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Time-reversal-invariant scaling of light propagation in one-dimensional non-Hermitian systems
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Light propagation through a normal medium is determined not only by the real part of the refractive index
but also by its imaginary part, which represents optical gain and loss. Therefore, two media with different gain
and loss landscapes can have very different transmission and reflection spectra, even when their real parts of the
refractive index are identical. Here we show that while this observation is true for an arbitrary one-dimensional
medium with refractive index n(x) and its time-reversed partner with refractive index n∗(x), there exists a
universal scaling that gives identical transmittance and reflectance in these corresponding systems. Interestingly,
the scaled transmittance and reflectance reduce to their standard, unscaled forms in a time-reversal-invariant
system, i.e., one without gain or loss.
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I. INTRODUCTION

Recent advances in nanofabrication and integration of
photonic devices have a profound technological impact on
computation, communication, and sensing [1–4]. They rely
on the transport of information through optical structures,
which has made the study of wave transport, localization, and
resonances essential to engineer their properties on demand.
The scattering matrix is one of the central objects in this
field of study [5–11]. Besides its wide range of applicability
in optics and photonics, the scattering matrix has been used
oftentimes to understand resonances in nuclear and particle
physics [12,13] and transport in condensed matter [14] and, in
general, to probe states of open quantum systems [15].

The scattering matrix connects the incoming channels to
the outgoing channels in a system, and in one-dimensional
(1D) systems it consists of the transmission and reflection
coefficients from both sides of the system. These quantities
in a normal medium are determined not only by the real
part of the refractive index but also by its imaginary part,
which represents optical gain and loss. Such non-Hermitian
systems [16] have attracted enormous interest in optics be-
cause of unique emerging phenomena such as spontaneous
symmetry breaking [17], coherent perfect absorption [18–21],
anisotropic transmission resonances [22–24], self-sustained
radiation [25], and asymmetric power oscillations [26,27],
among others.

In general, scattering information contained in the reflec-
tion and transmission coefficients at a given frequency is
different for waves in a gain or a loss system. Therefore,
two media with different gain and loss landscapes can have
very different transmission and reflection spectra, even when
the real parts of their refractive indices are identical. For
example, consider a single slab of uniform refractive index.
The transmission and reflection can become more than one
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order of magnitude larger when we add gain to overcompen-
sate the intrinsic material loss. Furthermore, the frequency
dependence of the transmission and reflection spectra can
also become very different once the loss or gain landscape
is changed, especially in more complicated systems. As a
result, the notions of invariant transmittance and reflectance
in different non-Hermitian systems have not been discussed
since the general consensus is that they do not exist.

Here we show that such invariant transmittance and re-
flectance do exist for two 1D non-Hermitian media that are
time-reversal partners, i.e., one with refractive index n(x) and
the other with its complex conjugation n∗(x). This observation
does not depend on the complexity of the refractive index,
e.g., whether it is homogeneous or random or whether it has
only gain or only loss or a mixture of them. Interestingly,
the scaled reflectance and transmittance acquire a physical
significance under photon flux conservation in time-reversal-
invariant systems, where no gain or loss is present.

Our treatment of the scattering matrix is useful to establish
generalized conservation laws and diverse identities for a wide
range of optical systems and would serve to study reciprocity
and reflectance ratios between different channels and to design
gain profiles in lasers with suitable properties for the afore-
mentioned applications. For example, we find that the flux
conservation relation T + R = 1 in time-reversal-invariant
systems can be preserved in 1D non-Hermitian systems, with
the physical transmittance T and reflectance R evolved con-
tinuously to what we refer to as pseudotransmittance and
pseudoreflectance. We also show that the diverging behaviors
of the transmittance and reflectance in a normal 1D laser are
the same to the leading order using time-reversal-invariant
scaling.

This paper is organized as follows: in Sec. II we review
the scattering matrix formalism and establish the universal
scaling of transmission and reflection that becomes identical
for time-reversed partners. We also provide some important
identities about the scaled transmittance and reflectance. In
Sec. III we exemplify these results and show their connection
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FIG. 1. Two-channel scattering of light from (a) a 1D optical
system and (b) its time-reversed partner.

to the physical reflectance and transmittance, through some
insightful discussions that range from the Hermitian limit
to parity-time (PT )-symmetric systems. We also relate our
analysis to a special pair of time-reversed partners, i.e., a laser
and a coherent perfect absorber (CPA). Finally, we provide
some concluding remarks in Sec. IV, including its extension
to higher dimensions.

II. THE SCATTERING MATRIX

Consider the 1D optical system depicted in Fig. 1(a).
We assume that electromagnetic waves propagate freely in
space until they scatter off a cavity of finite length L. The
refractive index landscape in the scattering region is described
by the function n(x). The transverse electric field E (x, t ) in
the scattering region satisfies the wave equation,[

∂2
x − n2(x)

c2
∂2

t

]
E (x, t ) = 0, (1)

where c is the speed of light in vacuum. Outside the scattering
region the electric field takes the form

E (x, t ) =
{

(aeikx + be−ikx )e−iωt , x < −L/2,

(ce−ikx + deikx )e−iωt , x > −L/2,
(2)

where ω is the real-valued frequency and k = ω/c is the wave
vector in free space. The amplitudes a, b, c, and d in Eq. (2)
are depicted in Fig. 1(a), and they are related through the
scattering matrix S as(

b
d

)
=

[
rL(ω) t (ω)
t (ω) rR(ω)

](
a
c

)
≡ S(ω)

(
a
c

)
. (3)

Here rL and rR are the transmission coefficients from the left
and right side, and t is the reciprocal transmission coefficient.
As the wave equation, (1), is unchanged when the time t is
replaced by −t , then

E (x,−t ) =
{

(aeikx + be−ikx )eiωt , x < −L/2,

(ce−ikx + deikx )eiωt , x > −L/2,
(4)

is also a valid solution to the wave equation.
Next we take the complex conjugation of the wave

equation, (1), which now describes the scattering of light from
a medium with refractive index n∗(x), with the loss and gain
regions exchanged from the original non-Hermitian system.
Therefore, these two systems are time-reversed partners, and
the electric field given by

E∗(x,−t ) =
{

(b∗eikx + a∗e−ikx )e−iωt , x < −L/2,

(d∗e−ikx + c∗eikx )e−iωt , x > −L/2,
(5)

indicates that the incoming amplitudes are now given by b∗
and d∗ and that they are scattered into outgoing amplitudes a∗

and c∗ [see Fig. 1(b)]. We denote the corresponding scattering
matrix S̃,(

a∗
c∗

)
= S̃(ω)

(
b∗
d∗

)
=

[
r̃L(ω) t̃ (ω)

t̃ (ω) r̃R(ω)

](
b∗
d∗

)
(6)

or (
a
c

)
= S̃∗(ω)

(
b
d

)
. (7)

By multiplying S̃∗(ω) to both sides of Eq. (3) from the left and
simplifying the result using Eq. (7), we obtain

S̃∗(ω)S(ω) = 1, (8)

which relates the scattering matrix S(ω) of the original non-
Hermitian system and the scattering matrix S̃(ω) of its time-
reversed partner. Here 1 is the identity matrix.

When the determinant of S(ω) is nonzero, i.e., away from
a zero of the S matrix, we employ

S−1 = 1

rLrR − t2

(
rR −t
−t rL

)
= S̃∗ (9)

to derive

r̃∗
L,R = rR,L

rLrR − t2
, t̃∗ = −t

rLrR − t2
. (10)

Furthermore, using the property that

det(S̃∗S) = detS̃∗detS = 1 (11)

or, more explicitly,

(rLrR − t2)(r̃∗
Lr̃∗

R − (t̃∗)2) = 1, (12)

we can rewrite Eq. (10) as

RR,L

|rLrR − t2| = R̃L,R

|r̃Lr̃R − t̃2| , (13)

T

|rLrR − t2| = T̃

|r̃Lr̃R − t̃2| , (14)

where T = |t |2, RL,R = |rL,R|2 and T̃ = |t̃ |2, R̃L,R = |r̃L,R|2
are the transmittance and reflectances in the two systems. Note
that the subindices of the reflectances are switched in Eq. (13),
e.g., RR is related to R̃L. These two relations show that there
exists a universal scaling of transmittance and reflectance that
is invariant after time reversal, which utilizes the determinant
of the respective scattering matrix.

This observation holds for 1D systems regardless of their
symmetries and other properties of the refractive index. One
representative example is shown in Fig. 2 for a heterostructure
with randomly chosen refractive indices and its time-reversed
partner. Not only does their transmittance (as well as re-
flectances) differ by as much as four orders of magnitude,
but also the frequency dependence of these spectra shows
distinct features. Nevertheless, once scaled by the universal
factor given in Eqs. (13) and (14), their transmittances and
corresponding reflectances become identical, respectively.
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FIG. 2. Scattering from a 1D heterostructure and its time-
reversed partner. There are 20 layers in each structure, and the
refractive index is randomly set using Re[n] ∈ [1.5, 2.5] and Im[n] ∈
[−0.05, 0.05]. The layer thickness is also chosen randomly, with
the widest twice as wide as the thinnest. (a) Transmittance T in
this system and T̃ in its time-reversed partner as a function of
the wave number before (left) and after (right) the time-reversal-
invariant scaling. The line and squares represent the scaled T and
T̃ , respectively. Inset: Schematic of the heterostructure. (b, c) The
same for the reflectances. Lines and circles represent the scaled RL,R

and R̃R,L , respectively.

The time-reversal-invariant scaling can also be derived
using the R-matrix construction of the S matrix [19,28],

S = −e2in0kx0 [1 − in0kR]−1 [1 + in0kR], (15)

where x0 > L/2 is an arbitrary boundary and n0 is the real-
valued refractive index in free space. To obtain S̃ for the
time-reversed partner system, we use the same expression
and utilize the fact that the R matrix becomes its complex
conjugate when n(x) is replaced by n∗(x). As a result, we find

S̃∗ = −e−2in0kx0 [1 + in0kR]−1 [1 − in0kR], (16)

which leads to Eq. (8) and in turn Eqs. (13) and (14).
As we work through some enlightening examples we

unravel the physical significance of these and other scaled
reflectances and transmittances in systems obeying particular
symmetries, as described in the following sections.

III. EXAMPLES

A. Systems with time-reversal symmetry

We start our exemplification by considering a dielectric
slab with an arbitrary index profile n(x), where the only
constraint is that n(x) is real, i.e., the slab is dissipationless and
gainless. Then the slab is its own time-reversed partner, and in
this case it is interesting to note that the scaled transmittance
and reflectance in Eqs. (13) and (14) reduce to their standard
and unscaled forms. This is because now S̃ is the same as
S, leading to |detS| = |rLrR − t2| = 1 in Eq. (12), i.e., the
time-reversal-invariant scaling trivially becomes 1 in this case.

However, we should note that

T

|rLrR − t2| + RR,L

|rLrR − t2| �= 1 (17)

in general, and hence one may wonder what the general
“conservation law” is that reduces to T + R = 1 in the time-
reversal-invariant case, where RL = RR ≡ R. It turns out that
such a conservation law is simply given by

T + R = 1, (18)

where we have defined

R ≡ rLrR

rLrR − t2
and T ≡ −t2

rLrR − t2
(19)

as the pseudoreflectance and pseudotransmittance.
R and T are complex in general, but they also become the

physical reflectance and transmittance in the time-reversal-
symmetric case. To show explicitly that R and T are real in
this case, we note that Eq. (10) now becomes

r∗
L,R = rR,L

rLrR − t2
, t∗ = −t

rLrR − t2
. (20)

Therefore, we find

|rL|2 = |rR|2 = rLrR

rLrR − t2
= R, (21)

|t |2 = −t2

rLrR − t2
= T, (22)

and the trivial conservation law given by Eq. (18) now be-
comes the actual flux conservation relation. The latter, of
course, can also be obtained from the unitarity property of the
scattering matrix, i.e., S†S = 1, which can be derived using
Eq. (8) with the assumed reciprocity (ST = S) in this case.

B. A dielectric slab with gain or loss

One of the simplest systems that exhibit nontrivial scat-
tering features is a 1D slab which is capable of amplifying
or absorbing radiation. The former is a typical model used
to study solid-state laser cavities, and the consideration of its
time-reversed partners has led to the discovery of coherent
perfect absorbers [18–20].

However, such a consideration has only been explored for
the extremes of the scattering matrix, namely, its poles and
zeros. A pole (zero) of a scattering matrix is defined as the
usually complex frequency where one or more eigenvalues of
the scattering matrix become infinite (zero). Therefore, at a
pole of a scattering matrix an infinitesimal input (e.g., noises
as input a and c in Fig. 1) can lead to a finite scattering
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FIG. 3. Scattering from a pair of uniform dielectric slabs with
gain and loss, respectively. n = 3 ± 0.05i. (a) Schematics showing
their respective lasing and CPA state. (b) Scaling factors as a function
of the wave number. (c) Transmittance before (left) and after (right)
the time-reversal-invariant scaling. (d) The same for the reflectance.
Symbols are the same as in Fig. 2.

or output light intensity, which is one mathematical model
used to describe a laser with a gain medium when the pole
occurs on the real frequency axis. Clearly, a “time-reversed
laser” then corresponds to a zero of the scattering matrix,
where the incoming light satisfying certain coherent phase
and amplitude configuration is absorbed perfectly by the time-
reversed system with loss, after which the CPA is named.

Such a correspondence is a special case of Eq. (11): a pole
(zero) implies that the determinant of the scattering matrix
is infinite (zero). And the time-reversal relation between a
laser and a CPA is described asymptotically by Eq. (11):
detS → ∞ in a laser cavity with gain, while detS̃ → 0 in the
corresponding CPA with loss [see Fig. 3(b)].

It is well known that detS = rLrR − t2 → ∞ implies that
rL, rR, and t all diverge at the frequency of a lasing mode.
However, one usually cannot verify analytically whether
these quantities approach infinity at the same speed without
knowing their explicit expressions. Together with Eq. (12),
the scaling relation, (10), offers us a unique opportunity to
overcome this difficulty. Specifically, they lead to R̃

∗ = R

for the pseudoreflectance in a pair of time-reserved partner

systems or, more explicitly,[
r̃Lr̃R

r̃Lr̃R − t̃2

]∗
= rLrR

rLrR − t2
. (23)

As detS = rLrR − t2 approaches infinity in a laser cavity,
detS̃ = r̃Lr̃R − t̃2 vanishes in the corresponding CPA as we
have mentioned, and r̃L r̃R remains finite in this process [see
Fig. 3(d), for example]. As a result, the left-hand side of
Eq. (23) diverges, and so does its right-hand side. Because the
denominator of the latter (i.e., detS) also diverges, it indicates
that rLrR approaches infinity faster than rLrR − t2. In other
words, the leading-order asymptotics of rLrR and t2 are the
same. In a system with reflection symmetry such as the one
shown in Fig. 3, rL = rR and hence they approach infinity
at the same speed as t [see the highest peak around 104 at
nkL/π ≈ 13 in Figs. 3(c) and 3(d)].

Similarly to what is shown in Fig. 2, here the physical
reflectance and transmittance differ significantly in the gain
and loss slabs [see the left panels in Figs. 3(c) and 3(d)]. After
applying the scaling factor specified in Eqs. (13) and (14) and
shown in Fig. 3(b), we again verify the time-reversal-invariant
scaling of the reflectance and transmittance [see the right
panels in Figs. 3(c) and 3(d)].

C. PT -symmetric systems

If we compare three systems—the original non-Hermitian
one (“A”) with refractive index n(x), its time-reversed part-
ner (“B”) with index n∗(x), and its PT -symmetric partner
(“C”) with index n∗(−x)—the latter two are just mirror
images of each other. Therefore, we can easily rephrase
the time-reversal-invariant scaling relations (13) and (14) as
PT -invariant scaling relations. For this purpose, we denote
the scattering matrix of system C by S̄, which satisfies the
following relation:

σxS̄∗(ω)σxS(ω) = 1. (24)

Here ω is again real-valued and σx is the first Pauli matrix.
The counterpart to Eq. (10) is then

r̄∗
L,R = rL,R

rLrR − t2
, t̄∗ = −t

rLrR − t2
. (25)

In other words, the additional parity operator simply leaves the
reciprocal transmission unchanged (i.e., t̄ = t̃) and exchanges
the left and right reflection coefficients (i.e., r̄L,R = r̃R,L) when
we compare systems B and C. The resulting PT -invariant
scaling is then given by

RL,R

|rLrR − t2| = R̄L,R

|r̄Lr̄R − t̄2| , (26)

T

|rLrR − t2| = T̄

|r̄Lr̄R − t̄2| . (27)

If a non-Hermitian system is PT symmetric, we then
find |detS(ω)| = 1 from Eq. (24) using S̄(ω) = S(ω) and
(detσx )2 = 1. Therefore, the scaling factors in Eqs. (26) and
(27) also vanish, similarly to the case in Sec. III A where
the system is time reversal invariant. In addition, we note
that the generalized but trivial conservation law T+R = 1 for
the pseudotransmittance T and pseudoreflectance R derived
in that section applies to any 1D non-Hermitian system.
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Therefore, it holds in a PT -symmetric system as well but
differs from the nontrivial conservation law given in Ref. [22].
To derive the latter, we can write the physical transmittance
and reflectances as

RL,R = r2
L,R

rLrR − t2
∈ R, T = −t2

rLrR − t2
∈ R (28)

using Eq. (25), which then leads to

|1 − T | = √
RLRR. (29)

IV. DISCUSSION AND CONCLUSIONS

In summary, we have shown that there exists a time-
reversal-invariant scaling for wave propagation in 1D non-
Hermitian systems. It applies to both transmission and reflec-
tion, no matter how different the spectra of these quantities are
in this system and its time-reversed partner.

Although we have restricted our discussion to 1D systems
so far, some of our observations can be easily extended to
higher dimensions. For example, for a quasi-1D waveguide
with multiple transverse channels [29], relation (8) still ap-
plies as long as the incoming and outgoing channels with
the same index are related by time reversal. In this case
the scattering matrices can be written in their block forms,
i.e.,

S(ω) =
(

rL t
t rR

)
, S̃(ω) =

(
r̃L t̃
t̃ r̃R

)
, (30)

where rL,R, t and r̃L,R, t̃ become matrices themselves. We then
find the identity

T + R = N, (31)

where T ≡ t̃∗t , R ≡ Tr(r̃∗
LrL ) = Tr(r̃∗

RrR), and N is the number
of incoming (and outgoing) channels.

Similarly, the identity, (8), also holds for the scattering
of cylindrical waves in two dimensions. Following the con-
vention used in Ref. [11], we define the mth incoming and
outgoing channels by

�−
m (r, θ ) = H−

m (kr)

H−
m (kR)

eimθ , �+
m (r, θ ) = H+

m (kr)

H+
m (kR)

eimθ .

Here m ∈ Z is the angular momentum number, and m > 0
(m < 0) describes counterclockwise (clockwise) waves. r and
θ are the radial position and the azimuthal angle, R is the ra-
dius of the scattering region, and H± are the Bessel functions
of the first and second kind. In the absence of scattering, the
scattering matrix becomes an antidiagonal matrix, similarly to
the 1D case defined in Eq. (3).

Although the time-invariant scaling of the scattering co-
efficients does not exist in higher dimensions in general, it
reemerges in some special cases. Take the scattering of the
cylindrical waves, for example. If the index modulation itself
has an angular momentum M = 2 (e.g., a quadruple cavity
with a uniform refractive index [30,31]), then a cylindrical
wave of angular momentum m will be scattered strongly
into the m ± 2 channels in general [32]. More specifically,
the m = ±1 channels are scattered strongly into each other
and the m′ = ±3 channels. If the index modulation is weak,
then the scattering intensities into the m′ = ±3 channels are
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FIG. 4. Time-reversal-invariant scaling of a reduced scattering
matrix in 2D disk geometry. (a) Transmittance as a function of the
wave number before (left) and after (right) the time-reversal-invariant
scaling. Inset: Schematic of the disk scatterer. (b) The same for the
reflectance. Symbols are the same as in Fig. 2.

negligible due to a low spectral overlap factor [33]. Conse-
quently, the m = ±1 channels form a largely closed subspace
of the scattering matrix, and the reduced-dimension scattering
matrix S in these channels behave in the same way as in the 1D
case.

Assuming reciprocity, we denote the scattering amplitudes
between the m = ±1 channels the “transmission coefficient”
t and those back into the outgoing channels of the same in-
dices the reflection coefficients rL,R. The same time-reversal-
invariant scaling shown in Eqs. (13) and (14) still holds,
and we exemplify this result using two disks of radius R
and refractive index n(r, θ ) = (1.5 + 0.1 sin 2θ ) ± 0.05i. To
verify that the reduction of the scattering matrix into the
2 × 2 form is a good approximation, we first mention that
the ratio of the scattering intensities into the m′ = 3 and
m′ = 1 (−1) channels from the m = 1 channel is 1.3 × 10−2

(6.1 × 10−4) at kR = 3, which is typical for the range of wave
numbers shown in Fig. 4. The reflectances RR,L in this case
are identical, because the m = ±1 channels are exchanged
when we simply change our perspective from the top view
to the bottom view of the two-dimensional plane. In other
words, the chirality of the channels is flipped when θ →
−θ . The transmittances T and T̃ shown in Fig. 4 do not
exhibit similarities in particular, but they become identical
after applying the time-reversal-invariant scaling specified in
Eq. (14).
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