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Quantum two-photon emission in a photonic cavity
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We derive an expression for the two-photon spontaneous emission (TPSE) rate of an excited quantum emitter
in the presence of arbitrary bodies in its vicinities. After investigating the influence of a perfectly conducting
plate on the TPSE spectral distribution (Purcell effect), we demonstrate the equivalence of our expression with
the more usual formula written in terms of the corresponding dyadic Green’s function. We establish a convenient
relation between the TPSE spectral distribution and the corresponding Purcell factors of the system. Next, we
consider an emitter close to a dielectric medium and show that, in the near-field regime, the TPSE spectral
distribution is substantially enhanced and changes abruptly at the resonance frequencies. Finally, motivated by
the suppression that may occur in the one-photon spontaneous emission of an excited atom between two parallel
conducting plates, we discuss the TPSE for this same situation and show that complete suppression can never
occur for s → s transitions.
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I. INTRODUCTION

Just a few years after Dirac’s seminal paper on quantum
electrodynamics [1], Göppert-Mayer investigated elementary
processes involving two quantum transitions [2]. Since then,
these processes have attracted the attention of many re-
searchers and have proven to be relevant in many branches of
physics. An important example is the role played by the two-
photon absorption process in the study of the 1S-2S transition
in hydrogen. The corresponding transition frequency has been
measured recently with an accuracy of a few parts in 1015,
a remarkable achievement [3]. This kind of investigation is
relevant, for instance, in setting limits on possible time vari-
ations of fundamental constants [4] or in examining possible
violations of Lorentz invariance [5]. Two-photon absorption
processes are equally important in the study of the 1S-2S
transition in antihydrogen [6], since its comparison with the
same transition in hydrogen provides valuable information to
test charge, parity, and time reversal symmetry [7,8].

In this work, instead of two-photon absorption processes,
we are concerned with the calculation of two-photon sponta-
neous emission (TPSE) rates. Though the theoretical devel-
opment of such processes was made in the pioneering paper
by Göppert-Mayer [2], it was approximately one decade later
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when Breit and Teller made explicit numerical estimates for
the TPSE rates in hydrogen and helium [9]. Another decade
elapsed before TPSE was used to give the correct explanation
of the continuous emission of planetary nebulae, presented
by Spitzer and Greenstein in 1951 [10]. Subsequently, many
theoretical papers were published in the field, with better
numerical calculations of the TPSE rate for hydrogenic atoms
[11]. However, not until 1965 was the first direct measurement
of this phenomenon performed by Lipeles et al. using ionized
helium [12], and an experiment with hydrogen atoms was
not carried out until 1975 [13]. Since then, TPSE has been
investigated in many other systems, such as many-electron
atoms [14], semiconductors [15–17], and quantum dots [18].
Recently, due to the new technological developments and the
growing progress in near-field optics, plasmonics, and materi-
als science in general, TPSE has attracted new interest. These
are mainly connected to the possibility of controlling TPSE
generation and its properties with external agents [19,20], in
what could be called a two-photon Purcell effect [21].

Since TPSE plays a key role in many important topics,
such as quantum cryptography and computing, controlling it
is of extreme interest both theoretically and experimentally.
In recent work, it has been shown that TPSE processes may
occur at very short time scales in comparison to those of
conventionally fast transitions [22] and can even dominate the
one-photon spontaneous emission (SE) [23]. For instance, due
to the high confinement offered by phonon polariton modes of
a polar dielectric over a sufficiently narrow frequency band, an
excited emitter prefers to decay via the simultaneous emission
of two quanta, despite the possibility of allowed single-photon
decay pathways.
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In this work we have two main purposes: a general theoret-
ical discussion of the two-photon Purcell effect and the study
of this phenomenon in some simple but interesting systems.
Initially, we establish a formula for computing the Purcell
effect in TPSE processes. In this framework, the TPSE rate is
written in terms of the electromagnetic field modes satisfying
the boundary conditions imposed by the environment of the
emitter. There are many motivations for doing that. First, such
a formula for TPSE was lacking in the literature, despite the
fact that an approach based on the field modes can be very
useful in situations where they are explicitly known, as, for
instance, in multilayered media [24–27] and photonic crystals
[28–30], among others [31–34]. Moreover, this approach is
more suited for computing the angular distribution of the
emitted photons compared to the usual one based on Green’s
function. We illustrate this formula by considering an emitter
close to a perfectly conducting plate. We then demonstrate its
equivalence with the Green’s function method and compare
both methods by reobtaining the TPSE rate of the emitter-
mirror system. We also establish a connection between the
TPSE rate of an emitter near an arbitrary object and the
one-photon SE Purcell factors in the same situation. As we
show, this allows one to calculate straightforwardly the TPSE
rate once the corresponding one-photon SE rates are known.
With this approach, we investigate the TPSE of an emitter near
a semi-infinite homogeneous dielectric material as well as the
case of an atom between two perfectly conducting plates. For
the latter case, we show that, in contrast to the one-photon
SE, complete suppression of the TPSE can never occur in this
situation.

This paper is organized as follows. In Sec. II we establish
the formula for the TPSE rate based on the electromagnetic
field modes and illustrate it in a specific example. In Sec. III
we demonstrate its equivalence with the Green’s function
method, and with the purpose of comparing both of them, we
reobtain the same results calculated in the previous section. In
Sec. IV we show how the TPSE rate can be written in terms
of the one-photon SE Purcell factors. In Sec. V we consider a
quantum emitter inside an open cavity formed by two parallel
mirrors and show that suppression of TPSE can never occur
for s → s transitions. Section VI is dedicated to final remarks
and conclusions. For convenience, an Appendix is included.

II. TPSE RATE: FIELD MODE APPROACH

Here we present a simple way to compute the TPSE rate of
an atom close to a surface of arbitrary shape. The Hamiltonian
of the system is given by H = HA + HF + Hint , where HA

is the emitter’s Hamiltonian, HF is the field Hamiltonian,
and Hint describes the emitter-field interaction, to be treated
by perturbative methods. The second-order transition rate
between an initial state |i〉 and a final state | f 〉 is given by
Fermi’s golden rule [35,36],

�i→ f = 2π

h̄
|M f i|2δ(E f − Ei ) , (1)

where

M f i =
∑

I

〈 f |Hint|I〉〈I|Hint|i〉
Ei − EI

. (2)

The dominant transition wavelengths are assumed to be much
larger than the emitter dimensions, so that the electric dipole
approximation is valid and we can write [37]

Hint = −d · E(r)

= −i
∑

α

√
h̄ωα

2ε0
[aαd · Aα (r) − a†

αd · A∗
α (r)], (3)

where d is the dipole moment operator, r is the emitter’s posi-
tion, and {Aα} is a complete set of solutions of the Helmholtz
equation subjected to the boundary conditions imposed by
the surface. Initially, the emitter is in an excited state and
the field in the vacuum state, so that the emitter-field initial
state is written as |i〉 = |e; 0〉. Since we are interested in TPSE
processes, the final state must be constituted by the emitter
in a lower energy state and the field in a two-photon state,
namely, |g; 1α, 1α′ 〉. The intermediate states |I〉 that connect
the initial and final states are |m; 1α〉 or |m; 1α′ 〉, where m
indexes the emitter states. Summing over all possible final
states and defining

D(ωα, ωα′ ) :=
∑

m

[
demdmg

ωem − ωα

+ dmgdem

ωem − ωα′

]
, (4)

where dab := 〈a|d|b〉 and ωab := Ea−Eb
h̄ , we obtain

�(r) = π

4ε2
0 h̄2

∑
α,α′

ωαωα′ |Aα (r) · D(ωα, ωα′ ) · Aα′ (r)|2

× δ(ωα + ωα′ − ωeg). (5)

This formula can be viewed as a second-order equivalent of

�(1)(r) = π

ε0 h̄

∑
α

ωα|deg · Aα (r)|2δ(ωα − ωeg), (6)

which can be found in the literature [34,37,38] and gives the
one-photon SE rate of an atom near an arbitrary surface.

As an immediate application of Eq. (5), we first reobtain
the TPSE rate in free space [2,36]. In this case, the field
modes Aα (r) can be chosen as Ak,λ(r) = eik·r√

V
εkλ, where V

is a box quantization volume and {εkλ; λ = 1, 2} are the unit
polarization vectors. Taking the limit to the continuum, we
make the replacement

∑
α → V

(2π )3

∑
λ

∫
d3k, and find

�0 =
∫ ωeg

0
dω γ0(ω), (7)

where γ0 is the free-space spectral distribution of the emitted
photons, given by

γ0(ω) = μ2
0

36π3h̄2c2
ω3(ωeg − ω)3|D(ω,ωeg − ω)|2 , (8)

with |D(ω,ωeg − ω)|2 := Di j (ω,ωeg − ω)D∗
i j (ω,ωeg − ω).

Essentially, γ0(ω)dω gives the number of emitted photons per
unit time in the interval [ω,ω + dω]. A few comments
are in order here. First, due to the homogeneity of
space, note that �0 is independent of the position of
the emitter. Second, in contrast to the one-photon SE,
which is a narrow-band phenomenon, TPSE is a broadband
phenomenon. Another important feature of the above spectral
distribution is its symmetry with respect to ωeg/2, namely,
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γ0(ω) = γ0(ωeg − ω), which is a direct consequence of
energy conservation since the sum of the frequencies of
the two emitted photons must equal the emitter’s transition
frequency (recoil is neglected in the present calculations).

An emitter near a perfectly conducting plate

As another application of Eq. (5), let us compute the
Purcell effect in the TPSE rate by considering an emitter
separated by a distance z from a perfectly conducting plate
placed at z = 0. The electromagnetic field modes satisfying
the boundary conditions E × ẑ|z=0 = 0 and B · ẑ|z=0 = 0 are
given by [37,39]

Ak,1(r) =
√

2

V
sin(kzz)eik‖·r(k̂‖ × ẑ), (9)

Ak,2(r) =
√

2

V

1

k
[k‖ cos(kzz)ẑ − ikz sin(kzz)k̂‖]eik‖·r. (10)

Substituting Eqs. (9) and (10) into Eq. (5) and performing the
integrals in the azimuthal angles φ and φ′ we obtain

�(z) =
∫ ωeg

0
dω

∫ π

0
dθdθ ′ S(ω, θ, θ ′; z) , (11)

where S(ω, θ, θ ′; z) is the angular distribution of emitted
photons with respect to the z axis and is given by

S = S‖ + S⊥ + Sc, (12)

where

S‖ = μ2
0

64h̄2π3
ω3(ωeg − ω)3

∑
i, j=1,2

|Di j (ω,ωeg − ω)|2[sin2(kz cos θ ) sin θ (1 + cos2 θ )][sin2(kz cos θ ′) sin θ ′(1 + cos2 θ ′)], (13)

S⊥ = μ2
0

16h̄2π3
ω3(ωeg − ω)3|D33(ω,ωeg − ω)|2 cos2(kz cos θ ) sin3 θ cos2(kz cos θ ′) sin3 θ ′, (14)

Sc = μ2
0

32h̄2π3
ω3(ωeg − ω)3

∑
i=1,2

{|Di3(ω,ωeg − ω)|2[sin2(kz cos θ ) sin θ (1 + cos2 θ )] cos2(kz cos θ ′) sin3 θ ′

+ |D3i(ω,ωeg − ω)|2 cos2(kz cos θ ) sin3 θ [sin2(kz cos θ ′) sin θ ′(1 + cos2 θ ′)]}. (15)

For an observer in the far field, the angular distribution gives
the number of emitted photon pairs with frequencies between
ω and ω + dω and within the angular intervals [θ, θ + dθ ]
and [θ ′, θ ′ + dθ ′]. Integrating the angular distribution in θ

and θ ′ it is straightforward to show that the TPSE rate can
be written in the form

�(z) =
∫ ωeg

0
dω γ (ω; z), (16)

where the spectral distribution is now given by

γ (ω; z) = γ0(ω)
∑
i, j

|Di j (ω,ωeg − ω)|2
|D(ω,ωeg −ω)|2 Pi(ω; z)Pj (ωeg − ω; z),

(17)

with

P1(ω; z) = P2(ω; z)

:= 3

2

[
2

3
− sin(2kz)

(2kz)
− cos(2kz)

(2kz)2
+ sin(2kz)

(2kz)3

]
, (18)

P3(ω; z) := 3

[
1

3
− cos(2kz)

(2kz)2
+ sin(2kz)

(2kz)3

]
(19)

being the Purcell factors associated with the one-photon SE of
an emitter with a transition dipole moment oriented parallel or
perpendicular to the plate, respectively [37,40], and k = ω/c.
Since the presence of the plate breaks the translational sym-
metry along the z direction, the spectral distribution function
depends not only on the frequency but also on the distance
from the emitter to the surface.

In a wide variety of two-photon transitions, the initial and
final atomic states have spherical symmetry. This is due to
the fact that one-photon electric dipole transitions between
s states are forbidden by selection rules, and under usual
experimental conditions other two-photon transitions are at a
disadvantage with respect to single-photon ones.

In Fig. 1 we plot γ (ω; z) versus ω for different distances
between the emitter and the plate. We considered an s → s
transition and only one intermediate state in Eq. (4). As
expected, note the symmetry of all spectral distributions with

FIG. 1. Spectral density function γ (ω; z) of an emitter near a
perfect mirror in terms of the dimensionless variable ω/ωeg for three
values of z. We also plot the spectral density function in free space
(solid line).
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FIG. 2. Spectral enhancement γ (ω; z)/γ0(ω) of an emitter near
a perfect mirror as a function of the separation distance z for three
given frequencies.

respect to ωeg/2. Observe, also, that the spectral distribution
may acquire forms quite different from the parabolical shape
of the corresponding one in free space and its local maxima
may not necessarily occur at ωeg/2. Moreover, as the distance
between the emitter and the plate increases, the spectral
distribution tends to the free-space one.

In order to consider all the intermediate states in Eq. (4), it
is convenient to work with the ratio γ (ω; r)/γ0(ω), sometimes
referred to as spectral enhancement [23]. For s → s transi-
tions, we show that (see Appendix)

γ (ω, r)

γ0(ω)
= 1

3

∑
i

Pi(ω, r)Pi(ωeg − ω, r). (20)

In Fig. 2 we plot the spectral enhancement as a function of the
distance between the emitter and the mirror for three given
frequencies. As in the one-photon SE rate of an emitter near
a perfectly conducting plate, γ (ω; z) also exhibits oscillations
with the distance between the emitter and the plate. However,
since in the TPSE there is an additional length scale, the
oscillations are not as regular as in the one-photon SE, except
when ω = ωeg/2, a particular case in which the two emitted
photons have the same wavelength.

We finish this section by emphasizing that the TPSE spec-
tral density function was written in terms of the one-photon
Purcell factors of an emitter near a perfectly conducting
mirror. Although this has been done in this particular case,
this can be generalized, as we show in Sec. IV.

III. GREEN’S FUNCTION METHOD

Another scheme for obtaining SE rates is by using the
Green’s function formalism. It is widely known that the one-
photon SE rate of an emitter near any real material can be
written as [38]

�(1)(r)

�
(1)
0

= 6πc

ωeg
n̂∗

eg · ImG(ωeg; r, r) · n̂eg, (21)

where �
(1)
0 is the one-photon SE rate in free space,

n̂eg := deg/|deg|, and the Green’s dyadic G satisfies the

generalized Helmholtz equation

∇ × ∇ × G(ω; r, r′) − ω2

c2
G(ω; r, r′) = Iδ(r − r′) , (22)

where I is the unit tensor, subjected to the appropriate bound-
ary conditions. Here we rewrite the TPSE rate given by
Eq. (5) in terms of the Green’s function, thus establishing an
equivalence between our result and the literature [20,22]. With
this purpose, first we recall that the dyadic Green’s function
admits a spectral representation where its imaginary part is
given by [38]

ImG(ω; r, r′) = πc2

2ω

∑
α

Aα (r)A∗
α (r′)δ(ω − ωα ). (23)

Noting that from Eq. (5) the TPSE rate can be written as

�(r) = π

4ε2
0 h̄2

∑
α

ωα (ωeg − ωα )Aα (r) · D(ωα, ωeg − ωα )

·
[∑

α′
Aα′ (r)A∗

α′ (r)δ(ωα + ωα′ − ωeg)

]

·D†(ωα, ωeg − ωα ) · A∗
α (r) (24)

and using, for convenience, a simplified notation in which the
r dependence in the arguments of �, ImG, and Aα is implicit,
we obtain from Eqs. (23) and (24)

� = 1

2c2ε2
0 h̄2

∑
α

ωα (ωeg − ωα )2Di j (ωα, ωeg − ωα ),

D∗
lk (ωα, ωeg − ωα ) ImG jk (ωeg − ωα )(Aα )i(A∗

α )l .

(25)

Using that f (ωα ) = ∫ ∞
−∞ dω f (ω)δ(ω − ωα ) we get

� = μ2
0

π h̄2

∫ ωeg

0
dωω2(ωeg − ω)2ImGil (ω)ImG jk (ωeg − ω)

×Di j (ω,ωeg − ω)D∗
lk (ω,ωeg − ω), (26)

where we again have used Eq. (23) and constrained the limits
of integration since ImG(ω) = 0 for ω < 0. This equation can
be viewed as an equivalent of (21) for the case of TPSE.

Although Eq. (26) has been derived from (5), which de-
pends on the existence of a complete set of field modes, it
is completely general and can be used to calculate the TPSE
of an atom near any real material. It is important to note that
Eq. (26) also gives a general formula for the spectral density
function γ (ω; r).

Green’s function approach to the emitter-mirror system

In order to compare the field mode approach with the
Green’s function method, we reobtain in this subsection the
TPSE spectral density of an emitter close to a perfect mirror.
With this purpose, it is convenient to write the Green function
as G(ω; r, r′) = G(0)(ω; r, r′) + G(sca)(ω; r, r′), where G(0)

is the free-space Green function and G(sca) is a homogeneous
solution of (22) satisfying the appropriate boundary condi-
tions at the conducting surface. The calculation of the TPSE
rate demands only the knowledge of the imaginary part of the
Green’s function at coincident points (r′ = r). In this case,
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the free-space Green function is given by ImG(0)(ω; r, r) =
(ω/6πc)I, and due to the translational symmetry of the sys-
tem along any direction parallel to the Oxy plane, the scattered
Green’s function can be written as [38]

G(sca)(ω; r, r) = i

8πk2

∫ ∞

0
dk‖

k‖
kz

e2ikzz

×
⎡
⎣k2rs − k2

z r p 0 0
0 k2rs − k2

z r p 0
0 0 k2

‖rp

⎤
⎦,

(27)

where kz =
√

k2 − k2
‖ for k‖ < k), kz = i

√
k2
‖ − k2 for k‖ > k,

and rp and rs are the Fresnel reflection coefficients for p-
polarized and s-polarized waves, respectively. For a perfect
reflector, the Fresnel coefficients are given by rp = 1 and
rs = −1. Taking the imaginary part of the previous equation
and performing the integration in k‖, we obtain

ImGxx(ω) = ImGyy(ω)

= ω

4πc

[
− sin(2kz)

(2kz)
− cos(2kz)

(2kz)2
+ sin(2kz)

(2kz)3

]
,

(28)

ImGzz(ω) = ω

2πc

[
−cos(2kz)

(2kz)2
+ sin(2kz)

(2kz)3

]
. (29)

Plugging previous expressions into Eq. (26) and identifying
the integrand as the spectral density function, we recover the
result given by Eq. (17).

Though the two methods are equivalent, it is noteworthy
that to identify the angular distribution of the emitted photons
using the Green’s function method is not an easy task as it
is in the framework of the field mode approach. Besides, al-
though calculation of the TPSE rate using the Green’s function
method is in principle straightforward, this procedure may
obscure the basic underlying physics of the problem. For some
systems, the field mode approach may even emphasize some
physical aspects that are not evident in the Green’s function
method, as, for instance, when the system supports different
types of modes and the emitter might deexcite by different
pathways.

IV. RELATION BETWEEN THE TPSE AND
THE PURCELL FACTORS

Now, we relate the TPSE spectral density function of
an emitter near a surface to the one-photon SE rate in the
same situation. In a previous work, this has been shown by
considering the emitter near a planar interface [23]. In the
following derivation we do not assume this restriction and
consider the emitter near a surface with an arbitrary shape.
This is possible by noting that ImG(ω) is a real and symmetric
matrix [41], which means it can be diagonalized. For systems
where the basis which diagonalizes the imaginary part of the
Green’s function does not depend on frequency, one can write

γ (ω; r)

γ0(ω)
=

∑
I,J

|DIJ (ω,ωeg − ω)|2
|D(ω,ωeg − ω)|2 PI (ω; r)PJ (ωeg − ω; r),

(30)

where we have defined the Purcell factors PI ’s, I = 1, 2, 3, as

PI (ω; r) := 6πc

ω
ImGII (ω; r, r). (31)

Note that the Purcell factors coincide with ratio (21) if we
choose n̂eg = êI (r), i.e., the transition dipole moment oriented
along one of the basis vectors. It is important to note that
when the basis which diagonalizes the Green’s function is
frequency-dependent Eq. (30) becomes inappropriate. On the
other hand, this equation establishes an explicit relation be-
tween TPSE and one-photon SE, hence, showing in a very
clear way the dependence of the TPSE rate on the local density
of states (LDOS).

An emitter near a half-space dielectric medium

Using the Purcell factor relation just presented, we deter-
mine as an example the spectral enhancement of the TPSE
of an emitter near a semi-infinite homogeneous dielectric
dispersive medium (z < 0). It is clear that Eq. (30) gives a
straightforward way to compute γ (ω; r) since, in this situ-
ation, the Cartesian basis diagonalizes the Green’s function
and we already know the corresponding formulas for the
one-photon SE rates. Moreover, as before, we consider only
s → s transitions. The corresponding spectral enhancement is
given by Eq. (20) with the Purcell factors [38]

P1 = P2 = 1 + 3

4

∫ k

0
dκ‖

κ‖
k3ξ

Re[(k2rs(κ‖) − ξ 2rp(κ‖))e2iξz]

+ 3

4

∫ ∞

k
dκ‖

κ‖
k3ζ

Im[k2rs(κ‖) + ζ 2rp(κ‖)]e−2ζ z,

(32)

P3 = 1 + 3

2

∫ k

0
dκ‖

κ3
‖

k3ξ
Re[rp(κ‖)e2iξz]

+ 3

2

∫ ∞

k
dκ‖

κ3
‖

k3ζ
Im[rp(κ‖)]e−2ζ z, (33)

where ξ =
√

k2 − κ2
‖ , ζ =

√
κ2

‖ − k2 , and rs and rp are the
Fresnel coefficients for s-polarized and p-polarized waves,
respectively. We have two important regimes, the far-field
regime (kz � 1) and the near-field regime (kz � 1). In the
latter, the Purcell factors are very high in comparison to the
former due to the coupling with evanescent modes. Here, we
restrict ourselves to the near-field regime. Evoking the Lorentz
model for dielectrics [42], we expect a strong dependence
of the LDOS on the dielectric resonance frequencies, as a
dielectric reflects like a metal for waves with frequencies
close to the resonances. Hence, applying Eq. (30) we expect a
substantial enhancement in the spectral density function near
the resonance frequencies.

In Fig. 3 we plot the spectral enhancement for three given
distances between the emitter and the dielectric for an s → s
transition. We considered a polystyrene medium described
by a Lorentz model with two resonance frequencies. The
adjusted parameters were taken from Ref. [43]. First, note
the huge changes in the spectral density function near the
resonances frequencies ωR1 and ωR2. Since � � ωR1, ωR2,
the transition between the two frequency regimes (before
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FIG. 3. Spectral enhancement of an emitter near a half-space
polystyrene medium as a function of ω/ωeg for three given val-
ues of z. The polystyrene resonance frequencies are given by
ωR1 = 5.54 × 1014 rad/s and ωR2 = 1.35 × 1016 rad/s, and the cor-
responding widths by � = 1 × 1011 rad/s [43]. The emitter transition
frequency was chosen as 3ωR2.

and after each resonance) occurs in a very narrow interval.
Due to the symmetry of the spectral distribution with respect
to ωeg/2, the same behavior occurs near the complementary
frequencies ωeg − ωR1 and ωeg − ωR2. As is evident from the
figure, the spectral distribution may be orders of magnitude
greater than its free-space value, since we are in the near-
field regime. Furthermore, as the frequency of the emitted
photon approaches a given resonance frequency from below,
the spectral density increases monotonically until it reaches
a maximum value and then suffers an abrupt decrease as it
crosses the resonance frequency. This result may open the
possibility of controlling the spectral distribution of TPSE by
tuning the resonance frequencies of a medium.

V. TPSE OF AN EMITTER BETWEEN TWO
PARALLEL MIRRORS

The suppression of spontaneous emission is a remarkable
phenomenon which opens the possibility of manipulating
excited atoms for long time intervals. However, what is known
as suppression of spontaneous emission is, in fact, suppression
of dipolar one-photon emission. As the TPSE is a second-
order process, the ratio between the lifetimes of an emitter
which decays by two-photon emission and by the emission of
a single photon is about 108. Hence, when the one-photon SE
is supressed, in practice, the atom has an infinite lifetime.

The suppression of the one-photon SE is achieved when the
partial LDOS vanishes at the transition frequency. Without a
one-photon decay channel, in principle, the emitter can decay
by the emission of a photon pair (in this work we ignore
magnetic dipole transitions, quadrupolar transitions, and so
on). The suppression of the one-photon SE was first predicted
by Barton [44] and not observed until 15 years later by Hulet
et al. [45]. They considered atoms going through two perfectly
conducting plates and also prepared the atoms so that they
had a transition electric dipole moment parallel to the plates.
They showed that, for distances between the plates smaller

FIG. 4. Spectral enhancement of an emitter equidistant from two
perfect mirrors as a function of ω/ωeg for three given values of L.

than half the transition wavelength, the atom does not decay
by the emission of a single photon.

In this section we investigate the TPSE in the same situa-
tion, namely, with the atom between two conducting parallel
plates, by using the Purcell factor relation presented in the
previous section. First, we recall that the Purcell factors in the
Cartesian basis are given by [37,44]

P1 = P2 = 3π

2kL

[kL/π]∑
n=0

sin2

(
nπz

L

)[
1 + n2π2

k2L2

]
, (34)

P3 = 3π

kL

[kL/π]∑
n=0

cos2

(
nπz

L

)[
1 − n2π2

k2L2

]
, (35)

where z is the distance between the atom and the first mirror
(located at z = 0), L is the distance between the two mirrors,
and [kL/π ] represents the greatest integer smaller than kL/π .
We note that P1 and P2 vanish for L < π/k, which means that
the one-photon emission will be suppressed if the transition
dipole moment is parallel to the plates. However, Eq. (30)
shows that γ also depends on P3, which increases for small
values of L. Therefore, it is clear that the TPSE is not
completely suppressed in this situation unless D33 = 0. For
s → s and d → s transitions, which are the most common
two-photon transitions, this cannot be true due to the general
form of D [46]. Consequently, for these types of transitions
complete suppression of the TPSE can never occur for an
emitter between two parallel conducting plates.

In Fig. 4 we plot the spectral enhancement for an s → s
transition with the emitter equidistant from both plates,
γ (ω, z = L/2)/γ0(ω), as a function of ω/ωeg for different
values of L. Observe that complete suppression never occurs.
Note also that the spectral enhancement diverges for ω → 0
and ω → ωeg. This is a consequence of the fact that both
γ (ω; z = L/2) and γ0(ω) go to 0 at these frequencies, but
with different power laws. Further, note that as L increases
the spectral density function tends to the free-space spectral
density function (dotted-dashed line), as expected, since in
this case the plates do not influence the emitter anymore.
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FIG. 5. Spectral enhancement in terms of the dimensionless vari-
able kegL/π with the emitter equidistant to both mirrors for three
given frequencies.

In Fig. 5 we plot the spectral enhancement with the emit-
ter equidistant from both plates, γ (ω, z = L/2)/γ0(ω), as a
function of L for three given frequency values. In analogy
with what happens in the one-photon SE, as the distance
between the plates crosses certain multiples of kL/π , the
number of available modes changes abruptly, giving rise to
the discontinuities in the spectral density function. However,
contrary to what happens with the one-photon SE rate when
the transition dipole moment is parallel to the plates, total
suppression never occurs.

The nonsuppression of the TPSE in this situation is a
consequence of the fact that the spectral density function is not
proportional to the partial LDOS, in contrast to what happens
in the one-photon SE [38]. As we can see from Eq. (4), the
TPSE rate does not depend explicitly on the transition dipole
moment, but on the intermediate transition dipole moments.
However, the enhancement or suppression of the TPSE at
a given frequency, say ω1, can occur. It suffices that the
LDOS is enhanced or vanishes at this frequency (or at the
complementary frequency ωeg − ω0).

VI. CONCLUSIONS AND FINAL REMARKS

In this work we have presented an alternative formula
for computing the TPSE rate of an excited emitter near a
surface of arbitrary shape which is written in terms of the
electromagnetic field modes. As a check of self-consistency,
we used this formula to reobtain the TPSE rate in free space
as well as with the emitter near a perfectly conducting plate.
We showed explicitly the equivalence of our formula with
the one usually found in the literature, which is written in
terms of the dyadic Green’s function, Eq. (26). We did this
in a simple and straightforward way, providing an alternative
demonstration of Eq. (26). We compared both methods and
showed that, although the TPSE rate calculation using the
Green’s function method is straightforward, the field mode
approach has the advantage of clarifying the physics of the
problem and provides an easier way to compute the angular
distribution of the emitted photons. We have also related

the TPSE spectral density function of an emitter near an
arbitrary object to the corresponding one-photon SE Purcell
factors. This allowed us to identify the general dependence
of the TPSE rate on the field LDOS and also provided us a
very simple way to compute the spectral density function in
situations where the one-photon SE rate is known. We applied
this formalism to an emitter near a homogeneous semi-infinite
dielectric medium and verified that an interesting behavior of
the TPSE spectral distribution shows up near the resonance
frequencies of the dielectric. This result opens the possibility
of controlling the frequencies of the two emitted photons by
tuning the resonance frequencies of the medium through an
external agent.

Finally, we analyzed the TPSE of an emitter between two
parallel perfect mirrors and showed that the TPSE cannot be
completely suppressed for s → s transitions. This is to be
contrasted with the suppression of the one-photon SE that may
occur for an atom between two parallel perfect mirrors if the
atom is appropriately prepared [45].
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APPENDIX: TRANSITION BETWEEN
ISOTROPIC STATES

In this Appendix we investigate the functional form of
D when the initial and final states are s states. This has
been investigated in previous works [9,46] even for other
transitions such as d → s. Considering the one-electron states
|e〉 = |ne, l = 0, m = 0〉 and |g〉 = |ng, l = 0, m = 0〉, the in-
termediate states which the matrix elements of d do not vanish
are p states and can be written as |k〉 = |n, l = 1, m = 0,±1〉.
The corresponding wave functions can be written as the
product of a radial function by the spherical harmonics. We
have ψe(r) = Rne0(r)Y00, ψg(r) = Rng0(r)Y00, and ψnm(r) =
Rn1(r)Y1m(θ, φ), so the intermediate transition dipole mo-
ments are given by

de,nm = eY ∗
00

∫ ∞

0
drr3R∗

ne0(r)Rn1(r)
∫

d�r̂Y1m(θ, φ), (A1)

dg,nm = eY ∗
00

∫ ∞

0
drr3R∗

ng0(r)Rn1(r)
∫

d�r̂Y1m(θ, φ). (A2)

From these expressions, we note that the directions of these
vectors depend only on the angular integrals, while their
modula depend on the quantum numbers ne, ng, and n. As l is
fixed, the directions depend only on m. Using the expansion

r̂ =
√

4π

3

{
(Y1−1 − Y11)√

2
x̂ + i

(Y1−1 + Y11)√
2

ŷ + Y10ẑ
}

(A3)
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and calculating explicitly the angular integral for all values of
m, we obtain

de,nm = denε̂m, (A4)

dg,nm = dgnε̂m, (A5)

where the set {ε̂−1, ε̂0, ε̂1} is an orthonormal basis in three
dimensions given by

ε̂−1 = − (x̂ + iŷ)√
2

, ε̂1 = x̂ − iŷ√
2

, ε̂0 = ẑ. (A6)

With this result, we obtain

D(ωα, ωα′ ) =
∑

n

dendng

[
1

ωen − ωα

+ 1

ωen − ωα

] ∑
m

ε̂mε̂∗
m.

(A7)

Because the vectors ε̂m form a basis, we have
∑

m ε̂mε̂∗
m = I

and D takes the form D(ωα, ωα′ ) = D(ωα, ωα′ )I,

where

D(ωα, ωα′ ) =
∑

n

dendng

[
1

ωen − ωα

+ 1

ωen − ωα′

]
. (A8)

Finally, we can rewrite Eqs. (5), (26), and (30), respectively,
as

�(r) = π

4ε2
0 h̄2

∑
α,α′

ωαωα′ |D(ωα, ωα′ )|2

× |Aα (r) · Aα′ (r)|2δ(ωα + ωα′ − ωeg), (A9)

�(r) = μ2
0

π h̄2

∫ ωeg

0
dωω2(ωeg − ω)2|D(ω,ωeg − ω)|2

× Tr[ImG(ω; r, r) · ImG(ωeg − ω; r, r)], (A10)

γ (ω, r)

γ0(ω)
= 1

3

∑
I

PI (ω, r)PI (ωeg − ω, r). (A11)
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