ( f )

nn (0, ρ2) do depend on these two parameters, as is
clear from Eqs. (45a)–(45d). This means that the strength of
the four correlations can be “distributed” by varying Bxy or
δxy while keeping their total sum fixed. This is illustrated in
Table III. We find that the traditional HBT coefficient CN ( f )

00
can be significantly increased by varying |Bxy| from zero to its

023821-6
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TABLE III. Distributing correlations: the four diagonal Stokes
fluctuation correlations CN ( f )

nn (0, ρ2) in the focal plane at ρ2 = 2 μm.
The parameters are taken as Ax = Ay = 1, σ = 1 cm, f = 50 cm,
λ = 632.8 nm, φ = π/3, δxx = δyy = 2.5 mm, and δxy = 3.0 mm. In
this example |η(0, ρ2)| = 0.925.

Correlations in
the focal plane |Bxy| = 0.00 |Bxy| = 0.40 |Bxy| = 0.69

CN ( f )
00 0.43 0.57 0.84

CN ( f )
11 0.43 0.29 0.01

CN ( f )
22 0.43 0.36 0.22

CN ( f )
33 0.43 0.49 0.64

sum 1.71 1.71 1.71

maximum value. This is accompanied by a strong decrease to
almost zero of CN ( f )

11 .

VI. CONCLUSION

We have applied the recently developed framework of
generalized Stokes fluctuation correlations and Stokes scin-
tillations to the case of a focused, random electromagnetic
beam. The scintillations in the back focal plane of the lens

are found to be typically nonuniform. Since they satisfy a sum
rule, one particular Stokes scintillation may be suppressed at
the expense of others. Depending on the intended application,
the source design can be optimized to make use of this effect.

The generalized Hanbury Brown–Twiss correlations are
also strongly influenced by the focusing process. Their maxi-
mum value can be either lower or higher than that of the same
correlation in the front focal plane. Just like the generalized
scintillations, the generalized correlations are also related by
a sum rule. This gives the possibility for a trade-off between
their relative strengths.

Our analysis shows that the state of coherence of the
incident field significantly affects the generalized HBT corre-
lations and the scintillation of the four Stokes parameters. We
illustrated our results for the case of a Gaussian Schell-model
beam. It will be useful to extend the analysis to other types of
beams such as vortex beams or Bessel-correlated beams.
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